mtd: nand: omap: optimized chip->ecc.correct() for H/W ECC schemes

chip->ecc.correct() is used for detecting and correcting bit-flips during read
operations. In omap-nand driver it implemented as:
(a) omap_correct_data(): for h/w based ECC_HAM1 scheme
(b) omap_correct_data_bch() + CONFIG_NAND_OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
	for ECC_BCH8 scheme using GPMC and software lib/bch.c
(c) omap_correct_data_bch() + CONFIG_NAND_OMAP_ECC_BCH8_CODE_HW
	for ECC_BCH8 scheme using GPMC and ELM

This patch updates (c)
- checks for calc_ecc[]==0x00 so that error_correction is not required for
  known good pages.
- adds scalability for other ECC_BCHx scheme by merging following
  omap_rotate_ecc_bch() + omap_fix_errors_bch() => omap_correct_data_bch()
- fixing logic for bit-flip correction based on error_loc[count]

Signed-off-by: Pekon Gupta <pekon@ti.com>
master
pekon gupta 11 years ago committed by Scott Wood
parent 71a7f95600
commit 6e562b1106
  1. 161
      drivers/mtd/nand/omap_gpmc.c

@ -21,6 +21,9 @@
#define SECTOR_BYTES 512
#define ECCCLEAR (0x1 << 8)
#define ECCRESULTREG1 (0x1 << 0)
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
#define BCH4_BIT_PAD 4
#ifdef CONFIG_BCH
static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
0x97, 0x79, 0xe5, 0x24, 0xb5};
@ -179,6 +182,23 @@ static __maybe_unused struct nand_bch_priv bch_priv = {
};
/*
* omap_reverse_list - re-orders list elements in reverse order [internal]
* @list: pointer to start of list
* @length: length of list
*/
void omap_reverse_list(u8 *list, unsigned int length)
{
unsigned int i, j;
unsigned int half_length = length / 2;
u8 tmp;
for (i = 0, j = length - 1; i < half_length; i++, j--) {
tmp = list[i];
list[i] = list[j];
list[j] = tmp;
}
}
/*
* omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
* @mtd: MTD device structure
* @mode: Read/Write mode
@ -312,77 +332,6 @@ static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
#ifdef CONFIG_NAND_OMAP_ELM
/*
* omap_rotate_ecc_bch - Rotate the syndrome bytes
*
* @mtd: MTD device structure
* @calc_ecc: ECC read from ECC registers
* @syndrome: Rotated syndrome will be retuned in this array
*
*/
static void omap_rotate_ecc_bch(struct mtd_info *mtd, uint8_t *calc_ecc,
uint8_t *syndrome)
{
struct nand_chip *chip = mtd->priv;
struct nand_bch_priv *bch = chip->priv;
uint8_t n_bytes = 0;
int8_t i, j;
switch (bch->type) {
case ECC_BCH4:
n_bytes = 8;
break;
case ECC_BCH16:
n_bytes = 28;
break;
case ECC_BCH8:
default:
n_bytes = 13;
break;
}
for (i = 0, j = (n_bytes-1); i < n_bytes; i++, j--)
syndrome[i] = calc_ecc[j];
}
/*
* omap_fix_errors_bch - Correct bch error in the data
*
* @mtd: MTD device structure
* @data: Data read from flash
* @error_count:Number of errors in data
* @error_loc: Locations of errors in the data
*
*/
static void omap_fix_errors_bch(struct mtd_info *mtd, uint8_t *data,
uint32_t error_count, uint32_t *error_loc)
{
struct nand_chip *chip = mtd->priv;
struct nand_bch_priv *bch = chip->priv;
uint8_t count = 0;
uint32_t error_byte_pos;
uint32_t error_bit_mask;
uint32_t last_bit = (bch->nibbles * 4) - 1;
/* Flip all bits as specified by the error location array. */
/* FOR( each found error location flip the bit ) */
for (count = 0; count < error_count; count++) {
if (error_loc[count] > last_bit) {
/* Remove the ECC spare bits from correction. */
error_loc[count] -= (last_bit + 1);
/* Offset bit in data region */
error_byte_pos = ((512 * 8) -
(error_loc[count]) - 1) / 8;
/* Error Bit mask */
error_bit_mask = 0x1 << (error_loc[count] % 8);
/* Toggle the error bit to make the correction. */
data[error_byte_pos] ^= error_bit_mask;
}
}
}
/*
* omap_correct_data_bch - Compares the ecc read from nand spare area
* with ECC registers values and corrects one bit error if it has occured
*
@ -398,40 +347,72 @@ static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
{
struct nand_chip *chip = mtd->priv;
struct nand_bch_priv *bch = chip->priv;
uint8_t syndrome[28];
uint32_t error_count = 0;
uint32_t eccbytes = chip->ecc.bytes;
uint32_t error_count = 0, error_max;
uint32_t error_loc[8];
uint32_t i, ecc_flag;
uint32_t i, ecc_flag = 0;
uint8_t count, err = 0;
uint32_t byte_pos, bit_pos;
/* check calculated ecc */
for (i = 0; i < chip->ecc.bytes && !ecc_flag; i++) {
if (calc_ecc[i] != 0x00)
ecc_flag = 1;
}
if (!ecc_flag)
return 0;
/* check for whether its a erased-page */
ecc_flag = 0;
for (i = 0; i < chip->ecc.bytes; i++)
for (i = 0; i < chip->ecc.bytes && !ecc_flag; i++) {
if (read_ecc[i] != 0xff)
ecc_flag = 1;
}
if (!ecc_flag)
return 0;
elm_reset();
elm_config((enum bch_level)(bch->type));
/*
* while reading ECC result we read it in big endian.
* Hence while loading to ELM we have rotate to get the right endian.
*/
omap_rotate_ecc_bch(mtd, calc_ecc, syndrome);
switch (bch->ecc_scheme) {
case OMAP_ECC_BCH8_CODE_HW:
omap_reverse_list(calc_ecc, eccbytes - 1);
break;
default:
return -EINVAL;
}
/* use elm module to check for errors */
if (elm_check_error(syndrome, bch->nibbles, &error_count,
error_loc) != 0) {
printf("ECC: uncorrectable.\n");
return -1;
elm_config((enum bch_level)(bch->type));
if (elm_check_error(calc_ecc, bch->nibbles, &error_count, error_loc)) {
printf("nand: error: uncorrectable ECC errors\n");
return -EINVAL;
}
/* correct bch error */
if (error_count > 0)
omap_fix_errors_bch(mtd, dat, error_count, error_loc);
return 0;
for (count = 0; count < error_count; count++) {
switch (bch->type) {
case ECC_BCH8:
/* 14th byte in ECC is reserved to match ROM layout */
error_max = SECTOR_BYTES + (eccbytes - 1);
break;
default:
return -EINVAL;
}
byte_pos = error_max - (error_loc[count] / 8) - 1;
bit_pos = error_loc[count] % 8;
if (byte_pos < SECTOR_BYTES) {
dat[byte_pos] ^= 1 << bit_pos;
printf("nand: bit-flip corrected @data=%d\n", byte_pos);
} else if (byte_pos < error_max) {
read_ecc[byte_pos - SECTOR_BYTES] = 1 << bit_pos;
printf("nand: bit-flip corrected @oob=%d\n", byte_pos -
SECTOR_BYTES);
} else {
err = -EBADMSG;
printf("nand: error: invalid bit-flip location\n");
}
}
return (err) ? err : error_count;
}
/**

Loading…
Cancel
Save