|
|
|
/*
|
|
|
|
* (C) Copyright 2007
|
|
|
|
* Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com
|
|
|
|
* Based on code written by:
|
|
|
|
* Pantelis Antoniou <pantelis.antoniou@gmail.com> and
|
|
|
|
* Matthew McClintock <msm@freescale.com>
|
|
|
|
*
|
|
|
|
* See file CREDITS for list of people who contributed to this
|
|
|
|
* project.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License as
|
|
|
|
* published by the Free Software Foundation; either version 2 of
|
|
|
|
* the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
|
|
* MA 02111-1307 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <common.h>
|
|
|
|
#include <command.h>
|
|
|
|
#include <linux/ctype.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <asm/global_data.h>
|
|
|
|
#include <fdt.h>
|
|
|
|
#include <libfdt.h>
|
|
|
|
#include <fdt_support.h>
|
|
|
|
|
|
|
|
#define MAX_LEVEL 32 /* how deeply nested we will go */
|
|
|
|
#define SCRATCHPAD 1024 /* bytes of scratchpad memory */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Global data (for the gd->bd)
|
|
|
|
*/
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
|
|
|
|
static int fdt_valid(void);
|
|
|
|
static int fdt_parse_prop(char *const*newval, int count, char *data, int *len);
|
|
|
|
static int fdt_print(const char *pathp, char *prop, int depth);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The working_fdt points to our working flattened device tree.
|
|
|
|
*/
|
|
|
|
struct fdt_header *working_fdt;
|
|
|
|
|
|
|
|
void set_working_fdt_addr(void *addr)
|
|
|
|
{
|
|
|
|
char buf[17];
|
|
|
|
|
|
|
|
working_fdt = addr;
|
|
|
|
|
|
|
|
sprintf(buf, "%lx", (unsigned long)addr);
|
|
|
|
setenv("fdtaddr", buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Flattened Device Tree command, see the help for parameter definitions.
|
|
|
|
*/
|
|
|
|
int do_fdt (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
|
|
|
|
{
|
|
|
|
if (argc < 2)
|
|
|
|
return CMD_RET_USAGE;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set the address of the fdt
|
|
|
|
*/
|
|
|
|
if (argv[1][0] == 'a') {
|
|
|
|
unsigned long addr;
|
|
|
|
/*
|
|
|
|
* Set the address [and length] of the fdt.
|
|
|
|
*/
|
|
|
|
if (argc == 2) {
|
|
|
|
if (!fdt_valid()) {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
printf("The address of the fdt is %p\n", working_fdt);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
addr = simple_strtoul(argv[2], NULL, 16);
|
|
|
|
set_working_fdt_addr((void *)addr);
|
|
|
|
|
|
|
|
if (!fdt_valid()) {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (argc >= 4) {
|
|
|
|
int len;
|
|
|
|
int err;
|
|
|
|
/*
|
|
|
|
* Optional new length
|
|
|
|
*/
|
|
|
|
len = simple_strtoul(argv[3], NULL, 16);
|
|
|
|
if (len < fdt_totalsize(working_fdt)) {
|
|
|
|
printf ("New length %d < existing length %d, "
|
|
|
|
"ignoring.\n",
|
|
|
|
len, fdt_totalsize(working_fdt));
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Open in place with a new length.
|
|
|
|
*/
|
|
|
|
err = fdt_open_into(working_fdt, working_fdt, len);
|
|
|
|
if (err != 0) {
|
|
|
|
printf ("libfdt fdt_open_into(): %s\n",
|
|
|
|
fdt_strerror(err));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return CMD_RET_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!working_fdt) {
|
|
|
|
puts(
|
|
|
|
"No FDT memory address configured. Please configure\n"
|
|
|
|
"the FDT address via \"fdt addr <address>\" command.\n"
|
|
|
|
"Aborting!\n");
|
|
|
|
return CMD_RET_FAILURE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Move the working_fdt
|
|
|
|
*/
|
|
|
|
if (strncmp(argv[1], "mo", 2) == 0) {
|
|
|
|
struct fdt_header *newaddr;
|
|
|
|
int len;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if (argc < 4)
|
|
|
|
return CMD_RET_USAGE;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set the address and length of the fdt.
|
|
|
|
*/
|
|
|
|
working_fdt = (struct fdt_header *)simple_strtoul(argv[2], NULL, 16);
|
|
|
|
if (!fdt_valid()) {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
newaddr = (struct fdt_header *)simple_strtoul(argv[3],NULL,16);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the user specifies a length, use that. Otherwise use the
|
|
|
|
* current length.
|
|
|
|
*/
|
|
|
|
if (argc <= 4) {
|
|
|
|
len = fdt_totalsize(working_fdt);
|
|
|
|
} else {
|
|
|
|
len = simple_strtoul(argv[4], NULL, 16);
|
|
|
|
if (len < fdt_totalsize(working_fdt)) {
|
|
|
|
printf ("New length 0x%X < existing length "
|
|
|
|
"0x%X, aborting.\n",
|
|
|
|
len, fdt_totalsize(working_fdt));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copy to the new location.
|
|
|
|
*/
|
|
|
|
err = fdt_open_into(working_fdt, newaddr, len);
|
|
|
|
if (err != 0) {
|
|
|
|
printf ("libfdt fdt_open_into(): %s\n",
|
|
|
|
fdt_strerror(err));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
working_fdt = newaddr;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Make a new node
|
|
|
|
*/
|
|
|
|
} else if (strncmp(argv[1], "mk", 2) == 0) {
|
|
|
|
char *pathp; /* path */
|
|
|
|
char *nodep; /* new node to add */
|
|
|
|
int nodeoffset; /* node offset from libfdt */
|
|
|
|
int err;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Parameters: Node path, new node to be appended to the path.
|
|
|
|
*/
|
|
|
|
if (argc < 4)
|
|
|
|
return CMD_RET_USAGE;
|
|
|
|
|
|
|
|
pathp = argv[2];
|
|
|
|
nodep = argv[3];
|
|
|
|
|
|
|
|
nodeoffset = fdt_path_offset (working_fdt, pathp);
|
|
|
|
if (nodeoffset < 0) {
|
|
|
|
/*
|
|
|
|
* Not found or something else bad happened.
|
|
|
|
*/
|
|
|
|
printf ("libfdt fdt_path_offset() returned %s\n",
|
|
|
|
fdt_strerror(nodeoffset));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
err = fdt_add_subnode(working_fdt, nodeoffset, nodep);
|
|
|
|
if (err < 0) {
|
|
|
|
printf ("libfdt fdt_add_subnode(): %s\n",
|
|
|
|
fdt_strerror(err));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set the value of a property in the working_fdt.
|
|
|
|
*/
|
|
|
|
} else if (argv[1][0] == 's') {
|
|
|
|
char *pathp; /* path */
|
|
|
|
char *prop; /* property */
|
|
|
|
int nodeoffset; /* node offset from libfdt */
|
|
|
|
static char data[SCRATCHPAD]; /* storage for the property */
|
|
|
|
int len; /* new length of the property */
|
|
|
|
int ret; /* return value */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Parameters: Node path, property, optional value.
|
|
|
|
*/
|
|
|
|
if (argc < 4)
|
|
|
|
return CMD_RET_USAGE;
|
|
|
|
|
|
|
|
pathp = argv[2];
|
|
|
|
prop = argv[3];
|
|
|
|
if (argc == 4) {
|
|
|
|
len = 0;
|
|
|
|
} else {
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
ret = fdt_parse_prop(&argv[4], argc - 4, data, &len);
|
|
|
|
if (ret != 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
nodeoffset = fdt_path_offset (working_fdt, pathp);
|
|
|
|
if (nodeoffset < 0) {
|
|
|
|
/*
|
|
|
|
* Not found or something else bad happened.
|
|
|
|
*/
|
|
|
|
printf ("libfdt fdt_path_offset() returned %s\n",
|
|
|
|
fdt_strerror(nodeoffset));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = fdt_setprop(working_fdt, nodeoffset, prop, data, len);
|
|
|
|
if (ret < 0) {
|
|
|
|
printf ("libfdt fdt_setprop(): %s\n", fdt_strerror(ret));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Print (recursive) / List (single level)
|
|
|
|
*/
|
|
|
|
} else if ((argv[1][0] == 'p') || (argv[1][0] == 'l')) {
|
|
|
|
int depth = MAX_LEVEL; /* how deep to print */
|
|
|
|
char *pathp; /* path */
|
|
|
|
char *prop; /* property */
|
|
|
|
int ret; /* return value */
|
|
|
|
static char root[2] = "/";
|
|
|
|
|
|
|
|
/*
|
|
|
|
* list is an alias for print, but limited to 1 level
|
|
|
|
*/
|
|
|
|
if (argv[1][0] == 'l') {
|
|
|
|
depth = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the starting path. The root node is an oddball,
|
|
|
|
* the offset is zero and has no name.
|
|
|
|
*/
|
|
|
|
if (argc == 2)
|
|
|
|
pathp = root;
|
|
|
|
else
|
|
|
|
pathp = argv[2];
|
|
|
|
if (argc > 3)
|
|
|
|
prop = argv[3];
|
|
|
|
else
|
|
|
|
prop = NULL;
|
|
|
|
|
|
|
|
ret = fdt_print(pathp, prop, depth);
|
|
|
|
if (ret != 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Remove a property/node
|
|
|
|
*/
|
|
|
|
} else if (strncmp(argv[1], "rm", 2) == 0) {
|
|
|
|
int nodeoffset; /* node offset from libfdt */
|
|
|
|
int err;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the path. The root node is an oddball, the offset
|
|
|
|
* is zero and has no name.
|
|
|
|
*/
|
|
|
|
nodeoffset = fdt_path_offset (working_fdt, argv[2]);
|
|
|
|
if (nodeoffset < 0) {
|
|
|
|
/*
|
|
|
|
* Not found or something else bad happened.
|
|
|
|
*/
|
|
|
|
printf ("libfdt fdt_path_offset() returned %s\n",
|
|
|
|
fdt_strerror(nodeoffset));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Do the delete. A fourth parameter means delete a property,
|
|
|
|
* otherwise delete the node.
|
|
|
|
*/
|
|
|
|
if (argc > 3) {
|
|
|
|
err = fdt_delprop(working_fdt, nodeoffset, argv[3]);
|
|
|
|
if (err < 0) {
|
|
|
|
printf("libfdt fdt_delprop(): %s\n",
|
|
|
|
fdt_strerror(err));
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
err = fdt_del_node(working_fdt, nodeoffset);
|
|
|
|
if (err < 0) {
|
|
|
|
printf("libfdt fdt_del_node(): %s\n",
|
|
|
|
fdt_strerror(err));
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Display header info
|
|
|
|
*/
|
|
|
|
} else if (argv[1][0] == 'h') {
|
|
|
|
u32 version = fdt_version(working_fdt);
|
|
|
|
printf("magic:\t\t\t0x%x\n", fdt_magic(working_fdt));
|
|
|
|
printf("totalsize:\t\t0x%x (%d)\n", fdt_totalsize(working_fdt),
|
|
|
|
fdt_totalsize(working_fdt));
|
|
|
|
printf("off_dt_struct:\t\t0x%x\n",
|
|
|
|
fdt_off_dt_struct(working_fdt));
|
|
|
|
printf("off_dt_strings:\t\t0x%x\n",
|
|
|
|
fdt_off_dt_strings(working_fdt));
|
|
|
|
printf("off_mem_rsvmap:\t\t0x%x\n",
|
|
|
|
fdt_off_mem_rsvmap(working_fdt));
|
|
|
|
printf("version:\t\t%d\n", version);
|
|
|
|
printf("last_comp_version:\t%d\n",
|
|
|
|
fdt_last_comp_version(working_fdt));
|
|
|
|
if (version >= 2)
|
|
|
|
printf("boot_cpuid_phys:\t0x%x\n",
|
|
|
|
fdt_boot_cpuid_phys(working_fdt));
|
|
|
|
if (version >= 3)
|
|
|
|
printf("size_dt_strings:\t0x%x\n",
|
|
|
|
fdt_size_dt_strings(working_fdt));
|
|
|
|
if (version >= 17)
|
|
|
|
printf("size_dt_struct:\t\t0x%x\n",
|
|
|
|
fdt_size_dt_struct(working_fdt));
|
|
|
|
printf("number mem_rsv:\t\t0x%x\n",
|
|
|
|
fdt_num_mem_rsv(working_fdt));
|
|
|
|
printf("\n");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set boot cpu id
|
|
|
|
*/
|
|
|
|
} else if (strncmp(argv[1], "boo", 3) == 0) {
|
|
|
|
unsigned long tmp = simple_strtoul(argv[2], NULL, 16);
|
|
|
|
fdt_set_boot_cpuid_phys(working_fdt, tmp);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* memory command
|
|
|
|
*/
|
|
|
|
} else if (strncmp(argv[1], "me", 2) == 0) {
|
|
|
|
uint64_t addr, size;
|
|
|
|
int err;
|
|
|
|
addr = simple_strtoull(argv[2], NULL, 16);
|
|
|
|
size = simple_strtoull(argv[3], NULL, 16);
|
|
|
|
err = fdt_fixup_memory(working_fdt, addr, size);
|
|
|
|
if (err < 0)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* mem reserve commands
|
|
|
|
*/
|
|
|
|
} else if (strncmp(argv[1], "rs", 2) == 0) {
|
|
|
|
if (argv[2][0] == 'p') {
|
|
|
|
uint64_t addr, size;
|
|
|
|
int total = fdt_num_mem_rsv(working_fdt);
|
|
|
|
int j, err;
|
|
|
|
printf("index\t\t start\t\t size\n");
|
|
|
|
printf("-------------------------------"
|
|
|
|
"-----------------\n");
|
|
|
|
for (j = 0; j < total; j++) {
|
|
|
|
err = fdt_get_mem_rsv(working_fdt, j, &addr, &size);
|
|
|
|
if (err < 0) {
|
|
|
|
printf("libfdt fdt_get_mem_rsv(): %s\n",
|
|
|
|
fdt_strerror(err));
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
printf(" %x\t%08x%08x\t%08x%08x\n", j,
|
|
|
|
(u32)(addr >> 32),
|
|
|
|
(u32)(addr & 0xffffffff),
|
|
|
|
(u32)(size >> 32),
|
|
|
|
(u32)(size & 0xffffffff));
|
|
|
|
}
|
|
|
|
} else if (argv[2][0] == 'a') {
|
|
|
|
uint64_t addr, size;
|
|
|
|
int err;
|
|
|
|
addr = simple_strtoull(argv[3], NULL, 16);
|
|
|
|
size = simple_strtoull(argv[4], NULL, 16);
|
|
|
|
err = fdt_add_mem_rsv(working_fdt, addr, size);
|
|
|
|
|
|
|
|
if (err < 0) {
|
|
|
|
printf("libfdt fdt_add_mem_rsv(): %s\n",
|
|
|
|
fdt_strerror(err));
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
} else if (argv[2][0] == 'd') {
|
|
|
|
unsigned long idx = simple_strtoul(argv[3], NULL, 16);
|
|
|
|
int err = fdt_del_mem_rsv(working_fdt, idx);
|
|
|
|
|
|
|
|
if (err < 0) {
|
|
|
|
printf("libfdt fdt_del_mem_rsv(): %s\n",
|
|
|
|
fdt_strerror(err));
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Unrecognized command */
|
|
|
|
return CMD_RET_USAGE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef CONFIG_OF_BOARD_SETUP
|
|
|
|
/* Call the board-specific fixup routine */
|
|
|
|
else if (strncmp(argv[1], "boa", 3) == 0)
|
|
|
|
ft_board_setup(working_fdt, gd->bd);
|
|
|
|
#endif
|
|
|
|
/* Create a chosen node */
|
|
|
|
else if (argv[1][0] == 'c') {
|
|
|
|
unsigned long initrd_start = 0, initrd_end = 0;
|
|
|
|
|
|
|
|
if ((argc != 2) && (argc != 4))
|
|
|
|
return CMD_RET_USAGE;
|
|
|
|
|
|
|
|
if (argc == 4) {
|
|
|
|
initrd_start = simple_strtoul(argv[2], NULL, 16);
|
|
|
|
initrd_end = simple_strtoul(argv[3], NULL, 16);
|
|
|
|
}
|
|
|
|
|
|
|
|
fdt_chosen(working_fdt, 1);
|
|
|
|
fdt_initrd(working_fdt, initrd_start, initrd_end, 1);
|
|
|
|
}
|
|
|
|
/* resize the fdt */
|
|
|
|
else if (strncmp(argv[1], "re", 2) == 0) {
|
|
|
|
fdt_resize(working_fdt);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
/* Unrecognized command */
|
|
|
|
return CMD_RET_USAGE;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/****************************************************************************/
|
|
|
|
|
|
|
|
static int fdt_valid(void)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if (working_fdt == NULL) {
|
|
|
|
printf ("The address of the fdt is invalid (NULL).\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
err = fdt_check_header(working_fdt);
|
|
|
|
if (err == 0)
|
|
|
|
return 1; /* valid */
|
|
|
|
|
|
|
|
if (err < 0) {
|
|
|
|
printf("libfdt fdt_check_header(): %s", fdt_strerror(err));
|
|
|
|
/*
|
|
|
|
* Be more informative on bad version.
|
|
|
|
*/
|
|
|
|
if (err == -FDT_ERR_BADVERSION) {
|
|
|
|
if (fdt_version(working_fdt) <
|
|
|
|
FDT_FIRST_SUPPORTED_VERSION) {
|
|
|
|
printf (" - too old, fdt %d < %d",
|
|
|
|
fdt_version(working_fdt),
|
|
|
|
FDT_FIRST_SUPPORTED_VERSION);
|
|
|
|
working_fdt = NULL;
|
|
|
|
}
|
|
|
|
if (fdt_last_comp_version(working_fdt) >
|
|
|
|
FDT_LAST_SUPPORTED_VERSION) {
|
|
|
|
printf (" - too new, fdt %d > %d",
|
|
|
|
fdt_version(working_fdt),
|
|
|
|
FDT_LAST_SUPPORTED_VERSION);
|
|
|
|
working_fdt = NULL;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/****************************************************************************/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Parse the user's input, partially heuristic. Valid formats:
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
* <0x00112233 4 05> - an array of cells. Numbers follow standard
|
|
|
|
* C conventions.
|
|
|
|
* [00 11 22 .. nn] - byte stream
|
|
|
|
* "string" - If the the value doesn't start with "<" or "[", it is
|
|
|
|
* treated as a string. Note that the quotes are
|
|
|
|
* stripped by the parser before we get the string.
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
* newval: An array of strings containing the new property as specified
|
|
|
|
* on the command line
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
* count: The number of strings in the array
|
|
|
|
* data: A bytestream to be placed in the property
|
|
|
|
* len: The length of the resulting bytestream
|
|
|
|
*/
|
|
|
|
static int fdt_parse_prop(char * const *newval, int count, char *data, int *len)
|
|
|
|
{
|
|
|
|
char *cp; /* temporary char pointer */
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
char *newp; /* temporary newval char pointer */
|
|
|
|
unsigned long tmp; /* holds converted values */
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
int stridx = 0;
|
|
|
|
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
*len = 0;
|
|
|
|
newp = newval[0];
|
|
|
|
|
|
|
|
/* An array of cells */
|
|
|
|
if (*newp == '<') {
|
|
|
|
newp++;
|
|
|
|
while ((*newp != '>') && (stridx < count)) {
|
|
|
|
/*
|
|
|
|
* Keep searching until we find that last ">"
|
|
|
|
* That way users don't have to escape the spaces
|
|
|
|
*/
|
|
|
|
if (*newp == '\0') {
|
|
|
|
newp = newval[++stridx];
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
cp = newp;
|
|
|
|
tmp = simple_strtoul(cp, &newp, 0);
|
|
|
|
*(uint32_t *)data = __cpu_to_be32(tmp);
|
|
|
|
data += 4;
|
|
|
|
*len += 4;
|
|
|
|
|
|
|
|
/* If the ptr didn't advance, something went wrong */
|
|
|
|
if ((newp - cp) <= 0) {
|
|
|
|
printf("Sorry, I could not convert \"%s\"\n",
|
|
|
|
cp);
|
|
|
|
return 1;
|
|
|
|
}
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
|
|
|
|
while (*newp == ' ')
|
|
|
|
newp++;
|
|
|
|
}
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
|
|
|
|
if (*newp != '>') {
|
|
|
|
printf("Unexpected character '%c'\n", *newp);
|
|
|
|
return 1;
|
|
|
|
}
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
} else if (*newp == '[') {
|
|
|
|
/*
|
|
|
|
* Byte stream. Convert the values.
|
|
|
|
*/
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
newp++;
|
|
|
|
while ((stridx < count) && (*newp != ']')) {
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
while (*newp == ' ')
|
|
|
|
newp++;
|
|
|
|
if (*newp == '\0') {
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
newp = newval[++stridx];
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (!isxdigit(*newp))
|
|
|
|
break;
|
|
|
|
tmp = simple_strtoul(newp, &newp, 16);
|
|
|
|
*data++ = tmp & 0xFF;
|
|
|
|
*len = *len + 1;
|
|
|
|
}
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
if (*newp != ']') {
|
|
|
|
printf("Unexpected character '%c'\n", *newp);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Assume it is one or more strings. Copy it into our
|
|
|
|
* data area for convenience (including the
|
|
|
|
* terminating '\0's).
|
|
|
|
*/
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
while (stridx < count) {
|
|
|
|
size_t length = strlen(newp) + 1;
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
strcpy(data, newp);
|
|
|
|
data += length;
|
|
|
|
*len += length;
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
newp = newval[++stridx];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/****************************************************************************/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Heuristic to guess if this is a string or concatenated strings.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int is_printable_string(const void *data, int len)
|
|
|
|
{
|
|
|
|
const char *s = data;
|
|
|
|
|
|
|
|
/* zero length is not */
|
|
|
|
if (len == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* must terminate with zero */
|
|
|
|
if (s[len - 1] != '\0')
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* printable or a null byte (concatenated strings) */
|
|
|
|
while (((*s == '\0') || isprint(*s)) && (len > 0)) {
|
|
|
|
/*
|
|
|
|
* If we see a null, there are three possibilities:
|
|
|
|
* 1) If len == 1, it is the end of the string, printable
|
|
|
|
* 2) Next character also a null, not printable.
|
|
|
|
* 3) Next character not a null, continue to check.
|
|
|
|
*/
|
|
|
|
if (s[0] == '\0') {
|
|
|
|
if (len == 1)
|
|
|
|
return 1;
|
|
|
|
if (s[1] == '\0')
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
s++;
|
|
|
|
len--;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Not the null termination, or not done yet: not printable */
|
|
|
|
if (*s != '\0' || (len != 0))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Print the property in the best format, a heuristic guess. Print as
|
|
|
|
* a string, concatenated strings, a byte, word, double word, or (if all
|
|
|
|
* else fails) it is printed as a stream of bytes.
|
|
|
|
*/
|
|
|
|
static void print_data(const void *data, int len)
|
|
|
|
{
|
|
|
|
int j;
|
|
|
|
|
|
|
|
/* no data, don't print */
|
|
|
|
if (len == 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* It is a string, but it may have multiple strings (embedded '\0's).
|
|
|
|
*/
|
|
|
|
if (is_printable_string(data, len)) {
|
|
|
|
puts("\"");
|
|
|
|
j = 0;
|
|
|
|
while (j < len) {
|
|
|
|
if (j > 0)
|
|
|
|
puts("\", \"");
|
|
|
|
puts(data);
|
|
|
|
j += strlen(data) + 1;
|
|
|
|
data += strlen(data) + 1;
|
|
|
|
}
|
|
|
|
puts("\"");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
if ((len %4) == 0) {
|
|
|
|
const u32 *p;
|
|
|
|
|
|
|
|
printf("<");
|
|
|
|
for (j = 0, p = data; j < len/4; j ++)
|
|
|
|
printf("0x%x%s", fdt32_to_cpu(p[j]), j < (len/4 - 1) ? " " : "");
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
printf(">");
|
|
|
|
} else { /* anything else... hexdump */
|
|
|
|
const u8 *s;
|
|
|
|
|
|
|
|
printf("[");
|
|
|
|
for (j = 0, s = data; j < len; j++)
|
|
|
|
printf("%02x%s", s[j], j < len - 1 ? " " : "");
|
|
|
|
printf("]");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/****************************************************************************/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Recursively print (a portion of) the working_fdt. The depth parameter
|
|
|
|
* determines how deeply nested the fdt is printed.
|
|
|
|
*/
|
|
|
|
static int fdt_print(const char *pathp, char *prop, int depth)
|
|
|
|
{
|
|
|
|
static char tabs[MAX_LEVEL+1] =
|
|
|
|
"\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
|
|
|
|
"\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t";
|
|
|
|
const void *nodep; /* property node pointer */
|
|
|
|
int nodeoffset; /* node offset from libfdt */
|
|
|
|
int nextoffset; /* next node offset from libfdt */
|
|
|
|
uint32_t tag; /* tag */
|
|
|
|
int len; /* length of the property */
|
|
|
|
int level = 0; /* keep track of nesting level */
|
|
|
|
const struct fdt_property *fdt_prop;
|
|
|
|
|
|
|
|
nodeoffset = fdt_path_offset (working_fdt, pathp);
|
|
|
|
if (nodeoffset < 0) {
|
|
|
|
/*
|
|
|
|
* Not found or something else bad happened.
|
|
|
|
*/
|
|
|
|
printf ("libfdt fdt_path_offset() returned %s\n",
|
|
|
|
fdt_strerror(nodeoffset));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* The user passed in a property as well as node path.
|
|
|
|
* Print only the given property and then return.
|
|
|
|
*/
|
|
|
|
if (prop) {
|
|
|
|
nodep = fdt_getprop (working_fdt, nodeoffset, prop, &len);
|
|
|
|
if (len == 0) {
|
|
|
|
/* no property value */
|
|
|
|
printf("%s %s\n", pathp, prop);
|
|
|
|
return 0;
|
|
|
|
} else if (len > 0) {
|
|
|
|
printf("%s = ", prop);
|
|
|
|
print_data (nodep, len);
|
|
|
|
printf("\n");
|
|
|
|
return 0;
|
|
|
|
} else {
|
|
|
|
printf ("libfdt fdt_getprop(): %s\n",
|
|
|
|
fdt_strerror(len));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The user passed in a node path and no property,
|
|
|
|
* print the node and all subnodes.
|
|
|
|
*/
|
|
|
|
while(level >= 0) {
|
|
|
|
tag = fdt_next_tag(working_fdt, nodeoffset, &nextoffset);
|
|
|
|
switch(tag) {
|
|
|
|
case FDT_BEGIN_NODE:
|
|
|
|
pathp = fdt_get_name(working_fdt, nodeoffset, NULL);
|
|
|
|
if (level <= depth) {
|
|
|
|
if (pathp == NULL)
|
|
|
|
pathp = "/* NULL pointer error */";
|
|
|
|
if (*pathp == '\0')
|
|
|
|
pathp = "/"; /* root is nameless */
|
|
|
|
printf("%s%s {\n",
|
|
|
|
&tabs[MAX_LEVEL - level], pathp);
|
|
|
|
}
|
|
|
|
level++;
|
|
|
|
if (level >= MAX_LEVEL) {
|
|
|
|
printf("Nested too deep, aborting.\n");
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case FDT_END_NODE:
|
|
|
|
level--;
|
|
|
|
if (level <= depth)
|
|
|
|
printf("%s};\n", &tabs[MAX_LEVEL - level]);
|
|
|
|
if (level == 0) {
|
|
|
|
level = -1; /* exit the loop */
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case FDT_PROP:
|
|
|
|
fdt_prop = fdt_offset_ptr(working_fdt, nodeoffset,
|
|
|
|
sizeof(*fdt_prop));
|
|
|
|
pathp = fdt_string(working_fdt,
|
|
|
|
fdt32_to_cpu(fdt_prop->nameoff));
|
|
|
|
len = fdt32_to_cpu(fdt_prop->len);
|
|
|
|
nodep = fdt_prop->data;
|
|
|
|
if (len < 0) {
|
|
|
|
printf ("libfdt fdt_getprop(): %s\n",
|
|
|
|
fdt_strerror(len));
|
|
|
|
return 1;
|
|
|
|
} else if (len == 0) {
|
|
|
|
/* the property has no value */
|
|
|
|
if (level <= depth)
|
|
|
|
printf("%s%s;\n",
|
|
|
|
&tabs[MAX_LEVEL - level],
|
|
|
|
pathp);
|
|
|
|
} else {
|
|
|
|
if (level <= depth) {
|
|
|
|
printf("%s%s = ",
|
|
|
|
&tabs[MAX_LEVEL - level],
|
|
|
|
pathp);
|
|
|
|
print_data (nodep, len);
|
|
|
|
printf(";\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case FDT_NOP:
|
|
|
|
printf("%s/* NOP */\n", &tabs[MAX_LEVEL - level]);
|
|
|
|
break;
|
|
|
|
case FDT_END:
|
|
|
|
return 1;
|
|
|
|
default:
|
|
|
|
if (level <= depth)
|
|
|
|
printf("Unknown tag 0x%08X\n", tag);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
nodeoffset = nextoffset;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/********************************************************************/
|
|
|
|
|
|
|
|
U_BOOT_CMD(
|
Fix fdt set command to conform to dts spec
The fdt set command was treating properties specified as <00> and <0011>
as byte streams, rather than as an array of cells. As we already have
syntax for expressing the desire for a stream of bytes ([ xx xx ...]),
we should use the <> syntax to describe arrays of cells, which are always
32-bits per element. If we imagine this likely (IMHO) scenario:
> fdt set /ethernet-phy@1 reg <1>
With the old code, this would create a bad fdt, since the reg cell would be
made to be one byte in length. But the cell must be 4 bytes, so this would
break mysteriously.
Also, the dts spec calls for constants inside the angle brackets (<>)
to conform to C constant standards as they pertain to base.
Take this scenario:
> fdt set /ethernet@f00 reg <0xe250000\ 0x1000>
The old fdt command would complain that it couldn't parse that. Or, if you
wanted to specify that a certain clock ran at 33 MHz, you'd be required to
do this:
> fdt set /mydev clock <1f78a40>
Whereas the new code will accept decimal numbers.
While I was in there, I extended the fdt command parser to handle property
strings which are split across multiple arguments:
> fdt set /ethernet@f00 interrupts < 33 2 34 2 36 2 >
> fdt p /ethernet@f00
ethernet@f00 {
interrupts = <0x21 0x2 0x22 0x2 0x24 0x2>;
};
Lastly, the fdt print code was rearranged slightly to print arrays of cells
if the length of the property is a multiple of 4 bytes, and to not print
leading zeros.
Signed-off-by: Andy Fleming <afleming@freescale.com>
17 years ago
|
|
|
fdt, 255, 0, do_fdt,
|
|
|
|
"flattened device tree utility commands",
|
|
|
|
"addr <addr> [<length>] - Set the fdt location to <addr>\n"
|
|
|
|
#ifdef CONFIG_OF_BOARD_SETUP
|
|
|
|
"fdt boardsetup - Do board-specific set up\n"
|
|
|
|
#endif
|
|
|
|
"fdt move <fdt> <newaddr> <length> - Copy the fdt to <addr> and make it active\n"
|
|
|
|
"fdt resize - Resize fdt to size + padding to 4k addr\n"
|
|
|
|
"fdt print <path> [<prop>] - Recursive print starting at <path>\n"
|
|
|
|
"fdt list <path> [<prop>] - Print one level starting at <path>\n"
|
|
|
|
"fdt set <path> <prop> [<val>] - Set <property> [to <val>]\n"
|
|
|
|
"fdt mknode <path> <node> - Create a new node after <path>\n"
|
|
|
|
"fdt rm <path> [<prop>] - Delete the node or <property>\n"
|
|
|
|
"fdt header - Display header info\n"
|
|
|
|
"fdt bootcpu <id> - Set boot cpuid\n"
|
|
|
|
"fdt memory <addr> <size> - Add/Update memory node\n"
|
|
|
|
"fdt rsvmem print - Show current mem reserves\n"
|
|
|
|
"fdt rsvmem add <addr> <size> - Add a mem reserve\n"
|
|
|
|
"fdt rsvmem delete <index> - Delete a mem reserves\n"
|
|
|
|
"fdt chosen [<start> <end>] - Add/update the /chosen branch in the tree\n"
|
|
|
|
" <start>/<end> - initrd start/end addr\n"
|
|
|
|
"NOTE: Dereference aliases by omiting the leading '/', "
|
|
|
|
"e.g. fdt print ethernet0."
|
|
|
|
);
|