i2c: powerpc: Remove use of CONFIG_HARD_I2C

Drop use of this long-deprecated option for powerpc.

Signed-off-by: Simon Glass <sjg@chromium.org>
master
Simon Glass 7 years ago committed by Heiko Schocher
parent eb5ba3aefd
commit 7ffce4f17f
  1. 1
      arch/powerpc/cpu/mpc512x/Makefile
  2. 386
      arch/powerpc/cpu/mpc512x/i2c.c
  3. 1
      arch/powerpc/cpu/mpc5xxx/Makefile
  4. 456
      arch/powerpc/cpu/mpc5xxx/i2c.c
  5. 2
      arch/powerpc/cpu/mpc8260/Makefile
  6. 4
      arch/powerpc/cpu/mpc8260/commproc.c
  7. 741
      arch/powerpc/cpu/mpc8260/i2c.c
  8. 1
      arch/powerpc/cpu/mpc8xx/Makefile
  9. 672
      arch/powerpc/cpu/mpc8xx/i2c.c
  10. 1
      board/freescale/m52277evb/README
  11. 1
      board/freescale/m53017evb/README
  12. 1
      board/freescale/m5373evb/README
  13. 1
      board/freescale/m54455evb/README
  14. 1
      board/freescale/m547xevb/README

@ -9,7 +9,6 @@ obj-y := cpu.o
obj-y += traps.o
obj-y += cpu_init.o
obj-y += fixed_sdram.o
obj-y += i2c.o
obj-y += interrupts.o
obj-y += iopin.o
obj-y += serial.o

@ -1,386 +0,0 @@
/*
* (C) Copyright 2003 - 2009
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* SPDX-License-Identifier: GPL-2.0+
*
* Based on the MPC5xxx code.
*/
#include <common.h>
#include <asm/io.h>
DECLARE_GLOBAL_DATA_PTR;
#ifdef CONFIG_HARD_I2C
#include <i2c.h>
/* by default set I2C bus 0 active */
static unsigned int bus_num __attribute__ ((section (".data"))) = 0;
#define I2C_TIMEOUT 100
#define I2C_RETRIES 3
struct mpc512x_i2c_tap {
int scl2tap;
int tap2tap;
};
static int mpc_reg_in(volatile u32 *reg);
static void mpc_reg_out(volatile u32 *reg, int val, int mask);
static int wait_for_bb(void);
static int wait_for_pin(int *status);
static int do_address(uchar chip, char rdwr_flag);
static int send_bytes(uchar chip, char *buf, int len);
static int receive_bytes(uchar chip, char *buf, int len);
static int mpc_get_fdr(int);
static int mpc_reg_in (volatile u32 *reg)
{
int ret = in_be32(reg) >> 24;
return ret;
}
static void mpc_reg_out (volatile u32 *reg, int val, int mask)
{
if (!mask) {
out_be32(reg, val << 24);
} else {
clrsetbits_be32(reg, mask << 24, (val & mask) << 24);
}
}
static int wait_for_bb (void)
{
volatile immap_t *im = (immap_t *) CONFIG_SYS_IMMR;
volatile i2c512x_dev_t *regs = &im->i2c.dev[bus_num];
int timeout = I2C_TIMEOUT;
int status;
status = mpc_reg_in (&regs->msr);
while (timeout-- && (status & I2C_BB)) {
mpc_reg_out (&regs->mcr, I2C_STA, I2C_STA);
(void)mpc_reg_in(&regs->mdr);
mpc_reg_out (&regs->mcr, 0, I2C_STA);
mpc_reg_out (&regs->mcr, 0, 0);
mpc_reg_out (&regs->mcr, I2C_EN, 0);
udelay (1000);
status = mpc_reg_in (&regs->msr);
}
return (status & I2C_BB);
}
static int wait_for_pin (int *status)
{
volatile immap_t *im = (immap_t *) CONFIG_SYS_IMMR;
volatile i2c512x_dev_t *regs = &im->i2c.dev[bus_num];
int timeout = I2C_TIMEOUT;
*status = mpc_reg_in (&regs->msr);
while (timeout-- && !(*status & I2C_IF)) {
udelay (1000);
*status = mpc_reg_in (&regs->msr);
}
if (!(*status & I2C_IF)) {
return -1;
}
mpc_reg_out (&regs->msr, 0, I2C_IF);
return 0;
}
static int do_address (uchar chip, char rdwr_flag)
{
volatile immap_t *im = (immap_t *) CONFIG_SYS_IMMR;
volatile i2c512x_dev_t *regs = &im->i2c.dev[bus_num];
int status;
chip <<= 1;
if (rdwr_flag) {
chip |= 1;
}
mpc_reg_out (&regs->mcr, I2C_TX, I2C_TX);
mpc_reg_out (&regs->mdr, chip, 0);
if (wait_for_pin (&status)) {
return -2;
}
if (status & I2C_RXAK) {
return -3;
}
return 0;
}
static int send_bytes (uchar chip, char *buf, int len)
{
volatile immap_t *im = (immap_t *) CONFIG_SYS_IMMR;
volatile i2c512x_dev_t *regs = &im->i2c.dev[bus_num];
int wrcount;
int status;
for (wrcount = 0; wrcount < len; ++wrcount) {
mpc_reg_out (&regs->mdr, buf[wrcount], 0);
if (wait_for_pin (&status)) {
break;
}
if (status & I2C_RXAK) {
break;
}
}
return !(wrcount == len);
}
static int receive_bytes (uchar chip, char *buf, int len)
{
volatile immap_t *im = (immap_t *) CONFIG_SYS_IMMR;
volatile i2c512x_dev_t *regs = &im->i2c.dev[bus_num];
int dummy = 1;
int rdcount = 0;
int status;
int i;
mpc_reg_out (&regs->mcr, 0, I2C_TX);
for (i = 0; i < len; ++i) {
buf[rdcount] = mpc_reg_in (&regs->mdr);
if (dummy) {
dummy = 0;
} else {
rdcount++;
}
if (wait_for_pin (&status)) {
return -4;
}
}
mpc_reg_out (&regs->mcr, I2C_TXAK, I2C_TXAK);
buf[rdcount++] = mpc_reg_in (&regs->mdr);
if (wait_for_pin (&status)) {
return -5;
}
mpc_reg_out (&regs->mcr, 0, I2C_TXAK);
return 0;
}
/**************** I2C API ****************/
void i2c_init (int speed, int saddr)
{
volatile immap_t *im = (immap_t *) CONFIG_SYS_IMMR;
int i;
for (i = 0; i < I2C_BUS_CNT; i++){
volatile i2c512x_dev_t *regs = &im->i2c.dev[i];
mpc_reg_out (&regs->mcr, 0, 0);
/* Set clock */
mpc_reg_out (&regs->mfdr, mpc_get_fdr (speed), 0);
mpc_reg_out (&regs->madr, saddr << 1, 0);
/* Enable module */
mpc_reg_out (&regs->mcr, I2C_EN, I2C_INIT_MASK);
mpc_reg_out (&regs->msr, 0, I2C_IF);
}
/* Disable interrupts */
out_be32(&im->i2c.icr, 0);
/* Turn off filters */
out_be32(&im->i2c.mifr, 0);
}
static int mpc_get_fdr (int speed)
{
static int fdr = -1;
if (fdr == -1) {
ulong best_speed = 0;
ulong divider;
ulong ips, scl;
ulong bestmatch = 0xffffffffUL;
int best_i = 0, best_j = 0, i, j;
int SCL_Tap[] = { 9, 10, 12, 15, 5, 6, 7, 8};
struct mpc512x_i2c_tap scltap[] = {
{4, 1},
{4, 2},
{6, 4},
{6, 8},
{14, 16},
{30, 32},
{62, 64},
{126, 128}
};
ips = gd->arch.ips_clk;
for (i = 7; i >= 0; i--) {
for (j = 7; j >= 0; j--) {
scl = 2 * (scltap[j].scl2tap +
(SCL_Tap[i] - 1) * scltap[j].tap2tap
+ 2);
if (ips <= speed*scl) {
if ((speed*scl - ips) < bestmatch) {
bestmatch = speed*scl - ips;
best_i = i;
best_j = j;
best_speed = ips/scl;
}
}
}
}
divider = (best_i & 3) | ((best_i & 4) << 3) | (best_j << 2);
if (gd->flags & GD_FLG_RELOC) {
fdr = divider;
} else {
debug("%ld kHz, \n", best_speed / 1000);
return divider;
}
}
return fdr;
}
int i2c_probe (uchar chip)
{
volatile immap_t *im = (immap_t *) CONFIG_SYS_IMMR;
volatile i2c512x_dev_t *regs = &im->i2c.dev[bus_num];
int i;
for (i = 0; i < I2C_RETRIES; i++) {
mpc_reg_out (&regs->mcr, I2C_STA, I2C_STA);
if (! do_address (chip, 0)) {
mpc_reg_out (&regs->mcr, 0, I2C_STA);
udelay (500);
break;
}
mpc_reg_out (&regs->mcr, 0, I2C_STA);
udelay (500);
}
return (i == I2C_RETRIES);
}
int i2c_read (uchar chip, uint addr, int alen, uchar *buf, int len)
{
volatile immap_t *im = (immap_t *) CONFIG_SYS_IMMR;
volatile i2c512x_dev_t *regs = &im->i2c.dev[bus_num];
char xaddr[4];
int ret = -1;
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
if (wait_for_bb ()) {
printf ("i2c_read: bus is busy\n");
goto Done;
}
mpc_reg_out (&regs->mcr, I2C_STA, I2C_STA);
if (do_address (chip, 0)) {
printf ("i2c_read: failed to address chip\n");
goto Done;
}
if (send_bytes (chip, &xaddr[4-alen], alen)) {
printf ("i2c_read: send_bytes failed\n");
goto Done;
}
mpc_reg_out (&regs->mcr, I2C_RSTA, I2C_RSTA);
if (do_address (chip, 1)) {
printf ("i2c_read: failed to address chip\n");
goto Done;
}
if (receive_bytes (chip, (char *)buf, len)) {
printf ("i2c_read: receive_bytes failed\n");
goto Done;
}
ret = 0;
Done:
mpc_reg_out (&regs->mcr, 0, I2C_STA);
return ret;
}
int i2c_write (uchar chip, uint addr, int alen, uchar *buf, int len)
{
volatile immap_t *im = (immap_t *) CONFIG_SYS_IMMR;
volatile i2c512x_dev_t *regs = &im->i2c.dev[bus_num];
char xaddr[4];
int ret = -1;
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
if (wait_for_bb ()) {
printf ("i2c_write: bus is busy\n");
goto Done;
}
mpc_reg_out (&regs->mcr, I2C_STA, I2C_STA);
if (do_address (chip, 0)) {
printf ("i2c_write: failed to address chip\n");
goto Done;
}
if (send_bytes (chip, &xaddr[4-alen], alen)) {
printf ("i2c_write: send_bytes failed\n");
goto Done;
}
if (send_bytes (chip, (char *)buf, len)) {
printf ("i2c_write: send_bytes failed\n");
goto Done;
}
ret = 0;
Done:
mpc_reg_out (&regs->mcr, 0, I2C_STA);
return ret;
}
int i2c_set_bus_num (unsigned int bus)
{
if (bus >= I2C_BUS_CNT) {
return -1;
}
bus_num = bus;
return 0;
}
unsigned int i2c_get_bus_num (void)
{
return bus_num;
}
#endif /* CONFIG_HARD_I2C */

@ -9,7 +9,6 @@ extra-y = start.o
extra-y += traps.o
obj-y += io.o
obj-y += firmware_sc_task_bestcomm.impl.o
obj-y += i2c.o
obj-y += cpu.o
obj-y += cpu_init.o
obj-y += ide.o

@ -1,456 +0,0 @@
/*
* (C) Copyright 2003
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
DECLARE_GLOBAL_DATA_PTR;
#ifdef CONFIG_HARD_I2C
#include <mpc5xxx.h>
#include <i2c.h>
#if !defined(CONFIG_I2C_MULTI_BUS)
#if (CONFIG_SYS_I2C_MODULE == 2)
#define I2C_BASE MPC5XXX_I2C2
#elif (CONFIG_SYS_I2C_MODULE == 1)
#define I2C_BASE MPC5XXX_I2C1
#else
#error CONFIG_SYS_I2C_MODULE is not properly configured
#endif
#else
static unsigned int i2c_bus_num __attribute__ ((section (".data"))) =
CONFIG_SYS_SPD_BUS_NUM;
static unsigned int i2c_bus_speed[2] = {CONFIG_SYS_I2C_SPEED,
CONFIG_SYS_I2C_SPEED};
static const unsigned long i2c_dev[2] = {
MPC5XXX_I2C1,
MPC5XXX_I2C2,
};
#define I2C_BASE ((struct mpc5xxx_i2c *)i2c_dev[i2c_bus_num])
#endif
#define I2C_TIMEOUT 6667
#define I2C_RETRIES 3
struct mpc5xxx_i2c_tap {
int scl2tap;
int tap2tap;
};
static int mpc_reg_in (volatile u32 *reg);
static void mpc_reg_out (volatile u32 *reg, int val, int mask);
static int wait_for_bb (void);
static int wait_for_pin (int *status);
static int do_address (uchar chip, char rdwr_flag);
static int send_bytes (uchar chip, char *buf, int len);
static int receive_bytes (uchar chip, char *buf, int len);
static int mpc_get_fdr (int);
static int mpc_reg_in(volatile u32 *reg)
{
int ret = *reg >> 24;
__asm__ __volatile__ ("eieio");
return ret;
}
static void mpc_reg_out(volatile u32 *reg, int val, int mask)
{
int tmp;
if (!mask) {
*reg = val << 24;
} else {
tmp = mpc_reg_in(reg);
*reg = ((tmp & ~mask) | (val & mask)) << 24;
}
__asm__ __volatile__ ("eieio");
return;
}
static int wait_for_bb(void)
{
struct mpc5xxx_i2c *regs = (struct mpc5xxx_i2c *)I2C_BASE;
int timeout = I2C_TIMEOUT;
int status;
status = mpc_reg_in(&regs->msr);
while (timeout-- && (status & I2C_BB)) {
mpc_reg_out(&regs->mcr, I2C_STA, I2C_STA);
(void)mpc_reg_in(&regs->mdr);
mpc_reg_out(&regs->mcr, 0, I2C_STA);
mpc_reg_out(&regs->mcr, 0, 0);
mpc_reg_out(&regs->mcr, I2C_EN, 0);
udelay(15);
status = mpc_reg_in(&regs->msr);
}
return (status & I2C_BB);
}
static int wait_for_pin(int *status)
{
struct mpc5xxx_i2c *regs = (struct mpc5xxx_i2c *)I2C_BASE;
int timeout = I2C_TIMEOUT;
*status = mpc_reg_in(&regs->msr);
while (timeout-- && !(*status & I2C_IF)) {
udelay(15);
*status = mpc_reg_in(&regs->msr);
}
if (!(*status & I2C_IF)) {
return -1;
}
mpc_reg_out(&regs->msr, 0, I2C_IF);
return 0;
}
static int do_address(uchar chip, char rdwr_flag)
{
struct mpc5xxx_i2c *regs = (struct mpc5xxx_i2c *)I2C_BASE;
int status;
chip <<= 1;
if (rdwr_flag) {
chip |= 1;
}
mpc_reg_out(&regs->mcr, I2C_TX, I2C_TX);
mpc_reg_out(&regs->mdr, chip, 0);
if (wait_for_pin(&status)) {
return -2;
}
if (status & I2C_RXAK) {
return -3;
}
return 0;
}
static int send_bytes(uchar chip, char *buf, int len)
{
struct mpc5xxx_i2c *regs = (struct mpc5xxx_i2c *)I2C_BASE;
int wrcount;
int status;
for (wrcount = 0; wrcount < len; ++wrcount) {
mpc_reg_out(&regs->mdr, buf[wrcount], 0);
if (wait_for_pin(&status)) {
break;
}
if (status & I2C_RXAK) {
break;
}
}
return !(wrcount == len);
}
static int receive_bytes(uchar chip, char *buf, int len)
{
struct mpc5xxx_i2c *regs = (struct mpc5xxx_i2c *)I2C_BASE;
int dummy = 1;
int rdcount = 0;
int status;
int i;
mpc_reg_out(&regs->mcr, 0, I2C_TX);
for (i = 0; i < len; ++i) {
buf[rdcount] = mpc_reg_in(&regs->mdr);
if (dummy) {
dummy = 0;
} else {
rdcount++;
}
if (wait_for_pin(&status)) {
return -4;
}
}
mpc_reg_out(&regs->mcr, I2C_TXAK, I2C_TXAK);
buf[rdcount++] = mpc_reg_in(&regs->mdr);
if (wait_for_pin(&status)) {
return -5;
}
mpc_reg_out(&regs->mcr, 0, I2C_TXAK);
return 0;
}
#if defined(CONFIG_SYS_I2C_INIT_MPC5XXX)
#define FDR510(x) (u8) (((x & 0x20) >> 3) | (x & 0x3))
#define FDR432(x) (u8) ((x & 0x1C) >> 2)
/*
* Reset any i2c devices that may have been interrupted during a system reset.
* Normally this would be accomplished by clocking the line until SCL and SDA
* are released and then sending a start condtiion (From an Atmel datasheet).
* There is no direct access to the i2c pins so instead create start commands
* through the i2c interface. Send a start command then delay for the SDA Hold
* time, repeat this by disabling/enabling the bus a total of 9 times.
*/
static void send_reset(void)
{
struct mpc5xxx_i2c *regs = (struct mpc5xxx_i2c *)I2C_BASE;
int i;
u32 delay;
u8 fdr;
int SDA_Tap[] = { 3, 3, 4, 4, 1, 1, 2, 2};
struct mpc5xxx_i2c_tap scltap[] = {
{4, 1},
{4, 2},
{6, 4},
{6, 8},
{14, 16},
{30, 32},
{62, 64},
{126, 128}
};
fdr = (u8)mpc_reg_in(&regs->mfdr);
delay = scltap[FDR432(fdr)].scl2tap + ((SDA_Tap[FDR510(fdr)] - 1) * \
scltap[FDR432(fdr)].tap2tap) + 3;
for (i = 0; i < 9; i++) {
mpc_reg_out(&regs->mcr, I2C_EN|I2C_STA|I2C_TX, I2C_INIT_MASK);
udelay(delay);
mpc_reg_out(&regs->mcr, 0, I2C_INIT_MASK);
udelay(delay);
}
mpc_reg_out(&regs->mcr, I2C_EN, I2C_INIT_MASK);
}
#endif /* CONFIG_SYS_I2c_INIT_MPC5XXX */
/**************** I2C API ****************/
void i2c_init(int speed, int saddr)
{
struct mpc5xxx_i2c *regs = (struct mpc5xxx_i2c *)I2C_BASE;
mpc_reg_out(&regs->mcr, 0, 0);
mpc_reg_out(&regs->madr, saddr << 1, 0);
/* Set clock
*/
mpc_reg_out(&regs->mfdr, mpc_get_fdr(speed), 0);
/* Enable module
*/
mpc_reg_out(&regs->mcr, I2C_EN, I2C_INIT_MASK);
mpc_reg_out(&regs->msr, 0, I2C_IF);
#if defined(CONFIG_SYS_I2C_INIT_MPC5XXX)
send_reset();
#endif
return;
}
static int mpc_get_fdr(int speed)
{
static int fdr = -1;
if (fdr == -1) {
ulong best_speed = 0;
ulong divider;
ulong ipb, scl;
ulong bestmatch = 0xffffffffUL;
int best_i = 0, best_j = 0, i, j;
int SCL_Tap[] = { 9, 10, 12, 15, 5, 6, 7, 8};
struct mpc5xxx_i2c_tap scltap[] = {
{4, 1},
{4, 2},
{6, 4},
{6, 8},
{14, 16},
{30, 32},
{62, 64},
{126, 128}
};
ipb = gd->arch.ipb_clk;
for (i = 7; i >= 0; i--) {
for (j = 7; j >= 0; j--) {
scl = 2 * (scltap[j].scl2tap +
(SCL_Tap[i] - 1) * scltap[j].tap2tap + 2);
if (ipb <= speed*scl) {
if ((speed*scl - ipb) < bestmatch) {
bestmatch = speed*scl - ipb;
best_i = i;
best_j = j;
best_speed = ipb/scl;
}
}
}
}
divider = (best_i & 3) | ((best_i & 4) << 3) | (best_j << 2);
if (gd->flags & GD_FLG_RELOC) {
fdr = divider;
} else {
printf("%ld kHz, ", best_speed / 1000);
return divider;
}
}
return fdr;
}
int i2c_probe(uchar chip)
{
struct mpc5xxx_i2c *regs = (struct mpc5xxx_i2c *)I2C_BASE;
int i;
for (i = 0; i < I2C_RETRIES; i++) {
mpc_reg_out(&regs->mcr, I2C_STA, I2C_STA);
if (! do_address(chip, 0)) {
mpc_reg_out(&regs->mcr, 0, I2C_STA);
udelay(500);
break;
}
mpc_reg_out(&regs->mcr, 0, I2C_STA);
udelay(500);
}
return (i == I2C_RETRIES);
}
int i2c_read(uchar chip, uint addr, int alen, uchar *buf, int len)
{
char xaddr[4];
struct mpc5xxx_i2c * regs = (struct mpc5xxx_i2c *)I2C_BASE;
int ret = -1;
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
if (wait_for_bb()) {
printf("i2c_read: bus is busy\n");
goto Done;
}
mpc_reg_out(&regs->mcr, I2C_STA, I2C_STA);
if (do_address(chip, 0)) {
printf("i2c_read: failed to address chip\n");
goto Done;
}
if (send_bytes(chip, &xaddr[4-alen], alen)) {
printf("i2c_read: send_bytes failed\n");
goto Done;
}
mpc_reg_out(&regs->mcr, I2C_RSTA, I2C_RSTA);
if (do_address(chip, 1)) {
printf("i2c_read: failed to address chip\n");
goto Done;
}
if (receive_bytes(chip, (char *)buf, len)) {
printf("i2c_read: receive_bytes failed\n");
goto Done;
}
ret = 0;
Done:
mpc_reg_out(&regs->mcr, 0, I2C_STA);
return ret;
}
int i2c_write(uchar chip, uint addr, int alen, uchar *buf, int len)
{
char xaddr[4];
struct mpc5xxx_i2c *regs = (struct mpc5xxx_i2c *)I2C_BASE;
int ret = -1;
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
if (wait_for_bb()) {
printf("i2c_write: bus is busy\n");
goto Done;
}
mpc_reg_out(&regs->mcr, I2C_STA, I2C_STA);
if (do_address(chip, 0)) {
printf("i2c_write: failed to address chip\n");
goto Done;
}
if (send_bytes(chip, &xaddr[4-alen], alen)) {
printf("i2c_write: send_bytes failed\n");
goto Done;
}
if (send_bytes(chip, (char *)buf, len)) {
printf("i2c_write: send_bytes failed\n");
goto Done;
}
ret = 0;
Done:
mpc_reg_out(&regs->mcr, 0, I2C_STA);
return ret;
}
#if defined(CONFIG_I2C_MULTI_BUS)
int i2c_set_bus_num(unsigned int bus)
{
if (bus > 1)
return -1;
i2c_bus_num = bus;
i2c_init(i2c_bus_speed[bus], CONFIG_SYS_I2C_SLAVE);
return 0;
}
int i2c_set_bus_speed(unsigned int speed)
{
i2c_init(speed, CONFIG_SYS_I2C_SLAVE);
return 0;
}
unsigned int i2c_get_bus_num(void)
{
return i2c_bus_num;
}
unsigned int i2c_get_bus_speed(void)
{
return i2c_bus_speed[i2c_bus_num];
}
#endif
#endif /* CONFIG_HARD_I2C */

@ -7,7 +7,7 @@
extra-y = start.o
obj-y = traps.o serial_smc.o serial_scc.o cpu.o cpu_init.o speed.o \
interrupts.o ether_fcc.o i2c.o commproc.o \
interrupts.o ether_fcc.o commproc.o \
bedbug_603e.o pci.o spi.o kgdb.o
obj-$(CONFIG_ETHER_ON_SCC) += ether_scc.o

@ -41,10 +41,6 @@ m8260_cpm_reset(void)
do { /* Spin until command processed */
__asm__ __volatile__ ("eieio");
} while ((immr->im_cpm.cp_cpcr & CPM_CR_FLG) && ++count < 1000000);
#ifdef CONFIG_HARD_I2C
immr->im_dprambase16[PROFF_I2C_BASE / sizeof(u16)] = 0;
#endif
}
/* Allocate some memory from the dual ported ram.

@ -1,741 +0,0 @@
/*
* (C) Copyright 2000
* Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
*
* (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Marius Groeger <mgroeger@sysgo.de>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <console.h>
#if defined(CONFIG_HARD_I2C)
#include <asm/cpm_8260.h>
#include <i2c.h>
DECLARE_GLOBAL_DATA_PTR;
#if defined(CONFIG_I2C_MULTI_BUS)
static unsigned int i2c_bus_num __attribute__ ((section(".data"))) = 0;
#endif /* CONFIG_I2C_MULTI_BUS */
/* uSec to wait between polls of the i2c */
#define DELAY_US 100
/* uSec to wait for the CPM to start processing the buffer */
#define START_DELAY_US 1000
/*
* tx/rx per-byte timeout: we delay DELAY_US uSec between polls so the
* timeout will be (tx_length + rx_length) * DELAY_US * TOUT_LOOP
*/
#define TOUT_LOOP 5
/*
* Set default values
*/
#ifndef CONFIG_SYS_I2C_SPEED
#define CONFIG_SYS_I2C_SPEED 50000
#endif
typedef void (*i2c_ecb_t) (int, int, void *); /* error callback function */
/* This structure keeps track of the bd and buffer space usage. */
typedef struct i2c_state {
int rx_idx; /* index to next free Rx BD */
int tx_idx; /* index to next free Tx BD */
void *rxbd; /* pointer to next free Rx BD */
void *txbd; /* pointer to next free Tx BD */
int tx_space; /* number of Tx bytes left */
unsigned char *tx_buf; /* pointer to free Tx area */
i2c_ecb_t err_cb; /* error callback function */
void *cb_data; /* private data to be passed */
} i2c_state_t;
/* flags for i2c_send() and i2c_receive() */
#define I2CF_ENABLE_SECONDARY 0x01 /* secondary_address is valid */
#define I2CF_START_COND 0x02 /* tx: generate start condition */
#define I2CF_STOP_COND 0x04 /* tx: generate stop condition */
/* return codes */
#define I2CERR_NO_BUFFERS 1 /* no more BDs or buffer space */
#define I2CERR_MSG_TOO_LONG 2 /* tried to send/receive to much data */
#define I2CERR_TIMEOUT 3 /* timeout in i2c_doio() */
#define I2CERR_QUEUE_EMPTY 4 /* i2c_doio called without send/rcv */
#define I2CERR_IO_ERROR 5 /* had an error during comms */
/* error callback flags */
#define I2CECB_RX_ERR 0x10 /* this is a receive error */
#define I2CECB_RX_OV 0x02 /* receive overrun error */
#define I2CECB_RX_MASK 0x0f /* mask for error bits */
#define I2CECB_TX_ERR 0x20 /* this is a transmit error */
#define I2CECB_TX_CL 0x01 /* transmit collision error */
#define I2CECB_TX_UN 0x02 /* transmit underflow error */
#define I2CECB_TX_NAK 0x04 /* transmit no ack error */
#define I2CECB_TX_MASK 0x0f /* mask for error bits */
#define I2CECB_TIMEOUT 0x40 /* this is a timeout error */
#define ERROR_I2C_NONE 0
#define ERROR_I2C_LENGTH 1
#define I2C_WRITE_BIT 0x00
#define I2C_READ_BIT 0x01
#define I2C_RXTX_LEN 128 /* maximum tx/rx buffer length */
#define NUM_RX_BDS 4
#define NUM_TX_BDS 4
#define MAX_TX_SPACE 256
typedef struct I2C_BD {
unsigned short status;
unsigned short length;
unsigned char *addr;
} I2C_BD;
#define BD_I2C_TX_START 0x0400 /* special status for i2c: Start condition */
#define BD_I2C_TX_CL 0x0001 /* collision error */
#define BD_I2C_TX_UN 0x0002 /* underflow error */
#define BD_I2C_TX_NAK 0x0004 /* no acknowledge error */
#define BD_I2C_TX_ERR (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL)
#define BD_I2C_RX_ERR BD_SC_OV
/*
* Returns the best value of I2BRG to meet desired clock speed of I2C with
* input parameters (clock speed, filter, and predivider value).
* It returns computer speed value and the difference between it and desired
* speed.
*/
static inline int
i2c_roundrate(int hz, int speed, int filter, int modval,
int *brgval, int *totspeed)
{
int moddiv = 1 << (5 - (modval & 3)), brgdiv, div;
debug("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n",
hz, speed, filter, modval);
div = moddiv * speed;
brgdiv = (hz + div - 1) / div;
debug("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv);
*brgval = ((brgdiv + 1) / 2) - 3 - (2 * filter);
if ((*brgval < 0) || (*brgval > 255)) {
debug("\t\trejected brgval=%d\n", *brgval);
return -1;
}
brgdiv = 2 * (*brgval + 3 + (2 * filter));
div = moddiv * brgdiv;
*totspeed = hz / div;
debug("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed);
return 0;
}
/*
* Sets the I2C clock predivider and divider to meet required clock speed.
*/
static int i2c_setrate(int hz, int speed)
{
immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
int brgval,
modval, /* 0-3 */
bestspeed_diff = speed,
bestspeed_brgval = 0,
bestspeed_modval = 0,
bestspeed_filter = 0,
totspeed,
filter = 0; /* Use this fixed value */
for (modval = 0; modval < 4; modval++) {
if (i2c_roundrate(hz, speed, filter, modval, &brgval, &totspeed)
== 0) {
int diff = speed - totspeed;
if ((diff >= 0) && (diff < bestspeed_diff)) {
bestspeed_diff = diff;
bestspeed_modval = modval;
bestspeed_brgval = brgval;
bestspeed_filter = filter;
}
}
}
debug("[I2C] Best is:\n");
debug("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n",
hz, speed, bestspeed_filter, bestspeed_modval, bestspeed_brgval,
bestspeed_diff);
i2c->i2c_i2mod |= ((bestspeed_modval & 3) << 1) |
(bestspeed_filter << 3);
i2c->i2c_i2brg = bestspeed_brgval & 0xff;
debug("[I2C] i2mod=%08x i2brg=%08x\n", i2c->i2c_i2mod,
i2c->i2c_i2brg);
return 1;
}
void i2c_init(int speed, int slaveadd)
{
volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
volatile cpm8260_t *cp = (cpm8260_t *)&immap->im_cpm;
volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
volatile iic_t *iip;
ulong rbase, tbase;
volatile I2C_BD *rxbd, *txbd;
uint dpaddr;
#ifdef CONFIG_SYS_I2C_INIT_BOARD
/*
* call board specific i2c bus reset routine before accessing the
* environment, which might be in a chip on that bus. For details
* about this problem see doc/I2C_Edge_Conditions.
*/
i2c_init_board();
#endif
dpaddr = immap->im_dprambase16[PROFF_I2C_BASE / sizeof(u16)];
if (dpaddr == 0) {
/* need to allocate dual port ram */
dpaddr = m8260_cpm_dpalloc(64 +
(NUM_RX_BDS * sizeof(I2C_BD)) +
(NUM_TX_BDS * sizeof(I2C_BD)) +
MAX_TX_SPACE, 64);
immap->im_dprambase16[PROFF_I2C_BASE / sizeof(u16)] =
dpaddr;
}
/*
* initialise data in dual port ram:
*
* dpaddr -> parameter ram (64 bytes)
* rbase -> rx BD (NUM_RX_BDS * sizeof(I2C_BD) bytes)
* tbase -> tx BD (NUM_TX_BDS * sizeof(I2C_BD) bytes)
* tx buffer (MAX_TX_SPACE bytes)
*/
iip = (iic_t *)&immap->im_dprambase[dpaddr];
memset((void *)iip, 0, sizeof(iic_t));
rbase = dpaddr + 64;
tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD);
/* Disable interrupts */
i2c->i2c_i2mod = 0x00;
i2c->i2c_i2cmr = 0x00;
i2c->i2c_i2cer = 0xff;
i2c->i2c_i2add = slaveadd;
/*
* Set the I2C BRG Clock division factor from desired i2c rate
* and current CPU rate (we assume sccr dfbgr field is 0;
* divide BRGCLK by 1)
*/
debug("[I2C] Setting rate...\n");
i2c_setrate(gd->arch.brg_clk, CONFIG_SYS_I2C_SPEED);
/* Set I2C controller in master mode */
i2c->i2c_i2com = 0x01;
/* Initialize Tx/Rx parameters */
iip->iic_rbase = rbase;
iip->iic_tbase = tbase;
rxbd = (I2C_BD *)((unsigned char *) &immap->
im_dprambase[iip->iic_rbase]);
txbd = (I2C_BD *)((unsigned char *) &immap->
im_dprambase[iip->iic_tbase]);
debug("[I2C] rbase = %04x\n", iip->iic_rbase);
debug("[I2C] tbase = %04x\n", iip->iic_tbase);
debug("[I2C] rxbd = %08x\n", (int) rxbd);
debug("[I2C] txbd = %08x\n", (int) txbd);
/* Set big endian byte order */
iip->iic_tfcr = 0x10;
iip->iic_rfcr = 0x10;
/* Set maximum receive size. */
iip->iic_mrblr = I2C_RXTX_LEN;
cp->cp_cpcr = mk_cr_cmd(CPM_CR_I2C_PAGE,
CPM_CR_I2C_SBLOCK,
0x00, CPM_CR_INIT_TRX) | CPM_CR_FLG;
do {
__asm__ __volatile__("eieio");
} while (cp->cp_cpcr & CPM_CR_FLG);
/* Clear events and interrupts */
i2c->i2c_i2cer = 0xff;
i2c->i2c_i2cmr = 0x00;
}
static
void i2c_newio(i2c_state_t *state)
{
volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
volatile iic_t *iip;
uint dpaddr;
debug("[I2C] i2c_newio\n");
dpaddr = immap->im_dprambase16[PROFF_I2C_BASE / sizeof(u16)];
iip = (iic_t *)&immap->im_dprambase[dpaddr];
state->rx_idx = 0;
state->tx_idx = 0;
state->rxbd = (void *)&immap->im_dprambase[iip->iic_rbase];
state->txbd = (void *)&immap->im_dprambase[iip->iic_tbase];
state->tx_space = MAX_TX_SPACE;
state->tx_buf = (uchar *)state->txbd + NUM_TX_BDS * sizeof(I2C_BD);
state->err_cb = NULL;
state->cb_data = NULL;
debug("[I2C] rxbd = %08x\n", (int)state->rxbd);
debug("[I2C] txbd = %08x\n", (int)state->txbd);
debug("[I2C] tx_buf = %08x\n", (int)state->tx_buf);
/* clear the buffer memory */
memset((char *) state->tx_buf, 0, MAX_TX_SPACE);
}
static
int i2c_send(i2c_state_t *state,
unsigned char address,
unsigned char secondary_address,
unsigned int flags, unsigned short size, unsigned char *dataout)
{
volatile I2C_BD *txbd;
int i, j;
debug("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n",
address, secondary_address, flags, size);
/* trying to send message larger than BD */
if (size > I2C_RXTX_LEN)
return I2CERR_MSG_TOO_LONG;
/* no more free bds */
if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size))
return I2CERR_NO_BUFFERS;
txbd = (I2C_BD *)state->txbd;
txbd->addr = state->tx_buf;
debug("[I2C] txbd = %08x\n", (int) txbd);
if (flags & I2CF_START_COND) {
debug("[I2C] Formatting addresses...\n");
if (flags & I2CF_ENABLE_SECONDARY) {
/* Length of message plus dest addresses */
txbd->length = size + 2;
txbd->addr[0] = address << 1;
txbd->addr[1] = secondary_address;
i = 2;
} else {
/* Length of message plus dest address */
txbd->length = size + 1;
/* Write destination address to BD */
txbd->addr[0] = address << 1;
i = 1;
}
} else {
txbd->length = size; /* Length of message */
i = 0;
}
/* set up txbd */
txbd->status = BD_SC_READY;
if (flags & I2CF_START_COND)
txbd->status |= BD_I2C_TX_START;
if (flags & I2CF_STOP_COND)
txbd->status |= BD_SC_LAST | BD_SC_WRAP;
/* Copy data to send into buffer */
debug("[I2C] copy data...\n");
for (j = 0; j < size; i++, j++)
txbd->addr[i] = dataout[j];
debug("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
txbd->length, txbd->status, txbd->addr[0], txbd->addr[1]);
/* advance state */
state->tx_buf += txbd->length;
state->tx_space -= txbd->length;
state->tx_idx++;
state->txbd = (void *) (txbd + 1);
return 0;
}
static
int i2c_receive(i2c_state_t *state,
unsigned char address,
unsigned char secondary_address,
unsigned int flags,
unsigned short size_to_expect, unsigned char *datain)
{
volatile I2C_BD *rxbd, *txbd;
debug("[I2C] i2c_receive %02d %02d %02d\n", address,
secondary_address, flags);
/* Expected to receive too much */
if (size_to_expect > I2C_RXTX_LEN)
return I2CERR_MSG_TOO_LONG;
/* no more free bds */
if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS
|| state->tx_space < 2)
return I2CERR_NO_BUFFERS;
rxbd = (I2C_BD *) state->rxbd;
txbd = (I2C_BD *) state->txbd;
debug("[I2C] rxbd = %08x\n", (int) rxbd);
debug("[I2C] txbd = %08x\n", (int) txbd);
txbd->addr = state->tx_buf;
/* set up TXBD for destination address */
if (flags & I2CF_ENABLE_SECONDARY) {
txbd->length = 2;
txbd->addr[0] = address << 1; /* Write data */
txbd->addr[1] = secondary_address; /* Internal address */
txbd->status = BD_SC_READY;
} else {
txbd->length = 1 + size_to_expect;
txbd->addr[0] = (address << 1) | 0x01;
txbd->status = BD_SC_READY;
memset(&txbd->addr[1], 0, txbd->length);
}
/* set up rxbd for reception */
rxbd->status = BD_SC_EMPTY;
rxbd->length = size_to_expect;
rxbd->addr = datain;
txbd->status |= BD_I2C_TX_START;
if (flags & I2CF_STOP_COND) {
txbd->status |= BD_SC_LAST | BD_SC_WRAP;
rxbd->status |= BD_SC_WRAP;
}
debug("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
txbd->length, txbd->status, txbd->addr[0], txbd->addr[1]);
debug("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
rxbd->length, rxbd->status, rxbd->addr[0], rxbd->addr[1]);
/* advance state */
state->tx_buf += txbd->length;
state->tx_space -= txbd->length;
state->tx_idx++;
state->txbd = (void *) (txbd + 1);
state->rx_idx++;
state->rxbd = (void *) (rxbd + 1);
return 0;
}
static
int i2c_doio(i2c_state_t *state)
{
volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
volatile iic_t *iip;
volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
volatile I2C_BD *txbd, *rxbd;
int n, i, b, rxcnt = 0, rxtimeo = 0, txcnt = 0, txtimeo = 0, rc = 0;
uint dpaddr;
debug("[I2C] i2c_doio\n");
if (state->tx_idx <= 0 && state->rx_idx <= 0) {
debug("[I2C] No I/O is queued\n");
return I2CERR_QUEUE_EMPTY;
}
dpaddr = immap->im_dprambase16[PROFF_I2C_BASE / sizeof(u16)];
iip = (iic_t *)&immap->im_dprambase[dpaddr];
iip->iic_rbptr = iip->iic_rbase;
iip->iic_tbptr = iip->iic_tbase;
/* Enable I2C */
debug("[I2C] Enabling I2C...\n");
i2c->i2c_i2mod |= 0x01;
/* Begin transmission */
i2c->i2c_i2com |= 0x80;
/* Loop until transmit & receive completed */
n = state->tx_idx;
if (n > 0) {
txbd = ((I2C_BD *) state->txbd) - n;
for (i = 0; i < n; i++) {
txtimeo += TOUT_LOOP * txbd->length;
txbd++;
}
txbd--; /* wait until last in list is done */
debug("[I2C] Transmitting...(txbd=0x%08lx)\n",
(ulong) txbd);
udelay(START_DELAY_US); /* give it time to start */
while ((txbd->status & BD_SC_READY) && (++txcnt < txtimeo)) {
udelay(DELAY_US);
if (ctrlc())
return -1;
__asm__ __volatile__("eieio");
}
}
n = state->rx_idx;
if (txcnt < txtimeo && n > 0) {
rxbd = ((I2C_BD *) state->rxbd) - n;
for (i = 0; i < n; i++) {
rxtimeo += TOUT_LOOP * rxbd->length;
rxbd++;
}
rxbd--; /* wait until last in list is done */
debug("[I2C] Receiving...(rxbd=0x%08lx)\n", (ulong) rxbd);
udelay(START_DELAY_US); /* give it time to start */
while ((rxbd->status & BD_SC_EMPTY) && (++rxcnt < rxtimeo)) {
udelay(DELAY_US);
if (ctrlc())
return -1;
__asm__ __volatile__("eieio");
}
}
/* Turn off I2C */
i2c->i2c_i2mod &= ~0x01;
n = state->tx_idx;
if (n > 0) {
for (i = 0; i < n; i++) {
txbd = ((I2C_BD *) state->txbd) - (n - i);
b = txbd->status & BD_I2C_TX_ERR;
if (b != 0) {
if (state->err_cb != NULL)
(*state->err_cb) (I2CECB_TX_ERR | b,
i, state->cb_data);
if (rc == 0)
rc = I2CERR_IO_ERROR;
}
}
}
n = state->rx_idx;
if (n > 0) {
for (i = 0; i < n; i++) {
rxbd = ((I2C_BD *) state->rxbd) - (n - i);
b = rxbd->status & BD_I2C_RX_ERR;
if (b != 0) {
if (state->err_cb != NULL)
(*state->err_cb) (I2CECB_RX_ERR | b,
i, state->cb_data);
if (rc == 0)
rc = I2CERR_IO_ERROR;
}
}
}
if ((txtimeo > 0 && txcnt >= txtimeo) ||
(rxtimeo > 0 && rxcnt >= rxtimeo)) {
if (state->err_cb != NULL)
(*state->err_cb) (I2CECB_TIMEOUT, -1, state->cb_data);
if (rc == 0)
rc = I2CERR_TIMEOUT;
}
return rc;
}
static void i2c_probe_callback(int flags, int xnum, void *data)
{
/*
* the only acceptable errors are a transmit NAK or a receive
* overrun - tx NAK means the device does not exist, rx OV
* means the device must have responded to the slave address
* even though the transfer failed
*/
if (flags == (I2CECB_TX_ERR | I2CECB_TX_NAK))
*(int *) data |= 1;
if (flags == (I2CECB_RX_ERR | I2CECB_RX_OV))
*(int *) data |= 2;
}
int i2c_probe(uchar chip)
{
i2c_state_t state;
int rc, err_flag;
uchar buf[1];
i2c_newio(&state);
state.err_cb = i2c_probe_callback;
state.cb_data = (void *) &err_flag;
err_flag = 0;
rc = i2c_receive(&state, chip, 0, I2CF_START_COND | I2CF_STOP_COND, 1,
buf);
if (rc != 0)
return rc; /* probe failed */
rc = i2c_doio(&state);
if (rc == 0)
return 0; /* device exists - read succeeded */
if (rc == I2CERR_TIMEOUT)
return -1; /* device does not exist - timeout */
if (rc != I2CERR_IO_ERROR || err_flag == 0)
return rc; /* probe failed */
if (err_flag & 1)
return -1; /* device does not exist - had transmit NAK */
return 0; /* device exists - had receive overrun */
}
int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
{
i2c_state_t state;
uchar xaddr[4];
int rc;
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
#ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
/*
* EEPROM chips that implement "address overflow" are ones
* like Catalyst 24WC04/08/16 which has 9/10/11 bits of address
* and the extra bits end up in the "chip address" bit slots.
* This makes a 24WC08 (1Kbyte) chip look like four 256 byte
* chips.
*
* Note that we consider the length of the address field to still
* be one byte because the extra address bits are hidden in the
* chip address.
*/
chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
#endif
i2c_newio(&state);
rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen,
&xaddr[4 - alen]);
if (rc != 0) {
printf("i2c_read: i2c_send failed (%d)\n", rc);
return 1;
}
rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer);
if (rc != 0) {
printf("i2c_read: i2c_receive failed (%d)\n", rc);
return 1;
}
rc = i2c_doio(&state);
if (rc != 0) {
printf("i2c_read: i2c_doio failed (%d)\n", rc);
return 1;
}
return 0;
}
int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
{
i2c_state_t state;
uchar xaddr[4];
int rc;
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
#ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
/*
* EEPROM chips that implement "address overflow" are ones
* like Catalyst 24WC04/08/16 which has 9/10/11 bits of address
* and the extra bits end up in the "chip address" bit slots.
* This makes a 24WC08 (1Kbyte) chip look like four 256 byte
* chips.
*
* Note that we consider the length of the address field to still
* be one byte because the extra address bits are hidden in the
* chip address.
*/
chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
#endif
i2c_newio(&state);
rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen,
&xaddr[4 - alen]);
if (rc != 0) {
printf("i2c_write: first i2c_send failed (%d)\n", rc);
return 1;
}
rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer);
if (rc != 0) {
printf("i2c_write: second i2c_send failed (%d)\n", rc);
return 1;
}
rc = i2c_doio(&state);
if (rc != 0) {
printf("i2c_write: i2c_doio failed (%d)\n", rc);
return 1;
}
return 0;
}
#if defined(CONFIG_I2C_MULTI_BUS)
/*
* Functions for multiple I2C bus handling
*/
unsigned int i2c_get_bus_num(void)
{
return i2c_bus_num;
}
int i2c_set_bus_num(unsigned int bus)
{
if (bus >= CONFIG_SYS_MAX_I2C_BUS)
return -1;
i2c_bus_num = bus;
return 0;
}
#endif /* CONFIG_I2C_MULTI_BUS */
#endif /* CONFIG_HARD_I2C */

@ -14,7 +14,6 @@ obj-y += cpu.o
obj-y += cpu_init.o
obj-y += fec.o
obj-$(CONFIG_OF_LIBFDT) += fdt.o
obj-y += i2c.o
obj-y += interrupts.o
obj-y += scc.o
obj-y += serial.o

@ -1,672 +0,0 @@
/*
* (C) Copyright 2000
* Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
*
* (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Marius Groeger <mgroeger@sysgo.de>
*
* SPDX-License-Identifier: GPL-2.0+
*
* Back ported to the 8xx platform (from the 8260 platform) by
* Murray.Jensen@cmst.csiro.au, 27-Jan-01.
*/
#include <common.h>
#include <console.h>
#ifdef CONFIG_HARD_I2C
#include <commproc.h>
#include <i2c.h>
DECLARE_GLOBAL_DATA_PTR;
/* tx/rx timeout (we need the i2c early, so we don't use get_timer()) */
#define TOUT_LOOP 1000000
#define NUM_RX_BDS 4
#define NUM_TX_BDS 4
#define MAX_TX_SPACE 256
#define I2C_RXTX_LEN 128 /* maximum tx/rx buffer length */
typedef struct I2C_BD {
unsigned short status;
unsigned short length;
unsigned char *addr;
} I2C_BD;
#define BD_I2C_TX_START 0x0400 /* special status for i2c: Start condition */
#define BD_I2C_TX_CL 0x0001 /* collision error */
#define BD_I2C_TX_UN 0x0002 /* underflow error */
#define BD_I2C_TX_NAK 0x0004 /* no acknowledge error */
#define BD_I2C_TX_ERR (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL)
#define BD_I2C_RX_ERR BD_SC_OV
typedef void (*i2c_ecb_t) (int, int); /* error callback function */
/* This structure keeps track of the bd and buffer space usage. */
typedef struct i2c_state {
int rx_idx; /* index to next free Rx BD */
int tx_idx; /* index to next free Tx BD */
void *rxbd; /* pointer to next free Rx BD */
void *txbd; /* pointer to next free Tx BD */
int tx_space; /* number of Tx bytes left */
unsigned char *tx_buf; /* pointer to free Tx area */
i2c_ecb_t err_cb; /* error callback function */
} i2c_state_t;
/* flags for i2c_send() and i2c_receive() */
#define I2CF_ENABLE_SECONDARY 0x01 /* secondary_address is valid */
#define I2CF_START_COND 0x02 /* tx: generate start condition */
#define I2CF_STOP_COND 0x04 /* tx: generate stop condition */
/* return codes */
#define I2CERR_NO_BUFFERS 0x01 /* no more BDs or buffer space */
#define I2CERR_MSG_TOO_LONG 0x02 /* tried to send/receive to much data */
#define I2CERR_TIMEOUT 0x03 /* timeout in i2c_doio() */
#define I2CERR_QUEUE_EMPTY 0x04 /* i2c_doio called without send/receive */
/* error callback flags */
#define I2CECB_RX_ERR 0x10 /* this is a receive error */
#define I2CECB_RX_ERR_OV 0x02 /* receive overrun error */
#define I2CECB_RX_MASK 0x0f /* mask for error bits */
#define I2CECB_TX_ERR 0x20 /* this is a transmit error */
#define I2CECB_TX_CL 0x01 /* transmit collision error */
#define I2CECB_TX_UN 0x02 /* transmit underflow error */
#define I2CECB_TX_NAK 0x04 /* transmit no ack error */
#define I2CECB_TX_MASK 0x0f /* mask for error bits */
#define I2CECB_TIMEOUT 0x40 /* this is a timeout error */
/*
* Returns the best value of I2BRG to meet desired clock speed of I2C with
* input parameters (clock speed, filter, and predivider value).
* It returns computer speed value and the difference between it and desired
* speed.
*/
static inline int
i2c_roundrate(int hz, int speed, int filter, int modval,
int *brgval, int *totspeed)
{
int moddiv = 1 << (5 - (modval & 3)), brgdiv, div;
debug("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n",
hz, speed, filter, modval);
div = moddiv * speed;
brgdiv = (hz + div - 1) / div;
debug("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv);
*brgval = ((brgdiv + 1) / 2) - 3 - (2 * filter);
if ((*brgval < 0) || (*brgval > 255)) {
debug("\t\trejected brgval=%d\n", *brgval);
return -1;
}
brgdiv = 2 * (*brgval + 3 + (2 * filter));
div = moddiv * brgdiv;
*totspeed = hz / div;
debug("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed);
return 0;
}
/*
* Sets the I2C clock predivider and divider to meet required clock speed.
*/
static int i2c_setrate(int hz, int speed)
{
immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
volatile i2c8xx_t *i2c = (i2c8xx_t *) & immap->im_i2c;
int brgval,
modval, /* 0-3 */
bestspeed_diff = speed,
bestspeed_brgval = 0,
bestspeed_modval = 0,
bestspeed_filter = 0,
totspeed,
filter = 0; /* Use this fixed value */
for (modval = 0; modval < 4; modval++) {
if (i2c_roundrate
(hz, speed, filter, modval, &brgval, &totspeed) == 0) {
int diff = speed - totspeed;
if ((diff >= 0) && (diff < bestspeed_diff)) {
bestspeed_diff = diff;
bestspeed_modval = modval;
bestspeed_brgval = brgval;
bestspeed_filter = filter;
}
}
}
debug("[I2C] Best is:\n");
debug("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n",
hz,
speed,
bestspeed_filter,
bestspeed_modval,
bestspeed_brgval,
bestspeed_diff);
i2c->i2c_i2mod |=
((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3);
i2c->i2c_i2brg = bestspeed_brgval & 0xff;
debug("[I2C] i2mod=%08x i2brg=%08x\n",
i2c->i2c_i2mod,
i2c->i2c_i2brg);
return 1;
}
void i2c_init(int speed, int slaveaddr)
{
volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c;
volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
ulong rbase, tbase;
volatile I2C_BD *rxbd, *txbd;
uint dpaddr;
#ifdef CONFIG_SYS_I2C_INIT_BOARD
/* call board specific i2c bus reset routine before accessing the */
/* environment, which might be in a chip on that bus. For details */
/* about this problem see doc/I2C_Edge_Conditions. */
i2c_init_board();
#endif
#ifdef CONFIG_SYS_I2C_UCODE_PATCH
iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
#else
/* Disable relocation */
iip->iic_rpbase = 0;
#endif
dpaddr = CPM_I2C_BASE;
/*
* initialise data in dual port ram:
*
* dpaddr->rbase -> rx BD (NUM_RX_BDS * sizeof(I2C_BD) bytes)
* tbase -> tx BD (NUM_TX_BDS * sizeof(I2C_BD) bytes)
* tx buffer (MAX_TX_SPACE bytes)
*/
rbase = dpaddr;
tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD);
/* Initialize Port B I2C pins. */
cp->cp_pbpar |= 0x00000030;
cp->cp_pbdir |= 0x00000030;
cp->cp_pbodr |= 0x00000030;
/* Disable interrupts */
i2c->i2c_i2mod = 0x00;
i2c->i2c_i2cmr = 0x00;
i2c->i2c_i2cer = 0xff;
i2c->i2c_i2add = slaveaddr;
/*
* Set the I2C BRG Clock division factor from desired i2c rate
* and current CPU rate (we assume sccr dfbgr field is 0;
* divide BRGCLK by 1)
*/
debug("[I2C] Setting rate...\n");
i2c_setrate(gd->cpu_clk, CONFIG_SYS_I2C_SPEED);
/* Set I2C controller in master mode */
i2c->i2c_i2com = 0x01;
/* Set SDMA bus arbitration level to 5 (SDCR) */
immap->im_siu_conf.sc_sdcr = 0x0001;
/* Initialize Tx/Rx parameters */
iip->iic_rbase = rbase;
iip->iic_tbase = tbase;
rxbd = (I2C_BD *) ((unsigned char *) &cp->cp_dpmem[iip->iic_rbase]);
txbd = (I2C_BD *) ((unsigned char *) &cp->cp_dpmem[iip->iic_tbase]);
debug("[I2C] rbase = %04x\n", iip->iic_rbase);
debug("[I2C] tbase = %04x\n", iip->iic_tbase);
debug("[I2C] rxbd = %08x\n", (int)rxbd);
debug("[I2C] txbd = %08x\n", (int)txbd);
/* Set big endian byte order */
iip->iic_tfcr = 0x10;
iip->iic_rfcr = 0x10;
/* Set maximum receive size. */
iip->iic_mrblr = I2C_RXTX_LEN;
#ifdef CONFIG_SYS_I2C_UCODE_PATCH
/*
* Initialize required parameters if using microcode patch.
*/
iip->iic_rbptr = iip->iic_rbase;
iip->iic_tbptr = iip->iic_tbase;
iip->iic_rstate = 0;
iip->iic_tstate = 0;
#else
cp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_I2C, CPM_CR_INIT_TRX) | CPM_CR_FLG;
do {
__asm__ __volatile__("eieio");
} while (cp->cp_cpcr & CPM_CR_FLG);
#endif
/* Clear events and interrupts */
i2c->i2c_i2cer = 0xff;
i2c->i2c_i2cmr = 0x00;
}
static void i2c_newio(i2c_state_t *state)
{
volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
debug("[I2C] i2c_newio\n");
#ifdef CONFIG_SYS_I2C_UCODE_PATCH
iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
#endif
state->rx_idx = 0;
state->tx_idx = 0;
state->rxbd = (void *)&cp->cp_dpmem[iip->iic_rbase];
state->txbd = (void *)&cp->cp_dpmem[iip->iic_tbase];
state->tx_space = MAX_TX_SPACE;
state->tx_buf = (uchar *)state->txbd + NUM_TX_BDS * sizeof(I2C_BD);
state->err_cb = NULL;
debug("[I2C] rxbd = %08x\n", (int)state->rxbd);
debug("[I2C] txbd = %08x\n", (int)state->txbd);
debug("[I2C] tx_buf = %08x\n", (int)state->tx_buf);
/* clear the buffer memory */
memset((char *)state->tx_buf, 0, MAX_TX_SPACE);
}
static int
i2c_send(i2c_state_t *state,
unsigned char address,
unsigned char secondary_address,
unsigned int flags, unsigned short size, unsigned char *dataout)
{
volatile I2C_BD *txbd;
int i, j;
debug("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n",
address, secondary_address, flags, size);
/* trying to send message larger than BD */
if (size > I2C_RXTX_LEN)
return I2CERR_MSG_TOO_LONG;
/* no more free bds */
if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size))
return I2CERR_NO_BUFFERS;
txbd = (I2C_BD *) state->txbd;
txbd->addr = state->tx_buf;
debug("[I2C] txbd = %08x\n", (int)txbd);
if (flags & I2CF_START_COND) {
debug("[I2C] Formatting addresses...\n");
if (flags & I2CF_ENABLE_SECONDARY) {
/* Length of msg + dest addr */
txbd->length = size + 2;
txbd->addr[0] = address << 1;
txbd->addr[1] = secondary_address;
i = 2;
} else {
/* Length of msg + dest addr */
txbd->length = size + 1;
/* Write dest addr to BD */
txbd->addr[0] = address << 1;
i = 1;
}
} else {
txbd->length = size; /* Length of message */
i = 0;
}
/* set up txbd */
txbd->status = BD_SC_READY;
if (flags & I2CF_START_COND)
txbd->status |= BD_I2C_TX_START;
if (flags & I2CF_STOP_COND)
txbd->status |= BD_SC_LAST | BD_SC_WRAP;
/* Copy data to send into buffer */
debug("[I2C] copy data...\n");
for(j = 0; j < size; i++, j++)
txbd->addr[i] = dataout[j];
debug("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
txbd->length,
txbd->status,
txbd->addr[0],
txbd->addr[1]);
/* advance state */
state->tx_buf += txbd->length;
state->tx_space -= txbd->length;
state->tx_idx++;
state->txbd = (void *) (txbd + 1);
return 0;
}
static int
i2c_receive(i2c_state_t *state,
unsigned char address,
unsigned char secondary_address,
unsigned int flags,
unsigned short size_to_expect, unsigned char *datain)
{
volatile I2C_BD *rxbd, *txbd;
debug("[I2C] i2c_receive %02d %02d %02d\n",
address, secondary_address, flags);
/* Expected to receive too much */
if (size_to_expect > I2C_RXTX_LEN)
return I2CERR_MSG_TOO_LONG;
/* no more free bds */
if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS
|| state->tx_space < 2)
return I2CERR_NO_BUFFERS;
rxbd = (I2C_BD *) state->rxbd;
txbd = (I2C_BD *) state->txbd;
debug("[I2C] rxbd = %08x\n", (int)rxbd);
debug("[I2C] txbd = %08x\n", (int)txbd);
txbd->addr = state->tx_buf;
/* set up TXBD for destination address */
if (flags & I2CF_ENABLE_SECONDARY) {
txbd->length = 2;
txbd->addr[0] = address << 1; /* Write data */
txbd->addr[1] = secondary_address; /* Internal address */
txbd->status = BD_SC_READY;
} else {
txbd->length = 1 + size_to_expect;
txbd->addr[0] = (address << 1) | 0x01;
txbd->status = BD_SC_READY;
memset(&txbd->addr[1], 0, txbd->length);
}
/* set up rxbd for reception */
rxbd->status = BD_SC_EMPTY;
rxbd->length = size_to_expect;
rxbd->addr = datain;
txbd->status |= BD_I2C_TX_START;
if (flags & I2CF_STOP_COND) {
txbd->status |= BD_SC_LAST | BD_SC_WRAP;
rxbd->status |= BD_SC_WRAP;
}
debug("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
txbd->length,
txbd->status,
txbd->addr[0],
txbd->addr[1]);
debug("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
rxbd->length,
rxbd->status,
rxbd->addr[0],
rxbd->addr[1]);
/* advance state */
state->tx_buf += txbd->length;
state->tx_space -= txbd->length;
state->tx_idx++;
state->txbd = (void *) (txbd + 1);
state->rx_idx++;
state->rxbd = (void *) (rxbd + 1);
return 0;
}
static int i2c_doio(i2c_state_t *state)
{
volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c;
volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
volatile I2C_BD *txbd, *rxbd;
volatile int j = 0;
debug("[I2C] i2c_doio\n");
#ifdef CONFIG_SYS_I2C_UCODE_PATCH
iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
#endif
if (state->tx_idx <= 0 && state->rx_idx <= 0) {
debug("[I2C] No I/O is queued\n");
return I2CERR_QUEUE_EMPTY;
}
iip->iic_rbptr = iip->iic_rbase;
iip->iic_tbptr = iip->iic_tbase;
/* Enable I2C */
debug("[I2C] Enabling I2C...\n");
i2c->i2c_i2mod |= 0x01;
/* Begin transmission */
i2c->i2c_i2com |= 0x80;
/* Loop until transmit & receive completed */
if (state->tx_idx > 0) {
txbd = ((I2C_BD*)state->txbd) - 1;
debug("[I2C] Transmitting...(txbd=0x%08lx)\n",
(ulong)txbd);
while ((txbd->status & BD_SC_READY) && (j++ < TOUT_LOOP)) {
if (ctrlc())
return (-1);
__asm__ __volatile__("eieio");
}
}
if ((state->rx_idx > 0) && (j < TOUT_LOOP)) {
rxbd = ((I2C_BD*)state->rxbd) - 1;
debug("[I2C] Receiving...(rxbd=0x%08lx)\n",
(ulong)rxbd);
while ((rxbd->status & BD_SC_EMPTY) && (j++ < TOUT_LOOP)) {
if (ctrlc())
return (-1);
__asm__ __volatile__("eieio");
}
}
/* Turn off I2C */
i2c->i2c_i2mod &= ~0x01;
if (state->err_cb != NULL) {
int n, i, b;
/*
* if we have an error callback function, look at the
* error bits in the bd status and pass them back
*/
if ((n = state->tx_idx) > 0) {
for (i = 0; i < n; i++) {
txbd = ((I2C_BD *) state->txbd) - (n - i);
if ((b = txbd->status & BD_I2C_TX_ERR) != 0)
(*state->err_cb) (I2CECB_TX_ERR | b,
i);
}
}
if ((n = state->rx_idx) > 0) {
for (i = 0; i < n; i++) {
rxbd = ((I2C_BD *) state->rxbd) - (n - i);
if ((b = rxbd->status & BD_I2C_RX_ERR) != 0)
(*state->err_cb) (I2CECB_RX_ERR | b,
i);
}
}
if (j >= TOUT_LOOP)
(*state->err_cb) (I2CECB_TIMEOUT, 0);
}
return (j >= TOUT_LOOP) ? I2CERR_TIMEOUT : 0;
}
static int had_tx_nak;
static void i2c_test_callback(int flags, int xnum)
{
if ((flags & I2CECB_TX_ERR) && (flags & I2CECB_TX_NAK))
had_tx_nak = 1;
}
int i2c_probe(uchar chip)
{
i2c_state_t state;
int rc;
uchar buf[1];
i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
i2c_newio(&state);
state.err_cb = i2c_test_callback;
had_tx_nak = 0;
rc = i2c_receive(&state, chip, 0, I2CF_START_COND | I2CF_STOP_COND, 1,
buf);
if (rc != 0)
return (rc);
rc = i2c_doio(&state);
if ((rc != 0) && (rc != I2CERR_TIMEOUT))
return (rc);
return (had_tx_nak);
}
int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
{
i2c_state_t state;
uchar xaddr[4];
int rc;
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
#ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
/*
* EEPROM chips that implement "address overflow" are ones like
* Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
* extra bits end up in the "chip address" bit slots. This makes
* a 24WC08 (1Kbyte) chip look like four 256 byte chips.
*
* Note that we consider the length of the address field to still
* be one byte because the extra address bits are hidden in the
* chip address.
*/
chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
#endif
i2c_newio(&state);
rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen,
&xaddr[4 - alen]);
if (rc != 0) {
printf("i2c_read: i2c_send failed (%d)\n", rc);
return 1;
}
rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer);
if (rc != 0) {
printf("i2c_read: i2c_receive failed (%d)\n", rc);
return 1;
}
rc = i2c_doio(&state);
if (rc != 0) {
printf("i2c_read: i2c_doio failed (%d)\n", rc);
return 1;
}
return 0;
}
int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
{
i2c_state_t state;
uchar xaddr[4];
int rc;
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
#ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
/*
* EEPROM chips that implement "address overflow" are ones like
* Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
* extra bits end up in the "chip address" bit slots. This makes
* a 24WC08 (1Kbyte) chip look like four 256 byte chips.
*
* Note that we consider the length of the address field to still
* be one byte because the extra address bits are hidden in the
* chip address.
*/
chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
#endif
i2c_newio(&state);
rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen,
&xaddr[4 - alen]);
if (rc != 0) {
printf("i2c_write: first i2c_send failed (%d)\n", rc);
return 1;
}
rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer);
if (rc != 0) {
printf("i2c_write: second i2c_send failed (%d)\n", rc);
return 1;
}
rc = i2c_doio(&state);
if (rc != 0) {
printf("i2c_write: i2c_doio failed (%d)\n", rc);
return 1;
}
return 0;
}
#endif /* CONFIG_HARD_I2C */

@ -83,7 +83,6 @@ CONFIG_MCFTMR -- define to use DMA timer
CONFIG_MCFPIT -- define to use PIT timer
CONFIG_SYS_I2C_FSL -- define to use FSL common I2C driver
CONFIG_HARD_I2C -- define for I2C hardware support
CONFIG_SYS_I2C_SOFT -- define for I2C bit-banged
CONFIG_SYS_I2C_SPEED -- define for I2C speed
CONFIG_SYS_I2C_SLAVE -- define for I2C slave address

@ -91,7 +91,6 @@ CONFIG_MCFTMR -- define to use DMA timer
CONFIG_MCFPIT -- define to use PIT timer
CONFIG_SYS_I2C_FSL -- define to use FSL common I2C driver
CONFIG_HARD_I2C -- define for I2C hardware support
CONFIG_SYS_I2C_SOFT -- define for I2C bit-banged
CONFIG_SYS_I2C_SPEED -- define for I2C speed
CONFIG_SYS_I2C_SLAVE -- define for I2C slave address

@ -90,7 +90,6 @@ CONFIG_MCFTMR -- define to use DMA timer
CONFIG_MCFPIT -- define to use PIT timer
CONFIG_SYS_I2C_FSL -- define to use FSL common I2C driver
CONFIG_HARD_I2C -- define for I2C hardware support
CONFIG_SYS_I2C_SOFT -- define for I2C bit-banged
CONFIG_SYS_I2C_SPEED -- define for I2C speed
CONFIG_SYS_I2C_SLAVE -- define for I2C slave address

@ -113,7 +113,6 @@ CONFIG_MCFTMR -- define to use DMA timer
CONFIG_MCFPIT -- define to use PIT timer
CONFIG_SYS_FSL_I2C -- define to use FSL common I2C driver
CONFIG_HARD_I2C -- define for I2C hardware support
CONFIG_SYS_I2C_SOFT -- define for I2C bit-banged
CONFIG_SYS_I2C_SPEED -- define for I2C speed
CONFIG_SYS_I2C_SLAVE -- define for I2C slave address

@ -98,7 +98,6 @@ CONFIG_DOS_PARTITION -- enable DOS read/write
CONFIG_SLTTMR -- define to use SLT timer
CONFIG_SYS_I2C_FSL -- define to use FSL common I2C driver
CONFIG_HARD_I2C -- define for I2C hardware support
CONFIG_SYS_I2C_SOFT -- define for I2C bit-banged
CONFIG_SYS_I2C_SPEED -- define for I2C speed
CONFIG_SYS_I2C_SLAVE -- define for I2C slave address

Loading…
Cancel
Save