upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
u-boot/arch/powerpc/cpu/mpc85xx/fdt.c

714 lines
19 KiB

/*
* Copyright 2007-2011 Freescale Semiconductor, Inc.
*
* (C) Copyright 2000
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <libfdt.h>
#include <fdt_support.h>
#include <asm/processor.h>
#include <linux/ctype.h>
#include <asm/io.h>
#include <asm/fsl_portals.h>
#ifdef CONFIG_FSL_ESDHC
#include <fsl_esdhc.h>
#endif
#include "../../../../drivers/qe/qe.h" /* For struct qe_firmware */
DECLARE_GLOBAL_DATA_PTR;
extern void ft_qe_setup(void *blob);
extern void ft_fixup_num_cores(void *blob);
extern void ft_srio_setup(void *blob);
#ifdef CONFIG_MP
#include "mp.h"
void ft_fixup_cpu(void *blob, u64 memory_limit)
{
int off;
85xx: MP Boot Page Translation update This change has 3 goals: - Have secondary cores be released into spin loops at their 'true' address in SDRAM. Previously, secondary cores were put into spin loops in the 0xfffffxxx address range which required that boot page translation was always enabled while cores were in their spin loops. - Allow the TLB window that the primary core uses to access the secondary cores boot page to be placed at any address. Previously, a TLB window at 0xfffff000 was always used to access the seconary cores' boot page. This TLB address requirement overlapped with other peripherals on some boards (eg XPedite5370). By default, the boot page TLB will still use the 0xfffffxxx address range, but this can be overridden on a board-by-board basis by defining a custom CONFIG_BPTR_VIRT_ADDR. Note that the TLB used to map the boot page remains in use while U-Boot executes. Previously it was only temporarily used, then restored to its initial value. - Allow Boot Page Translation to be disabled on bootup. Previously, Boot Page Translation was always left enabled after secondary cores were brought out of reset. This caused the 0xfffffxxx address range to somewhat "magically" be translated to an address in SDRAM. Some boards may not want this oddity in their memory map, so defining CONFIG_MPC8xxx_DISABLE_BPTR will turn off Boot Page Translation after the secondary cores are initialized. These changes are only applicable to 85xx boards with CONFIG_MP defined. Signed-off-by: Peter Tyser <ptyser@xes-inc.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
15 years ago
ulong spin_tbl_addr = get_spin_phys_addr();
u32 bootpg = determine_mp_bootpg();
u32 id = get_my_id();
const char *enable_method;
off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4);
while (off != -FDT_ERR_NOTFOUND) {
u32 *reg = (u32 *)fdt_getprop(blob, off, "reg", 0);
if (reg) {
u64 val = *reg * SIZE_BOOT_ENTRY + spin_tbl_addr;
val = cpu_to_fdt32(val);
if (*reg == id) {
fdt_setprop_string(blob, off, "status",
"okay");
} else {
fdt_setprop_string(blob, off, "status",
"disabled");
}
if (hold_cores_in_reset(0)) {
#ifdef CONFIG_FSL_CORENET
/* Cores held in reset, use BRR to release */
enable_method = "fsl,brr-holdoff";
#else
/* Cores held in reset, use EEBPCR to release */
enable_method = "fsl,eebpcr-holdoff";
#endif
} else {
/* Cores out of reset and in a spin-loop */
enable_method = "spin-table";
fdt_setprop(blob, off, "cpu-release-addr",
&val, sizeof(val));
}
fdt_setprop_string(blob, off, "enable-method",
enable_method);
} else {
printf ("cpu NULL\n");
}
off = fdt_node_offset_by_prop_value(blob, off,
"device_type", "cpu", 4);
}
/* Reserve the boot page so OSes dont use it */
if ((u64)bootpg < memory_limit) {
off = fdt_add_mem_rsv(blob, bootpg, (u64)4096);
if (off < 0)
printf("%s: %s\n", __FUNCTION__, fdt_strerror(off));
}
}
#endif
#ifdef CONFIG_SYS_FSL_CPC
static inline void ft_fixup_l3cache(void *blob, int off)
{
u32 line_size, num_ways, size, num_sets;
cpc_corenet_t *cpc = (void *)CONFIG_SYS_FSL_CPC_ADDR;
u32 cfg0 = in_be32(&cpc->cpccfg0);
size = CPC_CFG0_SZ_K(cfg0) * 1024 * CONFIG_SYS_NUM_CPC;
num_ways = CPC_CFG0_NUM_WAYS(cfg0);
line_size = CPC_CFG0_LINE_SZ(cfg0);
num_sets = size / (line_size * num_ways);
fdt_setprop(blob, off, "cache-unified", NULL, 0);
fdt_setprop_cell(blob, off, "cache-block-size", line_size);
fdt_setprop_cell(blob, off, "cache-size", size);
fdt_setprop_cell(blob, off, "cache-sets", num_sets);
fdt_setprop_cell(blob, off, "cache-level", 3);
#ifdef CONFIG_SYS_CACHE_STASHING
fdt_setprop_cell(blob, off, "cache-stash-id", 1);
#endif
}
#else
#define ft_fixup_l3cache(x, y)
#endif
#if defined(CONFIG_L2_CACHE)
/* return size in kilobytes */
static inline u32 l2cache_size(void)
{
volatile ccsr_l2cache_t *l2cache = (void *)CONFIG_SYS_MPC85xx_L2_ADDR;
volatile u32 l2siz_field = (l2cache->l2ctl >> 28) & 0x3;
u32 ver = SVR_SOC_VER(get_svr());
switch (l2siz_field) {
case 0x0:
break;
case 0x1:
if (ver == SVR_8540 || ver == SVR_8560 ||
ver == SVR_8541 || ver == SVR_8541_E ||
ver == SVR_8555 || ver == SVR_8555_E)
return 128;
else
return 256;
break;
case 0x2:
if (ver == SVR_8540 || ver == SVR_8560 ||
ver == SVR_8541 || ver == SVR_8541_E ||
ver == SVR_8555 || ver == SVR_8555_E)
return 256;
else
return 512;
break;
case 0x3:
return 1024;
break;
}
return 0;
}
static inline void ft_fixup_l2cache(void *blob)
{
int len, off;
u32 *ph;
struct cpu_type *cpu = identify_cpu(SVR_SOC_VER(get_svr()));
const u32 line_size = 32;
const u32 num_ways = 8;
const u32 size = l2cache_size() * 1024;
const u32 num_sets = size / (line_size * num_ways);
off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4);
if (off < 0) {
debug("no cpu node fount\n");
return;
}
ph = (u32 *)fdt_getprop(blob, off, "next-level-cache", 0);
if (ph == NULL) {
debug("no next-level-cache property\n");
return ;
}
off = fdt_node_offset_by_phandle(blob, *ph);
if (off < 0) {
printf("%s: %s\n", __func__, fdt_strerror(off));
return ;
}
if (cpu) {
char buf[40];
if (isdigit(cpu->name[0])) {
/* MPCxxxx, where xxxx == 4-digit number */
len = sprintf(buf, "fsl,mpc%s-l2-cache-controller",
cpu->name) + 1;
} else {
/* Pxxxx or Txxxx, where xxxx == 4-digit number */
len = sprintf(buf, "fsl,%c%s-l2-cache-controller",
tolower(cpu->name[0]), cpu->name + 1) + 1;
}
/*
* append "cache" after the NULL character that the previous
* sprintf wrote. This is how a device tree stores multiple
* strings in a property.
*/
len += sprintf(buf + len, "cache") + 1;
fdt_setprop(blob, off, "compatible", buf, len);
}
fdt_setprop(blob, off, "cache-unified", NULL, 0);
fdt_setprop_cell(blob, off, "cache-block-size", line_size);
fdt_setprop_cell(blob, off, "cache-size", size);
fdt_setprop_cell(blob, off, "cache-sets", num_sets);
fdt_setprop_cell(blob, off, "cache-level", 2);
/* we dont bother w/L3 since no platform of this type has one */
}
#elif defined(CONFIG_BACKSIDE_L2_CACHE)
static inline void ft_fixup_l2cache(void *blob)
{
int off, l2_off, l3_off = -1;
u32 *ph;
u32 l2cfg0 = mfspr(SPRN_L2CFG0);
u32 size, line_size, num_ways, num_sets;
int has_l2 = 1;
/* P2040/P2040E has no L2, so dont set any L2 props */
if ((SVR_SOC_VER(get_svr()) == SVR_P2040) ||
(SVR_SOC_VER(get_svr()) == SVR_P2040_E))
has_l2 = 0;
size = (l2cfg0 & 0x3fff) * 64 * 1024;
num_ways = ((l2cfg0 >> 14) & 0x1f) + 1;
line_size = (((l2cfg0 >> 23) & 0x3) + 1) * 32;
num_sets = size / (line_size * num_ways);
off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4);
while (off != -FDT_ERR_NOTFOUND) {
ph = (u32 *)fdt_getprop(blob, off, "next-level-cache", 0);
if (ph == NULL) {
debug("no next-level-cache property\n");
goto next;
}
l2_off = fdt_node_offset_by_phandle(blob, *ph);
if (l2_off < 0) {
printf("%s: %s\n", __func__, fdt_strerror(off));
goto next;
}
if (has_l2) {
#ifdef CONFIG_SYS_CACHE_STASHING
u32 *reg = (u32 *)fdt_getprop(blob, off, "reg", 0);
if (reg)
fdt_setprop_cell(blob, l2_off, "cache-stash-id",
(*reg * 2) + 32 + 1);
#endif
fdt_setprop(blob, l2_off, "cache-unified", NULL, 0);
fdt_setprop_cell(blob, l2_off, "cache-block-size",
line_size);
fdt_setprop_cell(blob, l2_off, "cache-size", size);
fdt_setprop_cell(blob, l2_off, "cache-sets", num_sets);
fdt_setprop_cell(blob, l2_off, "cache-level", 2);
fdt_setprop(blob, l2_off, "compatible", "cache", 6);
}
if (l3_off < 0) {
ph = (u32 *)fdt_getprop(blob, l2_off, "next-level-cache", 0);
if (ph == NULL) {
debug("no next-level-cache property\n");
goto next;
}
l3_off = *ph;
}
next:
off = fdt_node_offset_by_prop_value(blob, off,
"device_type", "cpu", 4);
}
if (l3_off > 0) {
l3_off = fdt_node_offset_by_phandle(blob, l3_off);
if (l3_off < 0) {
printf("%s: %s\n", __func__, fdt_strerror(off));
return ;
}
ft_fixup_l3cache(blob, l3_off);
}
}
#else
#define ft_fixup_l2cache(x)
#endif
static inline void ft_fixup_cache(void *blob)
{
int off;
off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4);
while (off != -FDT_ERR_NOTFOUND) {
u32 l1cfg0 = mfspr(SPRN_L1CFG0);
u32 l1cfg1 = mfspr(SPRN_L1CFG1);
u32 isize, iline_size, inum_sets, inum_ways;
u32 dsize, dline_size, dnum_sets, dnum_ways;
/* d-side config */
dsize = (l1cfg0 & 0x7ff) * 1024;
dnum_ways = ((l1cfg0 >> 11) & 0xff) + 1;
dline_size = (((l1cfg0 >> 23) & 0x3) + 1) * 32;
dnum_sets = dsize / (dline_size * dnum_ways);
fdt_setprop_cell(blob, off, "d-cache-block-size", dline_size);
fdt_setprop_cell(blob, off, "d-cache-size", dsize);
fdt_setprop_cell(blob, off, "d-cache-sets", dnum_sets);
#ifdef CONFIG_SYS_CACHE_STASHING
{
u32 *reg = (u32 *)fdt_getprop(blob, off, "reg", 0);
if (reg)
fdt_setprop_cell(blob, off, "cache-stash-id",
(*reg * 2) + 32 + 0);
}
#endif
/* i-side config */
isize = (l1cfg1 & 0x7ff) * 1024;
inum_ways = ((l1cfg1 >> 11) & 0xff) + 1;
iline_size = (((l1cfg1 >> 23) & 0x3) + 1) * 32;
inum_sets = isize / (iline_size * inum_ways);
fdt_setprop_cell(blob, off, "i-cache-block-size", iline_size);
fdt_setprop_cell(blob, off, "i-cache-size", isize);
fdt_setprop_cell(blob, off, "i-cache-sets", inum_sets);
off = fdt_node_offset_by_prop_value(blob, off,
"device_type", "cpu", 4);
}
ft_fixup_l2cache(blob);
}
void fdt_add_enet_stashing(void *fdt)
{
do_fixup_by_compat(fdt, "gianfar", "bd-stash", NULL, 0, 1);
do_fixup_by_compat_u32(fdt, "gianfar", "rx-stash-len", 96, 1);
do_fixup_by_compat_u32(fdt, "gianfar", "rx-stash-idx", 0, 1);
do_fixup_by_compat(fdt, "fsl,etsec2", "bd-stash", NULL, 0, 1);
do_fixup_by_compat_u32(fdt, "fsl,etsec2", "rx-stash-len", 96, 1);
do_fixup_by_compat_u32(fdt, "fsl,etsec2", "rx-stash-idx", 0, 1);
}
#if defined(CONFIG_SYS_DPAA_FMAN) || defined(CONFIG_SYS_DPAA_PME)
static void ft_fixup_clks(void *blob, const char *compat, u32 offset,
unsigned long freq)
{
phys_addr_t phys = offset + CONFIG_SYS_CCSRBAR_PHYS;
int off = fdt_node_offset_by_compat_reg(blob, compat, phys);
if (off >= 0) {
off = fdt_setprop_cell(blob, off, "clock-frequency", freq);
if (off > 0)
printf("WARNING enable to set clock-frequency "
"for %s: %s\n", compat, fdt_strerror(off));
}
}
static void ft_fixup_dpaa_clks(void *blob)
{
sys_info_t sysinfo;
get_sys_info(&sysinfo);
ft_fixup_clks(blob, "fsl,fman", CONFIG_SYS_FSL_FM1_OFFSET,
sysinfo.freqFMan[0]);
#if (CONFIG_SYS_NUM_FMAN == 2)
ft_fixup_clks(blob, "fsl,fman", CONFIG_SYS_FSL_FM2_OFFSET,
sysinfo.freqFMan[1]);
#endif
#ifdef CONFIG_SYS_DPAA_PME
do_fixup_by_compat_u32(blob, "fsl,pme",
"clock-frequency", sysinfo.freqPME, 1);
#endif
}
#else
#define ft_fixup_dpaa_clks(x)
#endif
#ifdef CONFIG_QE
static void ft_fixup_qe_snum(void *blob)
{
unsigned int svr;
svr = mfspr(SPRN_SVR);
if (SVR_SOC_VER(svr) == SVR_8569_E) {
if(IS_SVR_REV(svr, 1, 0))
do_fixup_by_compat_u32(blob, "fsl,qe",
"fsl,qe-num-snums", 46, 1);
else
do_fixup_by_compat_u32(blob, "fsl,qe",
"fsl,qe-num-snums", 76, 1);
}
}
#endif
/**
* fdt_fixup_fman_firmware -- insert the Fman firmware into the device tree
*
* The binding for an Fman firmware node is documented in
* Documentation/powerpc/dts-bindings/fsl/dpaa/fman.txt. This node contains
* the actual Fman firmware binary data. The operating system is expected to
* be able to parse the binary data to determine any attributes it needs.
*/
#ifdef CONFIG_SYS_DPAA_FMAN
void fdt_fixup_fman_firmware(void *blob)
{
int rc, fmnode, fwnode = -1;
uint32_t phandle;
struct qe_firmware *fmanfw;
const struct qe_header *hdr;
unsigned int length;
uint32_t crc;
const char *p;
/* The first Fman we find will contain the actual firmware. */
fmnode = fdt_node_offset_by_compatible(blob, -1, "fsl,fman");
if (fmnode < 0)
/* Exit silently if there are no Fman devices */
return;
/* If we already have a firmware node, then also exit silently. */
if (fdt_node_offset_by_compatible(blob, -1, "fsl,fman-firmware") > 0)
return;
/* If the environment variable is not set, then exit silently */
p = getenv("fman_ucode");
if (!p)
return;
fmanfw = (struct qe_firmware *) simple_strtoul(p, NULL, 0);
if (!fmanfw)
return;
hdr = &fmanfw->header;
length = be32_to_cpu(hdr->length);
/* Verify the firmware. */
if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
(hdr->magic[2] != 'F')) {
printf("Data at %p is not an Fman firmware\n", fmanfw);
return;
}
if (length > CONFIG_SYS_FMAN_FW_LENGTH) {
printf("Fman firmware at %p is too large (size=%u)\n",
fmanfw, length);
return;
}
length -= sizeof(u32); /* Subtract the size of the CRC */
crc = be32_to_cpu(*(u32 *)((void *)fmanfw + length));
if (crc != crc32_no_comp(0, (void *)fmanfw, length)) {
printf("Fman firmware at %p has invalid CRC\n", fmanfw);
return;
}
/* Increase the size of the fdt to make room for the node. */
rc = fdt_increase_size(blob, fmanfw->header.length);
if (rc < 0) {
printf("Unable to make room for Fman firmware: %s\n",
fdt_strerror(rc));
return;
}
/* Create the firmware node. */
fwnode = fdt_add_subnode(blob, fmnode, "fman-firmware");
if (fwnode < 0) {
char s[64];
fdt_get_path(blob, fmnode, s, sizeof(s));
printf("Could not add firmware node to %s: %s\n", s,
fdt_strerror(fwnode));
return;
}
rc = fdt_setprop_string(blob, fwnode, "compatible", "fsl,fman-firmware");
if (rc < 0) {
char s[64];
fdt_get_path(blob, fwnode, s, sizeof(s));
printf("Could not add compatible property to node %s: %s\n", s,
fdt_strerror(rc));
return;
}
phandle = fdt_alloc_phandle(blob);
rc = fdt_setprop_cell(blob, fwnode, "linux,phandle", phandle);
if (rc < 0) {
char s[64];
fdt_get_path(blob, fwnode, s, sizeof(s));
printf("Could not add phandle property to node %s: %s\n", s,
fdt_strerror(rc));
return;
}
rc = fdt_setprop(blob, fwnode, "fsl,firmware", fmanfw, fmanfw->header.length);
if (rc < 0) {
char s[64];
fdt_get_path(blob, fwnode, s, sizeof(s));
printf("Could not add firmware property to node %s: %s\n", s,
fdt_strerror(rc));
return;
}
/* Find all other Fman nodes and point them to the firmware node. */
while ((fmnode = fdt_node_offset_by_compatible(blob, fmnode, "fsl,fman")) > 0) {
rc = fdt_setprop_cell(blob, fmnode, "fsl,firmware-phandle", phandle);
if (rc < 0) {
char s[64];
fdt_get_path(blob, fmnode, s, sizeof(s));
printf("Could not add pointer property to node %s: %s\n",
s, fdt_strerror(rc));
return;
}
}
}
#else
#define fdt_fixup_fman_firmware(x)
#endif
void ft_cpu_setup(void *blob, bd_t *bd)
{
int off;
int val;
sys_info_t sysinfo;
/* delete crypto node if not on an E-processor */
if (!IS_E_PROCESSOR(get_svr()))
fdt_fixup_crypto_node(blob, 0);
fdt_fixup_ethernet(blob);
fdt_add_enet_stashing(blob);
do_fixup_by_prop_u32(blob, "device_type", "cpu", 4,
"timebase-frequency", get_tbclk(), 1);
do_fixup_by_prop_u32(blob, "device_type", "cpu", 4,
"bus-frequency", bd->bi_busfreq, 1);
get_sys_info(&sysinfo);
off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4);
while (off != -FDT_ERR_NOTFOUND) {
u32 *reg = (u32 *)fdt_getprop(blob, off, "reg", 0);
val = cpu_to_fdt32(sysinfo.freqProcessor[*reg]);
fdt_setprop(blob, off, "clock-frequency", &val, 4);
off = fdt_node_offset_by_prop_value(blob, off, "device_type",
"cpu", 4);
}
do_fixup_by_prop_u32(blob, "device_type", "soc", 4,
"bus-frequency", bd->bi_busfreq, 1);
do_fixup_by_compat_u32(blob, "fsl,pq3-localbus",
"bus-frequency", gd->lbc_clk, 1);
do_fixup_by_compat_u32(blob, "fsl,elbc",
"bus-frequency", gd->lbc_clk, 1);
#ifdef CONFIG_QE
ft_qe_setup(blob);
ft_fixup_qe_snum(blob);
#endif
fdt_fixup_fman_firmware(blob);
#ifdef CONFIG_SYS_NS16550
do_fixup_by_compat_u32(blob, "ns16550",
"clock-frequency", CONFIG_SYS_NS16550_CLK, 1);
#endif
#ifdef CONFIG_CPM2
do_fixup_by_compat_u32(blob, "fsl,cpm2-scc-uart",
"current-speed", bd->bi_baudrate, 1);
do_fixup_by_compat_u32(blob, "fsl,cpm2-brg",
"clock-frequency", bd->bi_brgfreq, 1);
#endif
#ifdef CONFIG_FSL_CORENET
do_fixup_by_compat_u32(blob, "fsl,qoriq-clockgen-1.0",
"clock-frequency", CONFIG_SYS_CLK_FREQ, 1);
#endif
fdt_fixup_memory(blob, (u64)bd->bi_memstart, (u64)bd->bi_memsize);
#ifdef CONFIG_MP
ft_fixup_cpu(blob, (u64)bd->bi_memstart + (u64)bd->bi_memsize);
ft_fixup_num_cores(blob);
#endif
ft_fixup_cache(blob);
#if defined(CONFIG_FSL_ESDHC)
fdt_fixup_esdhc(blob, bd);
#endif
ft_fixup_dpaa_clks(blob);
#if defined(CONFIG_SYS_BMAN_MEM_PHYS)
fdt_portal(blob, "fsl,bman-portal", "bman-portals",
(u64)CONFIG_SYS_BMAN_MEM_PHYS,
CONFIG_SYS_BMAN_MEM_SIZE);
fdt_fixup_bportals(blob);
#endif
#if defined(CONFIG_SYS_QMAN_MEM_PHYS)
fdt_portal(blob, "fsl,qman-portal", "qman-portals",
(u64)CONFIG_SYS_QMAN_MEM_PHYS,
CONFIG_SYS_QMAN_MEM_SIZE);
fdt_fixup_qportals(blob);
#endif
#ifdef CONFIG_SYS_SRIO
ft_srio_setup(blob);
#endif
/*
* system-clock = CCB clock/2
* Here gd->bus_clk = CCB clock
* We are using the system clock as 1588 Timer reference
* clock source select
*/
do_fixup_by_compat_u32(blob, "fsl,gianfar-ptp-timer",
"timer-frequency", gd->bus_clk/2, 1);
do_fixup_by_compat_u32(blob, "fsl,flexcan-v1.0",
"clock_freq", gd->bus_clk, 1);
}
/*
* For some CCSR devices, we only have the virtual address, not the physical
* address. This is because we map CCSR as a whole, so we typically don't need
* a macro for the physical address of any device within CCSR. In this case,
* we calculate the physical address of that device using it's the difference
* between the virtual address of the device and the virtual address of the
* beginning of CCSR.
*/
#define CCSR_VIRT_TO_PHYS(x) \
(CONFIG_SYS_CCSRBAR_PHYS + ((x) - CONFIG_SYS_CCSRBAR))
/*
* Verify the device tree
*
* This function compares several CONFIG_xxx macros that contain physical
* addresses with the corresponding nodes in the device tree, to see if
* the physical addresses are all correct. For example, if
* CONFIG_SYS_NS16550_COM1 is defined, then it contains the virtual address
* of the first UART. We convert this to a physical address and compare
* that with the physical address of the first ns16550-compatible node
* in the device tree. If they don't match, then we display a warning.
*
* Returns 1 on success, 0 on failure
*/
int ft_verify_fdt(void *fdt)
{
uint64_t ccsr = 0;
int aliases;
int off;
/* First check the CCSR base address */
off = fdt_node_offset_by_prop_value(fdt, -1, "device_type", "soc", 4);
if (off > 0)
ccsr = fdt_get_base_address(fdt, off);
if (!ccsr) {
printf("Warning: could not determine base CCSR address in "
"device tree\n");
/* No point in checking anything else */
return 0;
}
if (ccsr != CONFIG_SYS_CCSRBAR_PHYS) {
printf("Warning: U-Boot configured CCSR at address %llx,\n"
"but the device tree has it at %llx\n",
(uint64_t) CONFIG_SYS_CCSRBAR_PHYS, ccsr);
/* No point in checking anything else */
return 0;
}
/*
* Get the 'aliases' node. If there isn't one, then there's nothing
* left to do.
*/
aliases = fdt_path_offset(fdt, "/aliases");
if (aliases > 0) {
#ifdef CONFIG_SYS_NS16550_COM1
if (!fdt_verify_alias_address(fdt, aliases, "serial0",
CCSR_VIRT_TO_PHYS(CONFIG_SYS_NS16550_COM1)))
return 0;
#endif
#ifdef CONFIG_SYS_NS16550_COM2
if (!fdt_verify_alias_address(fdt, aliases, "serial1",
CCSR_VIRT_TO_PHYS(CONFIG_SYS_NS16550_COM2)))
return 0;
#endif
}
return 1;
}