upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
u-boot/cpu/ixp/npe/IxQMgrAqmIf.c

964 lines
28 KiB

/*
* @file: IxQMgrAqmIf.c
*
* @author Intel Corporation
* @date 30-Oct-2001
*
* @brief This component provides a set of functions for
* perfoming I/O on the AQM hardware.
*
* Design Notes:
* These functions are intended to be as fast as possible
* and as a result perform NO PARAMETER CHECKING.
*
*
* @par
* IXP400 SW Release version 2.0
*
* -- Copyright Notice --
*
* @par
* Copyright 2001-2005, Intel Corporation.
* All rights reserved.
*
* @par
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* @par
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @par
* -- End of Copyright Notice --
*/
/*
* Inlines are compiled as function when this is defined.
* N.B. Must be placed before #include of "IxQMgrAqmIf_p.h
*/
#ifndef IXQMGRAQMIF_P_H
# define IXQMGRAQMIF_C
#else
# error
#endif
/*
* User defined include files.
*/
#include "IxOsal.h"
#include "IxQMgr.h"
#include "IxQMgrAqmIf_p.h"
#include "IxQMgrLog_p.h"
/*
* #defines and macros used in this file.
*/
/* These defines are the bit offsets of the various fields of
* the queue configuration register
*/
#define IX_QMGR_Q_CONFIG_WRPTR_OFFSET 0x00
#define IX_QMGR_Q_CONFIG_RDPTR_OFFSET 0x07
#define IX_QMGR_Q_CONFIG_BADDR_OFFSET 0x0E
#define IX_QMGR_Q_CONFIG_ESIZE_OFFSET 0x16
#define IX_QMGR_Q_CONFIG_BSIZE_OFFSET 0x18
#define IX_QMGR_Q_CONFIG_NE_OFFSET 0x1A
#define IX_QMGR_Q_CONFIG_NF_OFFSET 0x1D
#define IX_QMGR_BASE_ADDR_16_WORD_ALIGN 0x40
#define IX_QMGR_BASE_ADDR_16_WORD_SHIFT 0x6
#define IX_QMGR_NE_NF_CLEAR_MASK 0x03FFFFFF
#define IX_QMGR_NE_MASK 0x7
#define IX_QMGR_NF_MASK 0x7
#define IX_QMGR_SIZE_MASK 0x3
#define IX_QMGR_ENTRY_SIZE_MASK 0x3
#define IX_QMGR_BADDR_MASK 0x003FC000
#define IX_QMGR_RDPTR_MASK 0x7F
#define IX_QMGR_WRPTR_MASK 0x7F
#define IX_QMGR_RDWRPTR_MASK 0x00003FFF
#define IX_QMGR_AQM_ADDRESS_SPACE_SIZE_IN_WORDS 0x1000
/* Base address of AQM SRAM */
#define IX_QMGR_AQM_SRAM_BASE_ADDRESS_OFFSET \
((IX_QMGR_QUECONFIG_BASE_OFFSET) + (IX_QMGR_QUECONFIG_SIZE))
/* Min buffer size used for generating buffer size in QUECONFIG */
#define IX_QMGR_MIN_BUFFER_SIZE 16
/* Reset values of QMgr hardware registers */
#define IX_QMGR_QUELOWSTAT_RESET_VALUE 0x33333333
#define IX_QMGR_QUEUOSTAT_RESET_VALUE 0x00000000
#define IX_QMGR_QUEUPPSTAT0_RESET_VALUE 0xFFFFFFFF
#define IX_QMGR_QUEUPPSTAT1_RESET_VALUE 0x00000000
#define IX_QMGR_INT0SRCSELREG_RESET_VALUE 0x00000000
#define IX_QMGR_QUEIEREG_RESET_VALUE 0x00000000
#define IX_QMGR_QINTREG_RESET_VALUE 0xFFFFFFFF
#define IX_QMGR_QUECONFIG_RESET_VALUE 0x00000000
#define IX_QMGR_PHYSICAL_AQM_BASE_ADDRESS IX_OSAL_IXP400_QMGR_PHYS_BASE
#define IX_QMGR_QUELOWSTAT_BITS_PER_Q (BITS_PER_WORD/IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD)
#define IX_QMGR_QUELOWSTAT_QID_MASK 0x7
#define IX_QMGR_Q_CONFIG_ADDR_GET(qId)\
(((qId) * IX_QMGR_NUM_BYTES_PER_WORD) +\
IX_QMGR_QUECONFIG_BASE_OFFSET)
#define IX_QMGR_ENTRY1_OFFSET 0
#define IX_QMGR_ENTRY2_OFFSET 1
#define IX_QMGR_ENTRY4_OFFSET 3
/*
* Variable declarations global to this file. Externs are followed by
* statics.
*/
UINT32 aqmBaseAddress = 0;
/* Store addresses and bit-masks for certain queue access and status registers.
* This is to facilitate inlining of QRead, QWrite and QStatusGet functions
* in IxQMgr,h
*/
extern IxQMgrQInlinedReadWriteInfo ixQMgrQInlinedReadWriteInfo[];
UINT32 * ixQMgrAqmIfQueAccRegAddr[IX_QMGR_MAX_NUM_QUEUES];
UINT32 ixQMgrAqmIfQueLowStatRegAddr[IX_QMGR_MIN_QUEUPP_QID];
UINT32 ixQMgrAqmIfQueLowStatBitsOffset[IX_QMGR_MIN_QUEUPP_QID];
UINT32 ixQMgrAqmIfQueLowStatBitsMask;
UINT32 ixQMgrAqmIfQueUppStat0RegAddr;
UINT32 ixQMgrAqmIfQueUppStat1RegAddr;
UINT32 ixQMgrAqmIfQueUppStat0BitMask[IX_QMGR_MIN_QUEUPP_QID];
UINT32 ixQMgrAqmIfQueUppStat1BitMask[IX_QMGR_MIN_QUEUPP_QID];
/*
* Fast mutexes, one for each queue, used to protect peek & poke functions
*/
IxOsalFastMutex ixQMgrAqmIfPeekPokeFastMutex[IX_QMGR_MAX_NUM_QUEUES];
/*
* Function prototypes
*/
PRIVATE unsigned
watermarkToAqmWatermark (IxQMgrWMLevel watermark );
PRIVATE unsigned
entrySizeToAqmEntrySize (IxQMgrQEntrySizeInWords entrySize);
PRIVATE unsigned
bufferSizeToAqmBufferSize (unsigned bufferSizeInWords);
PRIVATE void
ixQMgrAqmIfRegistersReset (void);
PRIVATE void
ixQMgrAqmIfEntryAddressGet (unsigned int entryIndex,
UINT32 configRegWord,
unsigned int qEntrySizeInwords,
unsigned int qSizeInWords,
UINT32 **address);
/*
* Function definitions
*/
void
ixQMgrAqmIfInit (void)
{
UINT32 aqmVirtualAddr;
int i;
/* The value of aqmBaseAddress depends on the logical address
* assigned by the MMU.
*/
aqmVirtualAddr =
(UINT32) IX_OSAL_MEM_MAP(IX_QMGR_PHYSICAL_AQM_BASE_ADDRESS,
IX_OSAL_IXP400_QMGR_MAP_SIZE);
IX_OSAL_ASSERT (aqmVirtualAddr);
ixQMgrAqmIfBaseAddressSet (aqmVirtualAddr);
ixQMgrAqmIfRegistersReset ();
for (i = 0; i< IX_QMGR_MAX_NUM_QUEUES; i++)
{
ixOsalFastMutexInit(&ixQMgrAqmIfPeekPokeFastMutex[i]);
/********************************************************************
* Register addresses and bit masks are calculated and stored here to
* facilitate inlining of QRead, QWrite and QStatusGet functions in
* IxQMgr.h.
* These calculations are normally performed dynamically in inlined
* functions in IxQMgrAqmIf_p.h, and their semantics are reused here.
*/
/* AQM Queue access reg addresses, per queue */
ixQMgrAqmIfQueAccRegAddr[i] =
(UINT32 *)(aqmBaseAddress + IX_QMGR_Q_ACCESS_ADDR_GET(i));
ixQMgrQInlinedReadWriteInfo[i].qAccRegAddr =
(volatile UINT32 *)(aqmBaseAddress + IX_QMGR_Q_ACCESS_ADDR_GET(i));
ixQMgrQInlinedReadWriteInfo[i].qConfigRegAddr =
(volatile UINT32 *)(aqmBaseAddress + IX_QMGR_Q_CONFIG_ADDR_GET(i));
/* AQM Queue lower-group (0-31), only */
if (i < IX_QMGR_MIN_QUEUPP_QID)
{
/* AQM Q underflow/overflow status register addresses, per queue */
ixQMgrQInlinedReadWriteInfo[i].qUOStatRegAddr =
(volatile UINT32 *)(aqmBaseAddress +
IX_QMGR_QUEUOSTAT0_OFFSET +
((i / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD) *
IX_QMGR_NUM_BYTES_PER_WORD));
/* AQM Q underflow status bit masks for status register per queue */
ixQMgrQInlinedReadWriteInfo[i].qUflowStatBitMask =
(IX_QMGR_UNDERFLOW_BIT_OFFSET + 1) <<
((i & (IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD - 1)) *
(BITS_PER_WORD / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD));
/* AQM Q overflow status bit masks for status register, per queue */
ixQMgrQInlinedReadWriteInfo[i].qOflowStatBitMask =
(IX_QMGR_OVERFLOW_BIT_OFFSET + 1) <<
((i & (IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD - 1)) *
(BITS_PER_WORD / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD));
/* AQM Q lower-group (0-31) status register addresses, per queue */
ixQMgrAqmIfQueLowStatRegAddr[i] = aqmBaseAddress +
IX_QMGR_QUELOWSTAT0_OFFSET +
((i / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD) *
IX_QMGR_NUM_BYTES_PER_WORD);
/* AQM Q lower-group (0-31) status register bit offset */
ixQMgrAqmIfQueLowStatBitsOffset[i] =
(i & (IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD - 1)) *
(BITS_PER_WORD / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD);
}
else /* AQM Q upper-group (32-63), only */
{
/* AQM Q upper-group (32-63) Nearly Empty status reg bit masks */
ixQMgrAqmIfQueUppStat0BitMask[i - IX_QMGR_MIN_QUEUPP_QID] =
(1 << (i - IX_QMGR_MIN_QUEUPP_QID));
/* AQM Q upper-group (32-63) Full status register bit masks */
ixQMgrAqmIfQueUppStat1BitMask[i - IX_QMGR_MIN_QUEUPP_QID] =
(1 << (i - IX_QMGR_MIN_QUEUPP_QID));
}
}
/* AQM Q lower-group (0-31) status register bit mask */
ixQMgrAqmIfQueLowStatBitsMask = (1 <<
(BITS_PER_WORD /
IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD)) - 1;
/* AQM Q upper-group (32-63) Nearly Empty status register address */
ixQMgrAqmIfQueUppStat0RegAddr = aqmBaseAddress + IX_QMGR_QUEUPPSTAT0_OFFSET;
/* AQM Q upper-group (32-63) Full status register address */
ixQMgrAqmIfQueUppStat1RegAddr = aqmBaseAddress + IX_QMGR_QUEUPPSTAT1_OFFSET;
}
/*
* Uninitialise the AqmIf module by unmapping memory, etc
*/
void
ixQMgrAqmIfUninit (void)
{
UINT32 virtAddr;
ixQMgrAqmIfBaseAddressGet (&virtAddr);
IX_OSAL_MEM_UNMAP (virtAddr);
ixQMgrAqmIfBaseAddressSet (0);
}
/*
* Set the the logical base address of AQM
*/
void
ixQMgrAqmIfBaseAddressSet (UINT32 address)
{
aqmBaseAddress = address;
}
/*
* Get the logical base address of AQM
*/
void
ixQMgrAqmIfBaseAddressGet (UINT32 *address)
{
*address = aqmBaseAddress;
}
/*
* Get the logical base address of AQM SRAM
*/
void
ixQMgrAqmIfSramBaseAddressGet (UINT32 *address)
{
*address = aqmBaseAddress +
IX_QMGR_AQM_SRAM_BASE_ADDRESS_OFFSET;
}
/*
* This function will write the status bits of a queue
* specified by qId.
*/
void
ixQMgrAqmIfQRegisterBitsWrite (IxQMgrQId qId,
UINT32 registerBaseAddrOffset,
unsigned queuesPerRegWord,
UINT32 value)
{
volatile UINT32 *registerAddress;
UINT32 registerWord;
UINT32 statusBitsMask;
UINT32 bitsPerQueue;
bitsPerQueue = BITS_PER_WORD / queuesPerRegWord;
/*
* Calculate the registerAddress
* multiple queues split accross registers
*/
registerAddress = (UINT32*)(aqmBaseAddress +
registerBaseAddrOffset +
((qId / queuesPerRegWord) *
IX_QMGR_NUM_BYTES_PER_WORD));
/* Read the current data */
ixQMgrAqmIfWordRead (registerAddress, &registerWord);
if( (registerBaseAddrOffset == IX_QMGR_INT0SRCSELREG0_OFFSET) &&
(qId == IX_QMGR_QUEUE_0) )
{
statusBitsMask = 0x7 ;
/* Queue 0 at INT0SRCSELREG should not corrupt the value bit-3 */
value &= 0x7 ;
}
else
{
/* Calculate the mask for the status bits for this queue. */
statusBitsMask = ((1 << bitsPerQueue) - 1);
statusBitsMask <<= ((qId & (queuesPerRegWord - 1)) * bitsPerQueue);
/* Mask out bits in value that would overwrite other q data */
value <<= ((qId & (queuesPerRegWord - 1)) * bitsPerQueue);
value &= statusBitsMask;
}
/* Mask out bits to write to */
registerWord &= ~statusBitsMask;
/* Set the write bits */
registerWord |= value;
/*
* Write the data
*/
ixQMgrAqmIfWordWrite (registerAddress, registerWord);
}
/*
* This function generates the parameters that can be used to
* check if a Qs status matches the specified source select.
* It calculates which status word to check (statusWordOffset),
* the value to check the status against (checkValue) and the
* mask (mask) to mask out all but the bits to check in the status word.
*/
void
ixQMgrAqmIfQStatusCheckValsCalc (IxQMgrQId qId,
IxQMgrSourceId srcSel,
unsigned int *statusWordOffset,
UINT32 *checkValue,
UINT32 *mask)
{
UINT32 shiftVal;
if (qId < IX_QMGR_MIN_QUEUPP_QID)
{
switch (srcSel)
{
case IX_QMGR_Q_SOURCE_ID_E:
*checkValue = IX_QMGR_Q_STATUS_E_BIT_MASK;
*mask = IX_QMGR_Q_STATUS_E_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NE:
*checkValue = IX_QMGR_Q_STATUS_NE_BIT_MASK;
*mask = IX_QMGR_Q_STATUS_NE_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NF:
*checkValue = IX_QMGR_Q_STATUS_NF_BIT_MASK;
*mask = IX_QMGR_Q_STATUS_NF_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_F:
*checkValue = IX_QMGR_Q_STATUS_F_BIT_MASK;
*mask = IX_QMGR_Q_STATUS_F_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NOT_E:
*checkValue = 0;
*mask = IX_QMGR_Q_STATUS_E_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NOT_NE:
*checkValue = 0;
*mask = IX_QMGR_Q_STATUS_NE_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NOT_NF:
*checkValue = 0;
*mask = IX_QMGR_Q_STATUS_NF_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NOT_F:
*checkValue = 0;
*mask = IX_QMGR_Q_STATUS_F_BIT_MASK;
break;
default:
/* Should never hit */
IX_OSAL_ASSERT(0);
break;
}
/* One nibble of status per queue so need to shift the
* check value and mask out to the correct position.
*/
shiftVal = (qId % IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD) *
IX_QMGR_QUELOWSTAT_BITS_PER_Q;
/* Calculate the which status word to check from the qId,
* 8 Qs status per word
*/
*statusWordOffset = qId / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD;
*checkValue <<= shiftVal;
*mask <<= shiftVal;
}
else
{
/* One status word */
*statusWordOffset = 0;
/* Single bits per queue and int source bit hardwired NE,
* Qs start at 32.
*/
*mask = 1 << (qId - IX_QMGR_MIN_QUEUPP_QID);
*checkValue = *mask;
}
}
void
ixQMgrAqmIfQInterruptEnable (IxQMgrQId qId)
{
volatile UINT32 *registerAddress;
UINT32 registerWord;
UINT32 actualBitOffset;
if (qId < IX_QMGR_MIN_QUEUPP_QID)
{
registerAddress = (UINT32*)(aqmBaseAddress + IX_QMGR_QUEIEREG0_OFFSET);
}
else
{
registerAddress = (UINT32*)(aqmBaseAddress + IX_QMGR_QUEIEREG1_OFFSET);
}
actualBitOffset = 1 << (qId % IX_QMGR_MIN_QUEUPP_QID);
ixQMgrAqmIfWordRead (registerAddress, &registerWord);
ixQMgrAqmIfWordWrite (registerAddress, (registerWord | actualBitOffset));
}
void
ixQMgrAqmIfQInterruptDisable (IxQMgrQId qId)
{
volatile UINT32 *registerAddress;
UINT32 registerWord;
UINT32 actualBitOffset;
if (qId < IX_QMGR_MIN_QUEUPP_QID)
{
registerAddress = (UINT32*)(aqmBaseAddress + IX_QMGR_QUEIEREG0_OFFSET);
}
else
{
registerAddress = (UINT32*)(aqmBaseAddress + IX_QMGR_QUEIEREG1_OFFSET);
}
actualBitOffset = 1 << (qId % IX_QMGR_MIN_QUEUPP_QID);
ixQMgrAqmIfWordRead (registerAddress, &registerWord);
ixQMgrAqmIfWordWrite (registerAddress, registerWord & (~actualBitOffset));
}
void
ixQMgrAqmIfQueCfgWrite (IxQMgrQId qId,
IxQMgrQSizeInWords qSizeInWords,
IxQMgrQEntrySizeInWords entrySizeInWords,
UINT32 freeSRAMAddress)
{
volatile UINT32 *cfgAddress = NULL;
UINT32 qCfg = 0;
UINT32 baseAddress = 0;
unsigned aqmEntrySize = 0;
unsigned aqmBufferSize = 0;
/* Build config register */
aqmEntrySize = entrySizeToAqmEntrySize (entrySizeInWords);
qCfg |= (aqmEntrySize&IX_QMGR_ENTRY_SIZE_MASK) <<
IX_QMGR_Q_CONFIG_ESIZE_OFFSET;
aqmBufferSize = bufferSizeToAqmBufferSize (qSizeInWords);
qCfg |= (aqmBufferSize&IX_QMGR_SIZE_MASK) << IX_QMGR_Q_CONFIG_BSIZE_OFFSET;
/* baseAddress, calculated relative to aqmBaseAddress and start address */
baseAddress = freeSRAMAddress -
(aqmBaseAddress + IX_QMGR_QUECONFIG_BASE_OFFSET);
/* Verify base address aligned to a 16 word boundary */
if ((baseAddress % IX_QMGR_BASE_ADDR_16_WORD_ALIGN) != 0)
{
IX_QMGR_LOG_ERROR0("ixQMgrAqmIfQueCfgWrite () address is not on 16 word boundary\n");
}
/* Now convert it to a 16 word pointer as required by QUECONFIG register */
baseAddress >>= IX_QMGR_BASE_ADDR_16_WORD_SHIFT;
qCfg |= (baseAddress << IX_QMGR_Q_CONFIG_BADDR_OFFSET);
cfgAddress = (UINT32*)(aqmBaseAddress +
IX_QMGR_Q_CONFIG_ADDR_GET(qId));
/* NOTE: High and Low watermarks are set to zero */
ixQMgrAqmIfWordWrite (cfgAddress, qCfg);
}
void
ixQMgrAqmIfQueCfgRead (IxQMgrQId qId,
unsigned int numEntries,
UINT32 *baseAddress,
unsigned int *ne,
unsigned int *nf,
UINT32 *readPtr,
UINT32 *writePtr)
{
UINT32 qcfg;
UINT32 *cfgAddress = (UINT32*)(aqmBaseAddress + IX_QMGR_Q_CONFIG_ADDR_GET(qId));
unsigned int qEntrySizeInwords;
unsigned int qSizeInWords;
UINT32 *readPtr_ = NULL;
/* Read the queue configuration register */
ixQMgrAqmIfWordRead (cfgAddress, &qcfg);
/* Extract the base address */
*baseAddress = (UINT32)((qcfg & IX_QMGR_BADDR_MASK) >>
(IX_QMGR_Q_CONFIG_BADDR_OFFSET));
/* Base address is a 16 word pointer from the start of AQM SRAM.
* Convert to absolute word address.
*/
*baseAddress <<= IX_QMGR_BASE_ADDR_16_WORD_SHIFT;
*baseAddress += (UINT32)IX_QMGR_QUECONFIG_BASE_OFFSET;
/*
* Extract the watermarks. 0->0 entries, 1->1 entries, 2->2 entries, 3->4 entries......
* If ne > 0 ==> neInEntries = 2^(ne - 1)
* If ne == 0 ==> neInEntries = 0
* The same applies.
*/
*ne = ((qcfg) >> (IX_QMGR_Q_CONFIG_NE_OFFSET)) & IX_QMGR_NE_MASK;
*nf = ((qcfg) >> (IX_QMGR_Q_CONFIG_NF_OFFSET)) & IX_QMGR_NF_MASK;
if (0 != *ne)
{
*ne = 1 << (*ne - 1);
}
if (0 != *nf)
{
*nf = 1 << (*nf - 1);
}
/* Get the queue entry size in words */
qEntrySizeInwords = ixQMgrQEntrySizeInWordsGet (qId);
/* Get the queue size in words */
qSizeInWords = ixQMgrQSizeInWordsGet (qId);
ixQMgrAqmIfEntryAddressGet (0/* Entry 0. i.e the readPtr*/,
qcfg,
qEntrySizeInwords,
qSizeInWords,
&readPtr_);
*readPtr = (UINT32)readPtr_;
*readPtr -= (UINT32)aqmBaseAddress;/* Offset, not absolute address */
*writePtr = (qcfg >> IX_QMGR_Q_CONFIG_WRPTR_OFFSET) & IX_QMGR_WRPTR_MASK;
*writePtr = *baseAddress + (*writePtr * (IX_QMGR_NUM_BYTES_PER_WORD));
return;
}
unsigned
ixQMgrAqmIfLog2 (unsigned number)
{
unsigned count = 0;
/*
* N.B. this function will return 0
* for ixQMgrAqmIfLog2 (0)
*/
while (number/2)
{
number /=2;
count++;
}
return count;
}
void ixQMgrAqmIfIntSrcSelReg0Bit3Set (void)
{
volatile UINT32 *registerAddress;
UINT32 registerWord;
/*
* Calculate the registerAddress
* multiple queues split accross registers
*/
registerAddress = (UINT32*)(aqmBaseAddress +
IX_QMGR_INT0SRCSELREG0_OFFSET);
/* Read the current data */
ixQMgrAqmIfWordRead (registerAddress, &registerWord);
/* Set the write bits */
registerWord |= (1<<IX_QMGR_INT0SRCSELREG0_BIT3) ;
/*
* Write the data
*/
ixQMgrAqmIfWordWrite (registerAddress, registerWord);
}
void
ixQMgrAqmIfIntSrcSelWrite (IxQMgrQId qId,
IxQMgrSourceId sourceId)
{
ixQMgrAqmIfQRegisterBitsWrite (qId,
IX_QMGR_INT0SRCSELREG0_OFFSET,
IX_QMGR_INTSRC_NUM_QUE_PER_WORD,
sourceId);
}
void
ixQMgrAqmIfWatermarkSet (IxQMgrQId qId,
unsigned ne,
unsigned nf)
{
volatile UINT32 *address = 0;
UINT32 value = 0;
unsigned aqmNeWatermark = 0;
unsigned aqmNfWatermark = 0;
address = (UINT32*)(aqmBaseAddress +
IX_QMGR_Q_CONFIG_ADDR_GET(qId));
aqmNeWatermark = watermarkToAqmWatermark (ne);
aqmNfWatermark = watermarkToAqmWatermark (nf);
/* Read the current watermarks */
ixQMgrAqmIfWordRead (address, &value);
/* Clear out the old watermarks */
value &= IX_QMGR_NE_NF_CLEAR_MASK;
/* Generate the value to write */
value |= (aqmNeWatermark << IX_QMGR_Q_CONFIG_NE_OFFSET) |
(aqmNfWatermark << IX_QMGR_Q_CONFIG_NF_OFFSET);
ixQMgrAqmIfWordWrite (address, value);
}
PRIVATE void
ixQMgrAqmIfEntryAddressGet (unsigned int entryIndex,
UINT32 configRegWord,
unsigned int qEntrySizeInwords,
unsigned int qSizeInWords,
UINT32 **address)
{
UINT32 readPtr;
UINT32 baseAddress;
UINT32 *topOfAqmSram;
topOfAqmSram = ((UINT32 *)aqmBaseAddress + IX_QMGR_AQM_ADDRESS_SPACE_SIZE_IN_WORDS);
/* Extract the base address */
baseAddress = (UINT32)((configRegWord & IX_QMGR_BADDR_MASK) >>
(IX_QMGR_Q_CONFIG_BADDR_OFFSET));
/* Base address is a 16 word pointer from the start of AQM SRAM.
* Convert to absolute word address.
*/
baseAddress <<= IX_QMGR_BASE_ADDR_16_WORD_SHIFT;
baseAddress += ((UINT32)aqmBaseAddress + (UINT32)IX_QMGR_QUECONFIG_BASE_OFFSET);
/* Extract the read pointer. Read pointer is a word pointer */
readPtr = (UINT32)((configRegWord >>
IX_QMGR_Q_CONFIG_RDPTR_OFFSET)&IX_QMGR_RDPTR_MASK);
/* Read/Write pointers(word pointers) are offsets from the queue buffer space base address.
* Calculate the absolute read pointer address. NOTE: Queues are circular buffers.
*/
readPtr = (readPtr + (entryIndex * qEntrySizeInwords)) & (qSizeInWords - 1); /* Mask by queue size */
*address = (UINT32 *)(baseAddress + (readPtr * (IX_QMGR_NUM_BYTES_PER_WORD)));
switch (qEntrySizeInwords)
{
case IX_QMGR_Q_ENTRY_SIZE1:
IX_OSAL_ASSERT((*address + IX_QMGR_ENTRY1_OFFSET) < topOfAqmSram);
break;
case IX_QMGR_Q_ENTRY_SIZE2:
IX_OSAL_ASSERT((*address + IX_QMGR_ENTRY2_OFFSET) < topOfAqmSram);
break;
case IX_QMGR_Q_ENTRY_SIZE4:
IX_OSAL_ASSERT((*address + IX_QMGR_ENTRY4_OFFSET) < topOfAqmSram);
break;
default:
IX_QMGR_LOG_ERROR0("Invalid Q Entry size passed to ixQMgrAqmIfEntryAddressGet");
break;
}
}
IX_STATUS
ixQMgrAqmIfQPeek (IxQMgrQId qId,
unsigned int entryIndex,
unsigned int *entry)
{
UINT32 *cfgRegAddress = (UINT32*)(aqmBaseAddress + IX_QMGR_Q_CONFIG_ADDR_GET(qId));
UINT32 *entryAddress = NULL;
UINT32 configRegWordOnEntry;
UINT32 configRegWordOnExit;
unsigned int qEntrySizeInwords;
unsigned int qSizeInWords;
/* Get the queue entry size in words */
qEntrySizeInwords = ixQMgrQEntrySizeInWordsGet (qId);
/* Get the queue size in words */
qSizeInWords = ixQMgrQSizeInWordsGet (qId);
/* Read the config register */
ixQMgrAqmIfWordRead (cfgRegAddress, &configRegWordOnEntry);
/* Get the entry address */
ixQMgrAqmIfEntryAddressGet (entryIndex,
configRegWordOnEntry,
qEntrySizeInwords,
qSizeInWords,
&entryAddress);
/* Get the lock or return busy */
if (IX_SUCCESS != ixOsalFastMutexTryLock(&ixQMgrAqmIfPeekPokeFastMutex[qId]))
{
return IX_FAIL;
}
while(qEntrySizeInwords--)
{
ixQMgrAqmIfWordRead (entryAddress++, entry++);
}
/* Release the lock */
ixOsalFastMutexUnlock(&ixQMgrAqmIfPeekPokeFastMutex[qId]);
/* Read the config register */
ixQMgrAqmIfWordRead (cfgRegAddress, &configRegWordOnExit);
/* Check that the read and write pointers have not changed */
if (configRegWordOnEntry != configRegWordOnExit)
{
return IX_FAIL;
}
return IX_SUCCESS;
}
IX_STATUS
ixQMgrAqmIfQPoke (IxQMgrQId qId,
unsigned entryIndex,
unsigned int *entry)
{
UINT32 *cfgRegAddress = (UINT32*)(aqmBaseAddress + IX_QMGR_Q_CONFIG_ADDR_GET(qId));
UINT32 *entryAddress = NULL;
UINT32 configRegWordOnEntry;
UINT32 configRegWordOnExit;
unsigned int qEntrySizeInwords;
unsigned int qSizeInWords;
/* Get the queue entry size in words */
qEntrySizeInwords = ixQMgrQEntrySizeInWordsGet (qId);
/* Get the queue size in words */
qSizeInWords = ixQMgrQSizeInWordsGet (qId);
/* Read the config register */
ixQMgrAqmIfWordRead (cfgRegAddress, &configRegWordOnEntry);
/* Get the entry address */
ixQMgrAqmIfEntryAddressGet (entryIndex,
configRegWordOnEntry,
qEntrySizeInwords,
qSizeInWords,
&entryAddress);
/* Get the lock or return busy */
if (IX_SUCCESS != ixOsalFastMutexTryLock(&ixQMgrAqmIfPeekPokeFastMutex[qId]))
{
return IX_FAIL;
}
/* Else read the entry directly from SRAM. This will not move the read pointer */
while(qEntrySizeInwords--)
{
ixQMgrAqmIfWordWrite (entryAddress++, *entry++);
}
/* Release the lock */
ixOsalFastMutexUnlock(&ixQMgrAqmIfPeekPokeFastMutex[qId]);
/* Read the config register */
ixQMgrAqmIfWordRead (cfgRegAddress, &configRegWordOnExit);
/* Check that the read and write pointers have not changed */
if (configRegWordOnEntry != configRegWordOnExit)
{
return IX_FAIL;
}
return IX_SUCCESS;
}
PRIVATE unsigned
watermarkToAqmWatermark (IxQMgrWMLevel watermark )
{
unsigned aqmWatermark = 0;
/*
* Watermarks 0("000"),1("001"),2("010"),4("011"),
* 8("100"),16("101"),32("110"),64("111")
*/
aqmWatermark = ixQMgrAqmIfLog2 (watermark * 2);
return aqmWatermark;
}
PRIVATE unsigned
entrySizeToAqmEntrySize (IxQMgrQEntrySizeInWords entrySize)
{
/* entrySize 1("00"),2("01"),4("10") */
return (ixQMgrAqmIfLog2 (entrySize));
}
PRIVATE unsigned
bufferSizeToAqmBufferSize (unsigned bufferSizeInWords)
{
/* bufferSize 16("00"),32("01),64("10"),128("11") */
return (ixQMgrAqmIfLog2 (bufferSizeInWords / IX_QMGR_MIN_BUFFER_SIZE));
}
/*
* Reset AQM registers to default values.
*/
PRIVATE void
ixQMgrAqmIfRegistersReset (void)
{
volatile UINT32 *qConfigWordAddress = NULL;
unsigned int i;
/*
* Need to initialize AQM hardware registers to an initial
* value as init may have been called as a result of a soft
* reset. i.e. soft reset does not reset hardware registers.
*/
/* Reset queues 0..31 status registers 0..3 */
ixQMgrAqmIfWordWrite((UINT32 *)(aqmBaseAddress + IX_QMGR_QUELOWSTAT0_OFFSET),
IX_QMGR_QUELOWSTAT_RESET_VALUE);
ixQMgrAqmIfWordWrite((UINT32 *)(aqmBaseAddress + IX_QMGR_QUELOWSTAT1_OFFSET),
IX_QMGR_QUELOWSTAT_RESET_VALUE);
ixQMgrAqmIfWordWrite((UINT32 *)(aqmBaseAddress + IX_QMGR_QUELOWSTAT2_OFFSET),
IX_QMGR_QUELOWSTAT_RESET_VALUE);
ixQMgrAqmIfWordWrite((UINT32 *)(aqmBaseAddress + IX_QMGR_QUELOWSTAT3_OFFSET),
IX_QMGR_QUELOWSTAT_RESET_VALUE);
/* Reset underflow/overflow status registers 0..1 */
ixQMgrAqmIfWordWrite((UINT32 *)(aqmBaseAddress + IX_QMGR_QUEUOSTAT0_OFFSET),
IX_QMGR_QUEUOSTAT_RESET_VALUE);
ixQMgrAqmIfWordWrite((UINT32 *)(aqmBaseAddress + IX_QMGR_QUEUOSTAT1_OFFSET),
IX_QMGR_QUEUOSTAT_RESET_VALUE);
/* Reset queues 32..63 nearly empty status registers */
ixQMgrAqmIfWordWrite((UINT32 *)(aqmBaseAddress + IX_QMGR_QUEUPPSTAT0_OFFSET),
IX_QMGR_QUEUPPSTAT0_RESET_VALUE);
/* Reset queues 32..63 full status registers */
ixQMgrAqmIfWordWrite((UINT32 *)(aqmBaseAddress + IX_QMGR_QUEUPPSTAT1_OFFSET),
IX_QMGR_QUEUPPSTAT1_RESET_VALUE);
/* Reset int0 status flag source select registers 0..3 */
ixQMgrAqmIfWordWrite((UINT32 *)(aqmBaseAddress + IX_QMGR_INT0SRCSELREG0_OFFSET),
IX_QMGR_INT0SRCSELREG_RESET_VALUE);
ixQMgrAqmIfWordWrite((UINT32 *)(aqmBaseAddress + IX_QMGR_INT0SRCSELREG1_OFFSET),
IX_QMGR_INT0SRCSELREG_RESET_VALUE);
ixQMgrAqmIfWordWrite((UINT32 *)(aqmBaseAddress + IX_QMGR_INT0SRCSELREG2_OFFSET),
IX_QMGR_INT0SRCSELREG_RESET_VALUE);
ixQMgrAqmIfWordWrite((UINT32 *)(aqmBaseAddress + IX_QMGR_INT0SRCSELREG3_OFFSET),
IX_QMGR_INT0SRCSELREG_RESET_VALUE);
/* Reset queue interrupt enable register 0..1 */
ixQMgrAqmIfWordWrite((UINT32 *)(aqmBaseAddress + IX_QMGR_QUEIEREG0_OFFSET),
IX_QMGR_QUEIEREG_RESET_VALUE);
ixQMgrAqmIfWordWrite((UINT32 *)(aqmBaseAddress + IX_QMGR_QUEIEREG1_OFFSET),
IX_QMGR_QUEIEREG_RESET_VALUE);
/* Reset queue interrupt register 0..1 */
ixQMgrAqmIfWordWrite((UINT32 *)(aqmBaseAddress + IX_QMGR_QINTREG0_OFFSET),
IX_QMGR_QINTREG_RESET_VALUE);
ixQMgrAqmIfWordWrite((UINT32 *)(aqmBaseAddress + IX_QMGR_QINTREG1_OFFSET),
IX_QMGR_QINTREG_RESET_VALUE);
/* Reset queue configuration words 0..63 */
qConfigWordAddress = (UINT32 *)(aqmBaseAddress + IX_QMGR_QUECONFIG_BASE_OFFSET);
for (i = 0; i < (IX_QMGR_QUECONFIG_SIZE / sizeof(UINT32)); i++)
{
ixQMgrAqmIfWordWrite(qConfigWordAddress,
IX_QMGR_QUECONFIG_RESET_VALUE);
/* Next word */
qConfigWordAddress++;
}
}