Trusted Boot Module

User Manual

whitebox

whitebox

Contents

2 Building ROTS

D1 W-bool
0.2 Linux kernel.
0.3 initramfs

Wwww W

B Flashing ROTS
3.1 Using an External Programmer
3.2 Usingsunxi-fel

()] (o) 0 S

4 Booting ROTS

whitebox

1 Introduction

2 Building ROTS

2.1 u-boot

At the moment of writing, the mainline version of u-boot does not have support for SPI NOR flash on Allwinner
SoCs such as the Allwinner A10, A20 and the A64. A driver model compatible SPI driver for u-boot is has been
worked on and the code can be found at https://github.com/StephanvanSchaik/u-boot/tree/sunxi-spi.
This driver has been tested on the following boards:

* H2+ Orange Pi Zero with Macronix MX25L1605D 16 Mbit

+ A20 OLinuXino LIME 2 with Winbond W25Q128BV 128 Mbit
+ A64 Pine64+ with Winbond W25Q128BV 128 Mbit

+ A64 OLinuXino with Eon EN25Q64 64 Mbit

To compile u-boot with support for SPI NOR flash:

git clone https://github.com/StephanvanSchaik/u-boot -b sunxi-spi
make clean

make A20-0OLinuXino-Lime2_defconfig
CROSS_COMPILE=armv7a-hardfloat-linux-gnueabi- make

After u-boot-sunxi-with-spl.bin has been built, we can put it on an SD card as follows to test it:
dd if=u-boot-sunxi-with-spl.bin of=/dev/sda bs=1024 seek=8

While U-boot also supports booting from SPI NOR flash, it has been disabled by default:
make menuconfig

Enable the CONFIG_SPL_SPI_SUNXI option. It is possible that the resulting binary will be too large. In that
case, an option like CONFIG_SPL_MMC_SUPPORT can be disabled to save some space. After the configuration
options have been set up, rebuild the u-boot binary again.

2.2 Linux kernel

Make sure that the following options are enabled:

* CONFIG_BLK_DEV_INITRD
* CONFIG_RD_GZIP

* CONFIG_RD_BZIP2

* CONFIG_RD_LZMA

* CONFIG_RD_XZ

* CONFIG_RD_LZO

* CONFIG_RD_LZ4

* CONFIG_KEXEC

As the ROTS image will be read-only once it has been flashed to the SPI NOR flash, it is encouraged to

build a minimal kernel images to reduce the amount of possible bugs and vulnerabilities. More specifically, it
is recommended to build a kernel without any support for networking, graphics and audio.

2.3 initramfs

For the initramfs, we will need static binaries of busybox, kexec-tools, cpio and gzip.

https://github.com/StephanvanSchaik/u-boot/tree/sunxi-spi

whitebox

3 Flashing ROTS

3.1 Using an External Programmer

In order to be able to program the SPI NOR flash with an external programmer, we will need an external pro-
grammer such as the BusPirate v3.6a or the BusPirate v4.0 and SOIC clip. Figure m illustrates the pin-out of a
Winbond W25Q128.V SPI NOR flash, but any SPI NOR flash chip should be compatible with this pin-out. The
SPI NOR flash should have a circular shape at one of the corners, this corner should be bottom-right corner.
Once the pins of the SPI NOR flash are aligned with the pin-out in figure Iﬂ we can clip the SPI NOR flash chip
between the SOIC clip.

VCC H/R CLK DI

I

Winbond
W25Q128.V

O
]

CS DO \WP GND

Figure 1: the pin-out of the Winbond W25Q128.V SPI NOR flash

Figure Q shows how to connect the BusPirate v3.6a with the SPI NOR flash chip. Connect the Chip Select
(CS) pins using the white cable, the Master In Slave Out (MISO) pin with the Data Out (DO) pin using the black
cable, the Master Out Slave In (MOSI) pin with the Data In (DI) pin using the grey cable and the Clock (CLK) pins
using the purple cable. Further, the Ground (GND) pins should be connected using the brown cable and the 5V
and the VCC pins should be connected with the orange cable. In order for the SPI NOR flash chip to function,
the H/R pin of the SPI NOR flash chip should be pulled high, this can be done by connecting the 5V pin with
the H/R pin. Finally, to be able to program the chip in case write-protection has been configured before, we
have to make sure that the Write-Protect (WP) is pulled high to disable write-protection.

VCC H/R CLKMOSI

Ll

Winbond
W25Q128.V

N

CS MISO\WP GND

Figure 2: connecting the BusPirate v3.6a with the SPI NOR Flash

Because the configuration of write-protection is vendor-specific, the mainline version of flashrom does not
support configuring write-protection. Therefore, to be able to configure the write-protection of the SPI NOR
flash chip, we have to use Google's fork of flashrom.

Unlike the mainline version of flashrom, Google’s fork has two flags to get the name and the size of the
Flash chip:

whitebox

./flashrom --programmer=buspirate_spi:dev=/dev/buspirate --flash-name

flashrom v0.9.4 : bc6cabl : Oct 30 2014 07:32:01 UTC on Linux 4.9.4-gentoo (x86_64), built
— with 1libpci 3.1.10, GCC 4.8.x-google 20140307 (prerelease), little endian
vendor="Macronix" name="MX25L6406E"

./flashrom --programmer=buspirate_spi:dev=/dev/buspirate --get-size

flashrom v0.9.4 : bc6cabl : Oct 30 2014 07:32:01 UTC on Linux 4.9.4-gentoo (x86_64), built
<~ with 1libpci 3.1.10, GCC 4.8.x-google 20140307 (prerelease), little endian

8388608

Further, Google’s fork of flashrom allows us to tag regions on the SPI NOR flash chip with a custom name.
Assuming that the SPI NOR flash chip is 16 MiB, we will be using the following 1ayout.txt file for the ROTS:

000000:09ffff uboot
0a0000:5fffff linux
600000:ffffff initramfs

We can then write u-boot.bin, bzImage and initramfs.cpio.gz to the SPI NOR flash chip by using the
respective names of the regions. To speed up the process of writing these images, we have to disable parsing
the fmap and the verification of unmodified regions. Furthermore, to maintain an optimal stability, an SPI
speed of no more than 2 MHz is recommended when using the BusPirate v3.6a:

./flashrom --programmer=buspirate_spi:spispeed=2M,dev=/dev/buspirate -1 layout.txt -i
— uboot:u-boot.bin linux:bzImage initramfs:initramfs.cpio.gz -w --ignore-fmap
— —-fast-verify

Now that the images have been written to their respective regions, we can look at the write-protect ranges
supported by the chip:

./flashrom --programmer=buspirate_spi:dev=/dev/buspirate --wp-list

flashrom v0.9.4 : bc6cabl : Oct 30 2014 07:32:01 UTC on Linux 4.9.4-gentoo (x86_64), built
< with 1libpci 3.1.10, GCC 4.8.x-google 20140307 (prerelease), little endian
Valid write protection ranges:

start: 0x000000, length: 0x000000

start: 0x7e0000, length: 0x020000

start: 0x7c0000, length: 0x040000

start: 0x7a0000, length: 0x080000

start: 0x700000, length: 0x100000

start: 0x600000, length: 0x200000

start: 0x400000, length: 0x400000

start: 0x000000, length: 0x800000

start: 0x000000, length: 0x800000

start: 0x000000, length: 0x400000

start: 0x000000, length: 0x600000

start: 0x000000, length: 0x700000

start: 0x000000, length: 0x780000

start: 0x000000, length: 0x7c0000

start: 0x000000, length: 0x7e0000

start: 0x000000, length: 0x800000

Since we don't want our images to be tampered with, we want to enable write-protection for the full range.
We can configure the write-protected range as follows:

./flashrom --programmer=buspirate_spi:spispeed=2M,dev=/dev/buspirate --wp-range 0x000000
— 0x800000

After setting the range, we are still able to modify the contents of the entire SPI NOR flash chip. To protect
the range, we have to enable write protection as follows:

./flashrom --programmer=buspirate_spi:spispeed=2M,dev=/dev/buspirate --wp-enable

Upon enabling write-protection, the Write-Protect (WP) pin has to be pulled low for the write-protection to
be effective. This prevents the user from disabling the write-protection feature, changing the write-protect
range and from writing to the write-protected region.

whitebox

3.2 Using sunxi-fel

Download and compile the sunxi-fel tool as follows:

git clone -b spiflash-a20-test https://github.com/ssvb/sunxi-tools.git
make

Connect or reset while holding the recovery or FEL button. Once the board has booted into FEL mode, we
can detect the SPI NOR flash chip as follows:

./sunxi-fel spiflash-info
Manufacturer: Winbond (EFh), model: 40h, size: 16777216 bytes.

Then we can write the u-boot .bin, bzImage and initramfs.cpio.gz images as follows:

./sunxi-fel -p spiflash-write 0x000000 u-boot.bin
./sunxi-fel -p spiflash-write 0x0a0000 bzImage
./sunxi-fel -p spiflash-write 0x600000 initramfs.cpio.gz

4 Booting ROTS

After powering up the board, u-boot will be loaded. u-boot will then load the Linux kernel image and the
initramfs from the SPI NOR flash and boot the Linux kernel with the initramfs as follows:

sf probe 0:0 6000000

sf read 0x42000000 0xa0000 5636096
sf read 0x43000000 0x600000 10485760
bootm 0x42000000 0x43000000

The ROTS kernel will now boot up and mount the initramfs as the rootfs. At some point the kernel will run
the init script in the initramfs. When this happens the ROTS will start communicating with the TBM to fetch
the time as well as the certificates. Once these have been retrieved from the TBM, the ROTS will mount the
external media such as hard disks and enumerate and verify possible boot images on those media.

	Introduction
	Building ROTS
	u-boot
	Linux kernel
	initramfs

	Flashing ROTS
	Using an External Programmer
	Using sunxi-fel

	Booting ROTS

