nand: mxc: Prepare to add support for i.MX5

Add some abstraction to NFC definitions so that some parts of the current code
can also be used for future i.MX5 code.

Clean up a few things by the way.

Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
Acked-by: Scott Wood <scottwood@freescale.com>
Tested-by: Fabio Estevam <fabio.estevam@freescale.com>
master
Benoît Thébaudeau 11 years ago committed by Albert ARIBAUD
parent a430e91643
commit 2dc0aa0227
  1. 92
      drivers/mtd/nand/mxc_nand.c
  2. 72
      include/fsl_nfc.h
  3. 47
      nand_spl/nand_boot_fsl_nfc.c

@ -119,7 +119,7 @@ static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size
/*
* This function polls the NANDFC to wait for the basic operation to
* complete by checking the INT bit of config2 register.
* complete by checking the INT bit.
*/
static void wait_op_done(struct mxc_nand_host *host, int max_retries,
uint16_t param)
@ -127,10 +127,10 @@ static void wait_op_done(struct mxc_nand_host *host, int max_retries,
uint32_t tmp;
while (max_retries-- > 0) {
if (readw(&host->regs->config2) & NFC_INT) {
tmp = readw(&host->regs->config2);
tmp &= ~NFC_INT;
writew(tmp, &host->regs->config2);
tmp = readnfc(&host->regs->config2);
if (tmp & NFC_V1_V2_CONFIG2_INT) {
tmp &= ~NFC_V1_V2_CONFIG2_INT;
writenfc(tmp, &host->regs->config2);
break;
}
udelay(1);
@ -149,8 +149,8 @@ static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
{
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);
writew(cmd, &host->regs->flash_cmd);
writew(NFC_CMD, &host->regs->config2);
writenfc(cmd, &host->regs->flash_cmd);
writenfc(NFC_CMD, &host->regs->operation);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, cmd);
@ -165,8 +165,8 @@ static void send_addr(struct mxc_nand_host *host, uint16_t addr)
{
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr);
writew(addr, &host->regs->flash_addr);
writew(NFC_ADDR, &host->regs->config2);
writenfc(addr, &host->regs->flash_addr);
writenfc(NFC_ADDR, &host->regs->operation);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, addr);
@ -198,19 +198,19 @@ static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
}
}
writew(buf_id, &host->regs->buf_addr);
writenfc(buf_id, &host->regs->buf_addr);
/* Configure spare or page+spare access */
if (!host->pagesize_2k) {
uint16_t config1 = readw(&host->regs->config1);
uint16_t config1 = readnfc(&host->regs->config1);
if (spare_only)
config1 |= NFC_SP_EN;
config1 |= NFC_CONFIG1_SP_EN;
else
config1 &= ~NFC_SP_EN;
writew(config1, &host->regs->config1);
config1 &= ~NFC_CONFIG1_SP_EN;
writenfc(config1, &host->regs->config1);
}
writew(NFC_INPUT, &host->regs->config2);
writenfc(NFC_INPUT, &host->regs->operation);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, spare_only);
@ -225,19 +225,19 @@ static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
{
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
writew(buf_id, &host->regs->buf_addr);
writenfc(buf_id, &host->regs->buf_addr);
/* Configure spare or page+spare access */
if (!host->pagesize_2k) {
uint32_t config1 = readw(&host->regs->config1);
uint32_t config1 = readnfc(&host->regs->config1);
if (spare_only)
config1 |= NFC_SP_EN;
config1 |= NFC_CONFIG1_SP_EN;
else
config1 &= ~NFC_SP_EN;
writew(config1, &host->regs->config1);
config1 &= ~NFC_CONFIG1_SP_EN;
writenfc(config1, &host->regs->config1);
}
writew(NFC_OUTPUT, &host->regs->config2);
writenfc(NFC_OUTPUT, &host->regs->operation);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, spare_only);
@ -265,14 +265,14 @@ static void send_read_id(struct mxc_nand_host *host)
uint16_t tmp;
/* NANDFC buffer 0 is used for device ID output */
writew(0x0, &host->regs->buf_addr);
writenfc(0x0, &host->regs->buf_addr);
/* Read ID into main buffer */
tmp = readw(&host->regs->config1);
tmp &= ~NFC_SP_EN;
writew(tmp, &host->regs->config1);
tmp = readnfc(&host->regs->config1);
tmp &= ~NFC_CONFIG1_SP_EN;
writenfc(tmp, &host->regs->config1);
writew(NFC_ID, &host->regs->config2);
writenfc(NFC_ID, &host->regs->operation);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, 0);
@ -292,14 +292,14 @@ static uint16_t get_dev_status(struct mxc_nand_host *host)
/* store the main area1 first word, later do recovery */
store = readl(main_buf);
/* NANDFC buffer 1 is used for device status */
writew(1, &host->regs->buf_addr);
writenfc(1, &host->regs->buf_addr);
/* Read status into main buffer */
tmp = readw(&host->regs->config1);
tmp &= ~NFC_SP_EN;
writew(tmp, &host->regs->config1);
tmp = readnfc(&host->regs->config1);
tmp &= ~NFC_CONFIG1_SP_EN;
writenfc(tmp, &host->regs->config1);
writew(NFC_STATUS, &host->regs->config2);
writenfc(NFC_STATUS, &host->regs->operation);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, 0);
@ -328,13 +328,13 @@ static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint16_t tmp = readw(&host->regs->config1);
uint16_t tmp = readnfc(&host->regs->config1);
if (on)
tmp |= NFC_ECC_EN;
tmp |= NFC_V1_V2_CONFIG1_ECC_EN;
else
tmp &= ~NFC_ECC_EN;
writew(tmp, &host->regs->config1);
tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN;
writenfc(tmp, &host->regs->config1);
}
#ifdef CONFIG_MXC_NAND_HWECC
@ -667,7 +667,7 @@ static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
* additional correction. 2-Bit errors cannot be corrected by
* HW ECC, so we need to return failure
*/
uint16_t ecc_status = readw(&host->regs->ecc_status_result);
uint16_t ecc_status = readnfc(&host->regs->ecc_status_result);
if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
MTDDEBUG(MTD_DEBUG_LEVEL0,
@ -1210,24 +1210,24 @@ int board_nand_init(struct nand_chip *this)
#endif
#ifdef MXC_NFC_V2_1
tmp = readw(&host->regs->config1);
tmp |= NFC_ONE_CYCLE;
tmp |= NFC_4_8N_ECC;
writew(tmp, &host->regs->config1);
tmp = readnfc(&host->regs->config1);
tmp |= NFC_V2_CONFIG1_ONE_CYCLE;
tmp |= NFC_V2_CONFIG1_ECC_MODE_4;
writenfc(tmp, &host->regs->config1);
if (host->pagesize_2k)
writew(64/2, &host->regs->spare_area_size);
writenfc(64/2, &host->regs->spare_area_size);
else
writew(16/2, &host->regs->spare_area_size);
writenfc(16/2, &host->regs->spare_area_size);
#endif
/*
* preset operation
* Unlock the internal RAM Buffer
*/
writew(0x2, &host->regs->config);
writenfc(0x2, &host->regs->config);
/* Blocks to be unlocked */
writew(0x0, &host->regs->unlockstart_blkaddr);
writenfc(0x0, &host->regs->unlockstart_blkaddr);
/* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
* unlockend_blkaddr, but the magic 0x4000 does not always work
* when writing more than some 32 megabytes (on 2k page nands)
@ -1239,10 +1239,10 @@ int board_nand_init(struct nand_chip *this)
* This might be NAND chip specific and the i.MX31 datasheet is
* extremely vague about the semantics of this register.
*/
writew(0xFFFF, &host->regs->unlockend_blkaddr);
writenfc(0xFFFF, &host->regs->unlockend_blkaddr);
/* Unlock Block Command for given address range */
writew(0x4, &host->regs->wrprot);
writenfc(0x4, &host->regs->wrprot);
return 0;
}

@ -113,58 +113,38 @@ struct fsl_nfc_regs {
#endif
};
/*
* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register for Command
* operation
*/
#define NFC_CMD 0x1
/* Set FCMD to 1, rest to 0 for Command operation */
#define NFC_CMD 0x1
/*
* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register for Address
* operation
*/
#define NFC_ADDR 0x2
/* Set FADD to 1, rest to 0 for Address operation */
#define NFC_ADDR 0x2
/*
* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register for Input
* operation
*/
#define NFC_INPUT 0x4
/* Set FDI to 1, rest to 0 for Input operation */
#define NFC_INPUT 0x4
/*
* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register for Data
* Output operation
*/
#define NFC_OUTPUT 0x8
/* Set FDO to 001, rest to 0 for Data Output operation */
#define NFC_OUTPUT 0x8
/*
* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register for Read ID
* operation
*/
#define NFC_ID 0x10
/* Set FDO to 010, rest to 0 for Read ID operation */
#define NFC_ID 0x10
/*
* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register for Read
* Status operation
*/
#define NFC_STATUS 0x20
/* Set FDO to 100, rest to 0 for Read Status operation */
#define NFC_STATUS 0x20
/*
* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read Status
* operation
*/
#define NFC_INT 0x8000
#define NFC_CONFIG1_SP_EN (1 << 2)
#define NFC_CONFIG1_RST (1 << 6)
#define NFC_CONFIG1_CE (1 << 7)
#define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
#define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
#define NFC_V1_V2_CONFIG1_BIG (1 << 5)
#define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
#define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
#define NFC_V2_CONFIG1_FP_INT (1 << 11)
#ifdef MXC_NFC_V2_1
#define NFC_4_8N_ECC (1 << 0)
#endif
#define NFC_SP_EN (1 << 2)
#define NFC_ECC_EN (1 << 3)
#define NFC_INT_MSK (1 << 4)
#define NFC_BIG (1 << 5)
#define NFC_RST (1 << 6)
#define NFC_CE (1 << 7)
#define NFC_ONE_CYCLE (1 << 8)
#define NFC_FP_INT (1 << 11)
#define NFC_V1_V2_CONFIG2_INT (1 << 15)
#define operation config2
#define readnfc readw
#define writenfc writew
#endif /* __FSL_NFC_H */

@ -36,13 +36,13 @@ static void nfc_wait_ready(void)
{
uint32_t tmp;
while (!(readw(&nfc->config2) & NFC_INT))
while (!(readnfc(&nfc->config2) & NFC_V1_V2_CONFIG2_INT))
;
/* Reset interrupt flag */
tmp = readw(&nfc->config2);
tmp &= ~NFC_INT;
writew(tmp, &nfc->config2);
tmp = readnfc(&nfc->config2);
tmp &= ~NFC_V1_V2_CONFIG2_INT;
writenfc(tmp, &nfc->config2);
}
static void nfc_nand_init(void)
@ -51,43 +51,45 @@ static void nfc_nand_init(void)
int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512;
int config1;
writew(CONFIG_SYS_NAND_SPARE_SIZE / 2, &nfc->spare_area_size);
writenfc(CONFIG_SYS_NAND_SPARE_SIZE / 2, &nfc->spare_area_size);
/* unlocking RAM Buff */
writew(0x2, &nfc->config);
writenfc(0x2, &nfc->config);
/* hardware ECC checking and correct */
config1 = readw(&nfc->config1) | NFC_ECC_EN | NFC_INT_MSK |
NFC_ONE_CYCLE | NFC_FP_INT;
config1 = readnfc(&nfc->config1) | NFC_V1_V2_CONFIG1_ECC_EN |
NFC_V1_V2_CONFIG1_INT_MSK | NFC_V2_CONFIG1_ONE_CYCLE |
NFC_V2_CONFIG1_FP_INT;
/*
* if spare size is larger that 16 bytes per 512 byte hunk
* then use 8 symbol correction instead of 4
*/
if (CONFIG_SYS_NAND_SPARE_SIZE / ecc_per_page > 16)
config1 &= ~NFC_4_8N_ECC;
config1 &= ~NFC_V2_CONFIG1_ECC_MODE_4;
else
config1 |= NFC_4_8N_ECC;
writew(config1, &nfc->config1);
config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
writenfc(config1, &nfc->config1);
#elif defined(MXC_NFC_V1)
/* unlocking RAM Buff */
writew(0x2, &nfc->config);
writenfc(0x2, &nfc->config);
/* hardware ECC checking and correct */
writew(NFC_ECC_EN | NFC_INT_MSK, &nfc->config1);
writenfc(NFC_V1_V2_CONFIG1_ECC_EN | NFC_V1_V2_CONFIG1_INT_MSK,
&nfc->config1);
#endif
}
static void nfc_nand_command(unsigned short command)
{
writew(command, &nfc->flash_cmd);
writew(NFC_CMD, &nfc->config2);
writenfc(command, &nfc->flash_cmd);
writenfc(NFC_CMD, &nfc->operation);
nfc_wait_ready();
}
static void nfc_nand_address(unsigned short address)
{
writew(address, &nfc->flash_addr);
writew(NFC_ADDR, &nfc->config2);
writenfc(address, &nfc->flash_addr);
writenfc(NFC_ADDR, &nfc->operation);
nfc_wait_ready();
}
@ -121,8 +123,8 @@ static void nfc_nand_data_output(void)
int i;
#endif
writew(0, &nfc->buf_addr);
writew(NFC_OUTPUT, &nfc->config2);
writenfc(0, &nfc->buf_addr);
writenfc(NFC_OUTPUT, &nfc->operation);
nfc_wait_ready();
#ifdef NAND_MXC_2K_MULTI_CYCLE
/*
@ -130,8 +132,8 @@ static void nfc_nand_data_output(void)
* for pages larger than 512 bytes.
*/
for (i = 1; i < CONFIG_SYS_NAND_PAGE_SIZE / 512; i++) {
writew(i, &nfc->buf_addr);
writew(NFC_OUTPUT, &nfc->config2);
writenfc(i, &nfc->buf_addr);
writenfc(NFC_OUTPUT, &nfc->operation);
nfc_wait_ready();
}
#endif
@ -160,7 +162,8 @@ static int nfc_nand_check_ecc(void)
static void nfc_nand_read_page(unsigned int page_address)
{
writew(0, &nfc->buf_addr); /* read in first 0 buffer */
/* read in first 0 buffer */
writenfc(0, &nfc->buf_addr);
nfc_nand_command(NAND_CMD_READ0);
nfc_nand_page_address(page_address);

Loading…
Cancel
Save