
Trusted Boot Module
User Manual

whitebox

whitebox

Contents

1 Introduction 3

2 Building ROTS 4
2.1 u-boot . 4
2.2 Linux kernel . 4
2.3 initramfs . 5

3 Flashing ROTS 5
3.1 Using an External Programmer . 5
3.2 Using sunxi-fel . 7

4 Booting ROTS 8

5 Trusted Boot Module 8
5.1 Building . 8
5.2 Flashing . 8
5.3 Configuration . 8

6 Using gorots 9

2

whitebox

1 Introduction

This document covers the installation and configuration of the Trusted Boot Module (TBM) and the Read-Only
Trusted System (ROTS). The TBM is an additional board that consists of amicrocontroller unit or MCU to man-
age the boot procedure of the host device in a secure fashion by managing keys, logs and other files related
to trusted boot management. Furthermore, the host device will be restricted to only boot from one read-only
storage device that will contain a trusted image or the Read-Only Trusted System (ROTS). Once this image has
been booted, the hosted device is in a trusted state from which it will be able to execute a minimal software
stack to enumerate the images to boot, to verify these images and to select what image to boot. Once the im-
age has been booted, the host device will enter an untrusted stage and the TBM will only allow for restricted
access. This implementation allows the host device to only boot images that are trusted and prevents at-
tackers from tampering with the host device or the TBM to boot untrusted images as long as they don’t have
physical access and as long as there are no vulnerabilities.

Figure 1: a high-level overview of the interaction between the host device and the Trusted Boot Module

Figure 1 shows a high-level overviewof the design. Once the device receives power the Trusted BootModule
will boot and at some point the TBM will power on the host device. The host device will then read the trusted
image from the SPI NOR flash. Because the device has been configured to be restricted to boot from the
SPI NOR flash and because the SPI NOR flash has been configured to be read-only, the host device will be in
a trusted state. The image that has been booted is designed to be minimal and only contains the software
necessary to perform the boot procedure. Furthermore, the image does not contain a network stack to reduce
the amount of possible vulnerabilities and thus to minimise the attack vector. Once the trusted image has
been booted, the host device will enumerate the images to boot and co-operate with the TBM to verify images
and to select the image to boot. This co-operation happens by means of serial communication with the TBM,
where the TBM will grant access to the key storage to the ROTS. Once an image has been selected to boot,
the ROTS will inform the TBM that it will boot this image and enter the untrusted stage. From there on the
TBM will only allow for restricted access.

3

whitebox

Figure 2: the Trusted Boot Module

2 Building ROTS

2.1 u-boot

At themoment of writing, themainline version of u-boot does not have support for SPI NOR flash on Allwinner
SoCs such as the Allwinner A10, A20 and the A64. A driver model compatible SPI driver for u-boot is has been
worked on and the code can be found at https://github.com/StephanvanSchaik/u-boot/tree/sunxi-spi.
This driver has been tested on the following boards:

• H2+ Orange Pi Zero with Macronix MX25L1605D 16 Mbit
• A20 OLinuXino LIME 2 with Winbond W25Q128BV 128 Mbit
• A64 Pine64+ with Winbond W25Q128BV 128 Mbit
• A64 OLinuXino with Eon EN25Q64 64 Mbit

To compile u-boot with support for SPI NOR flash:

git clone https://github.com/StephanvanSchaik/u-boot -b sunxi-spi
make clean
make A20-OLinuXino-Lime2_defconfig
CROSS_COMPILE=armv7a-hardfloat-linux-gnueabi- make

After u-boot-sunxi-with-spl.bin has been built, we can put it on an SD card as follows to test it:

dd if=u-boot-sunxi-with-spl.bin of=/dev/sda bs=1024 seek=8

While U-boot also supports booting from SPI NOR flash, it has been disabled by default:

make menuconfig

Enable the CONFIG_SPL_SPI_SUNXI option. It is possible that the resulting binary will be too large. In that
case, an option like CONFIG_SPL_MMC_SUPPORT can be disabled to save some space. After the configuration
options have been set up, rebuild the u-boot binary again.

2.2 Linux kernel

Make sure that the following options are enabled:

• CONFIG_BLK_DEV_INITRD
• CONFIG_RD_GZIP
• CONFIG_RD_BZIP2
• CONFIG_RD_LZMA

4

https://github.com/StephanvanSchaik/u-boot/tree/sunxi-spi

whitebox

• CONFIG_RD_XZ
• CONFIG_RD_LZO
• CONFIG_RD_LZ4
• CONFIG_KEXEC

As the ROTS image will be read-only once it has been flashed to the SPI NOR flash, it is encouraged to
build a minimal kernel images to reduce the amount of possible bugs and vulnerabilities. More specifically, it
is recommended to build a kernel without any support for networking, graphics and audio.

2.3 initramfs
For the initramfs, we will need static binaries of busybox, kexec-tools, cpio and gzip.

Run the following command to pack up the directory structure of the initramfs into a gzip compressed
cpio archive:

find . -print0 | cpio --null -ov --format=newc | gzip -9 > ../initramfs.cpio.gz

Because u-boot expects the initramfs to be in the u-boot format, we also have to wrap it up in their format
using mkimage:

mkimage -n 'Ramdisk Image' -A arm -O linux -T ramdisk -C gzip -d initramfs.cpio.gz
initramfs.uImage↪→

3 Flashing ROTS

To write the ROTS image to the SPI NOR flash, we can either use an external programmer or boot the device
in FEL mode and use the sunxi-fel tool. To write the images, it is strongly recommended to use the sunxi-fel
tool as it is much faster than using an external programmer. However, to configure the write-protection an
external programmer must be used, as there are few tools that support configuring the write-protection of the
SPI NOR flash.

3.1 Using an External Programmer
In order to be able to program the SPI NOR flash with an external programmer, we will need an external pro-
grammer such as the BusPirate v3.6a or the BusPirate v4.0 and SOIC clip. Figure 3 illustrates the pin-out of a
Winbond W25Q128.V SPI NOR flash, but any SPI NOR flash chip should be compatible with this pin-out. The
SPI NOR flash should have a circular shape at one of the corners, this corner should be bottom-right corner.
Once the pins of the SPI NOR flash are aligned with the pin-out in figure 3, we can clip the SPI NOR flash chip
between the SOIC clip.

Winbond
W25Q128.V

CS DO \WP GND

VCC H/R CLK DI

Figure 3: the pin-out of the Winbond W25Q128.V SPI NOR flash

Figure 4 shows how to connect the BusPirate v3.6a with the SPI NOR flash chip. Connect the Chip Select
(CS) pins using the white cable, the Master In Slave Out (MISO) pin with the Data Out (DO) pin using the black

5

whitebox

cable, theMaster Out Slave In (MOSI) pin with the Data In (DI) pin using the grey cable and the Clock (CLK) pins
using the purple cable. Further, the Ground (GND) pins should be connected using the brown cable and the 5V
and the VCC pins should be connected with the orange cable. In order for the SPI NOR flash chip to function,
the H/R pin of the SPI NOR flash chip should be pulled high, this can be done by connecting the 5V pin with
the H/R pin. Finally, to be able to program the chip in case write-protection has been configured before, we
have to make sure that the Write-Protect (WP) is pulled high to disable write-protection.

Winbond
W25Q128.V

CS MISO\WP GND

VCC H/R CLKMOSI

Figure 4: connecting the BusPirate v3.6a with the SPI NOR Flash

Because the configuration of write-protection is vendor-specific, the mainline version of flashrom does not
support configuring write-protection. Therefore, to be able to configure the write-protection of the SPI NOR
flash chip, we have to use Google’s fork of flashrom.

Unlike the mainline version of flashrom, Google’s fork has two flags to get the name and the size of the
Flash chip:

./flashrom --programmer=buspirate_spi:dev=/dev/buspirate --flash-name
flashrom v0.9.4 : bc6cab1 : Oct 30 2014 07:32:01 UTC on Linux 4.9.4-gentoo (x86_64), built

with libpci 3.1.10, GCC 4.8.x-google 20140307 (prerelease), little endian↪→

vendor="Macronix" name="MX25L6406E"
./flashrom --programmer=buspirate_spi:dev=/dev/buspirate --get-size
flashrom v0.9.4 : bc6cab1 : Oct 30 2014 07:32:01 UTC on Linux 4.9.4-gentoo (x86_64), built

with libpci 3.1.10, GCC 4.8.x-google 20140307 (prerelease), little endian↪→

16777216

Further, Google’s fork of flashrom allows us to tag regions on the SPI NOR flash chip with a custom name.
Assuming that the SPI NOR flash chip is 16 MiB, we will be using the following layout.txt file for the ROTS:

000000:09ffff uboot
0a0000:5fffff linux
600000:ffffff initramfs

We can then write u-boot.bin, bzImage and initramfs.cpio.gz to the SPI NOR flash chip by using the
respective names of the regions. To speed up the process of writing these images, we have to disable parsing
the fmap and the verification of unmodified regions. Furthermore, to maintain an optimal stability, an SPI
speed of no more than 2 MHz is recommended when using the BusPirate v3.6a:

./flashrom --programmer=buspirate_spi:spispeed=2M,dev=/dev/buspirate -l layout.txt -i
uboot:u-boot.bin linux:bzImage initramfs:initramfs.cpio.gz -w --ignore-fmap
--fast-verify

↪→

↪→

Now that the images have been written to their respective regions, we can look at the write-protect ranges
supported by the chip:

6

whitebox

./flashrom --programmer=buspirate_spi:dev=/dev/buspirate --wp-list
flashrom v0.9.4 : bc6cab1 : Oct 30 2014 07:32:01 UTC on Linux 4.9.4-gentoo (x86_64), built

with libpci 3.1.10, GCC 4.8.x-google 20140307 (prerelease), little endian↪→

Valid write protection ranges:
start: 0x000000, length: 0x000000
start: 0xfc0000, length: 0x040000
start: 0xf80000, length: 0x080000
start: 0xf00000, length: 0x100000
start: 0xe00000, length: 0x200000
start: 0xc00000, length: 0x400000
start: 0x800000, length: 0x800000
start: 0x000000, length: 0x040000
start: 0x000000, length: 0x080000
start: 0x000000, length: 0x100000
start: 0x000000, length: 0x200000
start: 0x000000, length: 0x400000
start: 0x000000, length: 0x800000
start: 0x000000, length: 0x1000000
start: 0xfff000, length: 0x001000
start: 0xffe000, length: 0x002000
start: 0xffc000, length: 0x004000
start: 0xff8000, length: 0x008000
start: 0xff8000, length: 0x008000
start: 0x000000, length: 0x001000
start: 0x000000, length: 0x002000
start: 0x000000, length: 0x004000
start: 0x000000, length: 0x008000
start: 0x000000, length: 0x008000

Since we don’t want our images to be tampered with, we want to enable write-protection for the full range.
We can configure the write-protected range as follows:

./flashrom --programmer=buspirate_spi:spispeed=2M,dev=/dev/buspirate --wp-range 0x000000
0x1000000↪→

After setting the range, we are still able to modify the contents of the entire SPI NOR flash chip. To protect
the range, we have to enable write protection as follows:

./flashrom --programmer=buspirate_spi:spispeed=2M,dev=/dev/buspirate --wp-enable

Upon enabling write-protection, the Write-Protect (WP) pin has to be pulled low for the write-protection to
be effective. This prevents the user from disabling the write-protection feature, changing the write-protect
range and from writing to the write-protected region.

3.2 Using sunxi-fel
Download and compile the sunxi-fel tool as follows:

git clone -b spiflash-a20-test https://github.com/ssvb/sunxi-tools.git
make

Connect or reset while holding the recovery or FEL button. Once the board has booted into FEL mode, we
can detect the SPI NOR flash chip as follows:

./sunxi-fel spiflash-info
Manufacturer: Winbond (EFh), model: 40h, size: 16777216 bytes.

Then we can write the u-boot.bin, bzImage and initramfs.uImage images as follows:

./sunxi-fel -p spiflash-write 0x000000 u-boot.bin

./sunxi-fel -p spiflash-write 0x0a0000 bzImage

./sunxi-fel -p spiflash-write 0x600000 initramfs.uImage

7

whitebox

4 Booting ROTS

After powering up the board, u-boot will be loaded. u-boot will then load the Linux kernel image and the
initramfs from the SPI NOR flash and boot the Linux kernel with the initramfs as follows:

sf probe 0:0 6000000
sf read 0x42000000 0xa0000 5636096
sf read 0x43000000 0x600000 10485760
bootm 0x42000000 0x43000000

The ROTS kernel will now boot up and mount the initramfs as the rootfs. At some point the kernel will run
the init script in the initramfs. When this happens the ROTS will start communicating with the TBM to fetch
the time as well as the certificates. Once these have been retrieved from the TBM, the ROTS will mount the
external media such as hard disks and enumerate and verify possible boot images on those media.

5 Trusted Boot Module

In this section the process of building, flashing and configuring the firmware for the TBM is described.

5.1 Building
A cross-compiler targetting ARMv6 or ARMv7-M such as the GNU ARM Embedded Toolchain is required to
build the source code for the Trusted Boot Module. Either install it using your package manager or down-
load the toolchain from https://developer.arm.com/open-source/gnu-toolchain/gnu-rm. For Gentoo users, an
ebuild is available in the tbm-overlay repository. Building your own cross-compiler using a tool like crossdev
can be quite tricky, and is therefore discouraged.

To build the source code in this repository, you will also need libopencm3. Download the source code for
libopencm3 and build it as follows:

git submodule init
git submodule update
make -C libopencm3

To build the code for the Trusted Boot Module, run:

TARGET=stm32f1 make

5.2 Flashing
Connect your computer with a JTAGdevice and connect the I/O, CLK, GND and VDDwireswith the SWDpin-out
of the TBM. Run the following as root:

TARGET=stm32f1 make openocd

If OpenOCD, the JTAG device and the TBM are functioning correctly, OpenOCD should report the available
breakpoint registers. To flash the firmware onto the device, run the following command:

TARGET=stm32f1 make run

Close OpenOCD and disconnect the power from the TBM, then detach the I/O and CLK wires.

5.3 Configuration
Download the source code for gorots and build the admin utility as follows:

go build

Attach a serial cable to the debugging serial interface of the TBM. Power on the TBM using an external
power source such as a JTAG adapter. Run the prepare.sh script to perform an initial configuration of the
TBM. This script will also perform tests to ensure the hardware is functioning as expected.

8

whitebox

6 Using gorots

The gorots package consists of two tools: admin and protocol. The protocol utility is used by the ROTS to
communicate with the user serial interface. The admin utility is used with the admin serial interface of the
TBM to configure it.

The following commands are available for the admin utility:

• ./admin echo <string>
Returns the string passed as an argument to echo.

• ./admin flash_probe
Mounts the SPI NOR flash device as a raw device.

• ./admin flash_erase <offset> <length>
Erases the region provided by the offset and the length in blocks.

• ./admin ftl_probe
Mounts the SPI NOR flash device and initialises the Flash Translation Layer.

• ./admin date
Returns the current time formatted as a human-readable date.

• ./admin time
Returns the current time in seconds since the UNIX epoch.

• ./admin set-time <seconds>
Sets the current time to the given time in seconds since the UNIX epoch.

• ./admin sync-time
Synchronizes the current time of the TBM with the current time of the host device

• ./admin set-time <seconds>
Sets the current time to the given time in seconds since the UNIX epoch.

• ./admin sync-time
Synchronizes the current time of the TBM with the current time of the host device.

• ./admin mount
Mounts the filesystem on the flash device.

• ./admin umount
Unmounts the currently mounted filesystem.

• ./admin format
Formats the filesystem of the flash device.

• ./admin mkdir <path>
Creates a directory at the given path, if the path does not yet exist and if the parent is a directory.

• ./admin rmdir <path>
Removes the directory at the given path, if the path exists and points to a directory.

• ./admin ls <path>
Lists the files in the given path, if the path exists and points to a directory.

• ./admin cat <path>
Concatenates the file with the standard output.

9

whitebox

• ./admin write <path> <file>
Writes the contents of the file to the file at the given path. Creates a new file if the path does not point
to an existing file. Otherwise the file will be truncated first.

• ./admin append <path> <file>
Appends the contents of the file to the file at the given path. Creates a new file if the path does not point
to an existing file.

• ./admin mv <old> <new>
Moves the file or directory from the old path to the new path.

• ./admin cp <old> <new>
Copies the contents of the file from the old path to the file pointed to by the new path. Creates a file at
the new path if it does not exist yet. Otherwise the file is truncated before copying the contents.

• ./admin rm <path>
Removes the file at the given path, if the path exists and points to a file.

10

	Introduction
	Building ROTS
	u-boot
	Linux kernel
	initramfs

	Flashing ROTS
	Using an External Programmer
	Using sunxi-fel

	Booting ROTS
	Trusted Boot Module
	Building
	Flashing
	Configuration

	Using gorots

