Merge git://git.denx.de/u-boot-sh

master
Tom Rini 6 years ago
commit 93cb6142c1
  1. 1
      arch/arm/mach-rmobile/Kconfig.32
  2. 3
      arch/arm/mach-rmobile/cpu_info.c
  3. 24
      arch/arm/mach-rmobile/include/mach/boot0.h
  4. 1
      arch/arm/mach-rmobile/include/mach/rmobile.h
  5. 2
      arch/arm/mach-rmobile/lowlevel_init_ca15.S
  6. 92
      arch/arm/mach-rmobile/memmap-gen3.c
  7. 4
      board/renesas/porter/Makefile
  8. 22
      board/renesas/porter/porter.c
  9. 495
      board/renesas/porter/porter_spl.c
  10. 23
      configs/porter_defconfig
  11. 6
      configs/r8a7795_salvator-x_defconfig
  12. 6
      configs/r8a7795_ulcb_defconfig
  13. 2
      configs/r8a77965_salvator-x_defconfig
  14. 6
      configs/r8a7796_salvator-x_defconfig
  15. 6
      configs/r8a7796_ulcb_defconfig
  16. 6
      configs/r8a77970_eagle_defconfig
  17. 6
      configs/r8a77995_draak_defconfig
  18. 15
      drivers/mmc/Kconfig
  19. 3
      drivers/mmc/Makefile
  20. 787
      drivers/mmc/matsushita-common.c
  21. 151
      drivers/mmc/matsushita-common.h
  22. 368
      drivers/mmc/renesas-sdhi.c
  23. 850
      drivers/mmc/uniphier-sd.c
  24. 7
      drivers/mtd/Kconfig
  25. 1
      drivers/mtd/Makefile
  26. 398
      drivers/mtd/renesas_rpc_hf.c
  27. 8
      drivers/spi/Kconfig
  28. 1
      drivers/spi/Makefile
  29. 465
      drivers/spi/renesas_rpc_spi.c
  30. 119
      drivers/spi/sh_qspi.c
  31. 6
      include/configs/porter.h
  32. 1
      include/configs/rcar-gen3-common.h

@ -70,6 +70,7 @@ config TARGET_PORTER
bool "Porter board"
select DM
select DM_SERIAL
select SUPPORT_TPL
select SUPPORT_SPL
select SPL_DM if SPL

@ -18,9 +18,6 @@ int arch_cpu_init(void)
#ifndef CONFIG_SYS_DCACHE_OFF
void enable_caches(void)
{
#if defined(CONFIG_RCAR_GEN3)
rcar_gen3_memmap_fixup();
#endif
dcache_enable();
}
#endif

@ -0,0 +1,24 @@
/*
* Specialty padding for the RCar Gen2 TPL JTAG loading
*
* SPDX-License-Identifier: GPL-2.0
*/
#ifndef __BOOT0_H
#define __BOOT0_H
_start:
ARM_VECTORS
#ifdef CONFIG_TPL_BUILD
.word 0x0badc0d3;
.word 0x0badc0d3;
.word 0x0badc0d3;
.word 0x0badc0d3;
.word 0x0badc0d3;
.word 0x0badc0d3;
.word 0x0badc0d3;
.word 0x0badc0d3;
#endif
#endif /* __BOOT0_H */

@ -41,7 +41,6 @@
u32 rmobile_get_cpu_type(void);
u32 rmobile_get_cpu_rev_integer(void);
u32 rmobile_get_cpu_rev_fraction(void);
void rcar_gen3_memmap_fixup(void);
#endif /* __ASSEMBLY__ */
#endif /* __ASM_ARCH_RMOBILE_H */

@ -11,6 +11,7 @@
#include <linux/linkage.h>
ENTRY(lowlevel_init)
#ifndef CONFIG_TPL_BUILD
mrc p15, 0, r4, c0, c0, 5 /* mpidr */
orr r4, r4, r4, lsr #6
and r4, r4, #7 /* id 0-3 = ca15.0,1,2,3 */
@ -83,6 +84,7 @@ _exit_init_l2_a15:
bl s_init
ldr lr, [sp]
#endif
mov pc, lr
nop
ENDPROC(lowlevel_init)

@ -9,77 +9,24 @@
#include <common.h>
#include <asm/armv8/mmu.h>
static struct mm_region r8a7795_mem_map[] = {
static struct mm_region gen3_mem_map[] = {
{
.virt = 0x0UL,
.phys = 0x0UL,
.size = 0x80000000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_INNER_SHARE
}, {
.virt = 0x80000000UL,
.phys = 0x80000000UL,
.size = 0x80000000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* List terminator */
0,
}
};
static struct mm_region r8a7796_mem_map[] = {
{
.virt = 0x0UL,
.phys = 0x0UL,
.size = 0xe0000000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_INNER_SHARE
}, {
.virt = 0xe0000000UL,
.phys = 0xe0000000UL,
.size = 0xe0000000UL,
.size = 0x40000000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* List terminator */
0,
}
};
static struct mm_region r8a77970_mem_map[] = {
{
.virt = 0x0UL,
.phys = 0x0UL,
.size = 0xe0000000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_INNER_SHARE
}, {
.virt = 0xe0000000UL,
.phys = 0xe0000000UL,
.size = 0xe0000000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* List terminator */
0,
}
};
static struct mm_region r8a77995_mem_map[] = {
{
.virt = 0x0UL,
.phys = 0x0UL,
.size = 0xe0000000UL,
.virt = 0x40000000UL,
.phys = 0x40000000UL,
.size = 0x80000000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_INNER_SHARE
}, {
.virt = 0xe0000000UL,
.phys = 0xe0000000UL,
.size = 0xe0000000UL,
.virt = 0xc0000000UL,
.phys = 0xc0000000UL,
.size = 0x40000000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
@ -89,25 +36,4 @@ static struct mm_region r8a77995_mem_map[] = {
}
};
struct mm_region *mem_map = r8a7795_mem_map;
void rcar_gen3_memmap_fixup(void)
{
u32 cpu_type = rmobile_get_cpu_type();
switch (cpu_type) {
case RMOBILE_CPU_TYPE_R8A7795:
mem_map = r8a7795_mem_map;
break;
case RMOBILE_CPU_TYPE_R8A7796:
case RMOBILE_CPU_TYPE_R8A77965:
mem_map = r8a7796_mem_map;
break;
case RMOBILE_CPU_TYPE_R8A77970:
mem_map = r8a77970_mem_map;
break;
case RMOBILE_CPU_TYPE_R8A77995:
mem_map = r8a77995_mem_map;
break;
}
}
struct mm_region *mem_map = gen3_mem_map;

@ -7,4 +7,8 @@
# SPDX-License-Identifier: GPL-2.0
#
ifdef CONFIG_SPL_BUILD
obj-y := porter_spl.o
else
obj-y := porter.o qos.o
endif

@ -136,25 +136,3 @@ void reset_cpu(ulong addr)
if (ret)
hang();
}
#ifdef CONFIG_SPL_BUILD
#include <spl.h>
void board_init_f(ulong dummy)
{
board_early_init_f();
}
void spl_board_init(void)
{
/* UART clocks enabled and gd valid - init serial console */
preloader_console_init();
}
void board_boot_order(u32 *spl_boot_list)
{
/* Boot from SPI NOR with YMODEM UART fallback. */
spl_boot_list[0] = BOOT_DEVICE_SPI;
spl_boot_list[1] = BOOT_DEVICE_UART;
spl_boot_list[2] = BOOT_DEVICE_NONE;
}
#endif

@ -0,0 +1,495 @@
/*
* board/renesas/porter/porter_spl.c
*
* Copyright (C) 2018 Marek Vasut <marek.vasut@gmail.com>
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <malloc.h>
#include <dm/platform_data/serial_sh.h>
#include <asm/processor.h>
#include <asm/mach-types.h>
#include <asm/io.h>
#include <linux/errno.h>
#include <asm/arch/sys_proto.h>
#include <asm/gpio.h>
#include <asm/arch/rmobile.h>
#include <asm/arch/rcar-mstp.h>
#include <spl.h>
#define TMU0_MSTP125 BIT(25)
#define SCIF0_MSTP721 BIT(21)
#define QSPI_MSTP917 BIT(17)
#define SD2CKCR 0xE615026C
#define SD_97500KHZ 0x7
#ifdef CONFIG_TPL_BUILD
struct reg_config {
u16 off;
u32 val;
};
static void dbsc_wait(u16 reg)
{
static const u32 dbsc3_0_base = DBSC3_0_BASE;
static const u32 dbsc3_1_base = DBSC3_0_BASE + 0x10000;
while (!(readl(dbsc3_0_base + reg) & BIT(0)))
;
while (!(readl(dbsc3_1_base + reg) & BIT(0)))
;
}
static void tpl_init_sys(void)
{
u32 r0 = 0;
writel(0xa5a5a500, 0xe6020004);
writel(0xa5a5a500, 0xe6030004);
asm volatile(
/* ICIALLU - Invalidate I$ to PoU */
"mcr 15, 0, %0, cr7, cr5, 0 \n"
/* BPIALL - Invalidate branch predictors */
"mcr 15, 0, %0, cr7, cr5, 6 \n"
/* Set SCTLR[IZ] */
"mrc 15, 0, %0, cr1, cr0, 0 \n"
"orr %0, #0x1800 \n"
"mcr 15, 0, %0, cr1, cr0, 0 \n"
"isb sy \n"
:"=r"(r0));
}
static void tpl_init_pfc(void)
{
static const struct reg_config pfc_with_unlock[] = {
{ 0x0090, 0x60000000 },
{ 0x0094, 0x60000000 },
{ 0x0098, 0x00800200 },
{ 0x009c, 0x00000000 },
{ 0x0020, 0x00000000 },
{ 0x0024, 0x00000000 },
{ 0x0028, 0x000244c8 },
{ 0x002c, 0x00000000 },
{ 0x0030, 0x00002400 },
{ 0x0034, 0x01520000 },
{ 0x0038, 0x00724003 },
{ 0x003c, 0x00000000 },
{ 0x0040, 0x00000000 },
{ 0x0044, 0x00000000 },
{ 0x0048, 0x00000000 },
{ 0x004c, 0x00000000 },
{ 0x0050, 0x00000000 },
{ 0x0054, 0x00000000 },
{ 0x0058, 0x00000000 },
{ 0x005c, 0x00000000 },
{ 0x0160, 0x00000000 },
{ 0x0004, 0xffffffff },
{ 0x0008, 0x00ec3fff },
{ 0x000c, 0x3bc001e7 },
{ 0x0010, 0x5bffffff },
{ 0x0014, 0x1ffffffb },
{ 0x0018, 0x01bffff0 },
{ 0x001c, 0xcf7fffff },
{ 0x0074, 0x0381fc00 },
};
static const struct reg_config pfc_without_unlock[] = {
{ 0x0100, 0xffffffdf },
{ 0x0104, 0xc883c3ff },
{ 0x0108, 0x1201f3c9 },
{ 0x010c, 0x00000000 },
{ 0x0110, 0xffffeb04 },
{ 0x0114, 0xc003ffff },
{ 0x0118, 0x0800000f },
{ 0x011c, 0x00187ff0 },
};
static const u32 pfc_base = 0xe6060000;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(pfc_with_unlock); i++) {
writel(~pfc_with_unlock[i].val, pfc_base);
writel(pfc_with_unlock[i].val,
pfc_base | pfc_with_unlock[i].off);
}
for (i = 0; i < ARRAY_SIZE(pfc_without_unlock); i++)
writel(pfc_without_unlock[i].val,
pfc_base | pfc_without_unlock[i].off);
}
static void tpl_init_gpio(void)
{
static const u16 gpio_offs[] = {
0x1000, 0x2000, 0x3000, 0x4000, 0x5000, 0x5400, 0x5800
};
static const struct reg_config gpio_set[] = {
{ 0x2000, 0x04381000 },
{ 0x5000, 0x00000000 },
{ 0x5800, 0x000e0000 },
};
static const struct reg_config gpio_clr[] = {
{ 0x1000, 0x00000000 },
{ 0x2000, 0x04381010 },
{ 0x3000, 0x00000000 },
{ 0x4000, 0x00000000 },
{ 0x5000, 0x00400000 },
{ 0x5400, 0x00000000 },
{ 0x5800, 0x000e0380 },
};
static const u32 gpio_base = 0xe6050000;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(gpio_offs); i++)
writel(0, gpio_base | 0x20 | gpio_offs[i]);
for (i = 0; i < ARRAY_SIZE(gpio_offs); i++)
writel(0, gpio_base | 0x00 | gpio_offs[i]);
for (i = 0; i < ARRAY_SIZE(gpio_set); i++)
writel(gpio_set[i].val, gpio_base | 0x08 | gpio_set[i].off);
for (i = 0; i < ARRAY_SIZE(gpio_clr); i++)
writel(gpio_clr[i].val, gpio_base | 0x04 | gpio_clr[i].off);
}
static void tpl_init_lbsc(void)
{
static const struct reg_config lbsc_config[] = {
{ 0x00, 0x00000020 },
{ 0x08, 0x00002020 },
{ 0x10, 0x2a103320 },
{ 0x18, 0xff70ff70 },
};
static const u16 lbsc_offs[] = {
0x80, 0x84, 0x88, 0x8c, 0xa0, 0xc0, 0xc4, 0xc8, 0x180
};
static const u32 lbsc_base = 0xfec00200;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(lbsc_config); i++) {
writel(lbsc_config[i].val,
lbsc_base | lbsc_config[i].off);
writel(lbsc_config[i].val,
lbsc_base | (lbsc_config[i].off + 4));
}
for (i = 0; i < ARRAY_SIZE(lbsc_offs); i++)
writel(0, lbsc_base | lbsc_offs[i]);
}
static void tpl_init_dbsc(void)
{
static const struct reg_config dbsc_config1[] = {
{ 0x0280, 0x0000a55a },
{ 0x4000, 0x0000a55a },
{ 0x4008, 0x00000001 },
{ 0x0018, 0x21000000 },
{ 0x0018, 0x11000000 },
{ 0x0018, 0x10000000 },
{ 0x0290, 0x00000001 },
{ 0x02a0, 0x80000000 },
{ 0x0290, 0x00000004 },
};
static const struct reg_config dbsc_config2[] = {
{ 0x0290, 0x00000006 },
{ 0x02a0, 0x0001c000 },
};
static const struct reg_config dbsc_config3r0d0[] = {
{ 0x0290, 0x0000000f },
{ 0x02a0, 0x00181885 },
{ 0x0290, 0x00000070 },
{ 0x02a0, 0x7c000887 },
{ 0x0290, 0x00000080 },
{ 0x02a0, 0x7c000887 },
{ 0x0290, 0x00000090 },
{ 0x02a0, 0x7c000887 },
{ 0x0290, 0x000000a0 },
{ 0x02a0, 0x7c000887 },
{ 0x0290, 0x000000b0 },
{ 0x02a0, 0x7c000880 },
{ 0x0290, 0x000000c0 },
{ 0x02a0, 0x7c000880 },
{ 0x0290, 0x000000d0 },
{ 0x02a0, 0x7c000880 },
{ 0x0290, 0x000000e0 },
{ 0x02a0, 0x7c000880 },
};
static const struct reg_config dbsc_config3r0d1[] = {
{ 0x0290, 0x0000000f },
{ 0x02a0, 0x00181885 },
{ 0x0290, 0x00000070 },
{ 0x02a0, 0x7c000887 },
{ 0x0290, 0x00000080 },
{ 0x02a0, 0x7c000887 },
{ 0x0290, 0x00000090 },
{ 0x02a0, 0x7c000887 },
{ 0x0290, 0x000000a0 },
{ 0x02a0, 0x7c000887 },
};
static const struct reg_config dbsc_config3r2[] = {
{ 0x0290, 0x0000000f },
{ 0x02a0, 0x00181224 },
};
static const struct reg_config dbsc_config4[] = {
{ 0x0290, 0x00000010 },
{ 0x02a0, 0xf004649b },
{ 0x0290, 0x00000061 },
{ 0x02a0, 0x0000006d },
{ 0x0290, 0x00000001 },
{ 0x02a0, 0x00000073 },
{ 0x0020, 0x00000007 },
{ 0x0024, 0x0f030a02 },
{ 0x0030, 0x00000001 },
{ 0x00b0, 0x00000000 },
{ 0x0040, 0x0000000b },
{ 0x0044, 0x00000008 },
{ 0x0048, 0x00000000 },
{ 0x0050, 0x0000000b },
{ 0x0054, 0x000c000b },
{ 0x0058, 0x00000027 },
{ 0x005c, 0x0000001c },
{ 0x0060, 0x00000006 },
{ 0x0064, 0x00000020 },
{ 0x0068, 0x00000008 },
{ 0x006c, 0x0000000c },
{ 0x0070, 0x00000009 },
{ 0x0074, 0x00000012 },
{ 0x0078, 0x000000d0 },
{ 0x007c, 0x00140005 },
{ 0x0080, 0x00050004 },
{ 0x0084, 0x70233005 },
{ 0x0088, 0x000c0000 },
{ 0x008c, 0x00000200 },
{ 0x0090, 0x00000040 },
{ 0x0100, 0x00000001 },
{ 0x00c0, 0x00020001 },
{ 0x00c8, 0x20042004 },
{ 0x0380, 0x00020002 },
{ 0x0390, 0x0000001f },
};
static const struct reg_config dbsc_config5[] = {
{ 0x0244, 0x00000011 },
{ 0x0290, 0x00000003 },
{ 0x02a0, 0x0300c561 },
{ 0x0290, 0x00000023 },
{ 0x02a0, 0x00fcdb60 },
{ 0x0290, 0x00000011 },
{ 0x02a0, 0x1000040b },
{ 0x0290, 0x00000012 },
{ 0x02a0, 0x9d9cbb66 },
{ 0x0290, 0x00000013 },
{ 0x02a0, 0x1a868400 },
{ 0x0290, 0x00000014 },
{ 0x02a0, 0x300214d8 },
{ 0x0290, 0x00000015 },
{ 0x02a0, 0x00000d70 },
{ 0x0290, 0x00000016 },
{ 0x02a0, 0x00000006 },
{ 0x0290, 0x00000017 },
{ 0x02a0, 0x00000018 },
{ 0x0290, 0x0000001a },
{ 0x02a0, 0x910035c7 },
{ 0x0290, 0x00000004 },
};
static const struct reg_config dbsc_config6[] = {
{ 0x0290, 0x00000001 },
{ 0x02a0, 0x00000181 },
{ 0x0018, 0x11000000 },
{ 0x0290, 0x00000004 },
};
static const struct reg_config dbsc_config7[] = {
{ 0x0290, 0x00000001 },
{ 0x02a0, 0x0000fe01 },
{ 0x0304, 0x00000000 },
{ 0x00f4, 0x01004c20 },
{ 0x00f8, 0x014a00b9 },
{ 0x00e0, 0x00000140 },
{ 0x00e4, 0x00081860 },
{ 0x00e8, 0x00010000 },
{ 0x0290, 0x00000004 },
};
static const struct reg_config dbsc_config8[] = {
{ 0x0014, 0x00000001 },
{ 0x0290, 0x00000010 },
{ 0x02a0, 0xf00464db },
{ 0x4008, 0x00000000 },
{ 0x4000, 0x00000000 },
{ 0x0010, 0x00000001 },
{ 0x0280, 0x00000000 },
};
static const u32 dbsc3_0_base = DBSC3_0_BASE;
static const u32 dbsc3_1_base = DBSC3_0_BASE + 0x10000;
static const u32 prr_base = 0xff000044;
const u16 prr_rev = readl(prr_base) & 0x7fff;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(dbsc_config1); i++) {
writel(dbsc_config1[i].val, dbsc3_0_base | dbsc_config1[i].off);
writel(dbsc_config1[i].val, dbsc3_1_base | dbsc_config1[i].off);
}
dbsc_wait(0x2a0);
for (i = 0; i < ARRAY_SIZE(dbsc_config2); i++) {
writel(dbsc_config2[i].val, dbsc3_0_base | dbsc_config2[i].off);
writel(dbsc_config2[i].val, dbsc3_1_base | dbsc_config2[i].off);
}
if (prr_rev == 0x4700) {
for (i = 0; i < ARRAY_SIZE(dbsc_config3r0d0); i++) {
writel(dbsc_config3r0d0[i].val,
dbsc3_0_base | dbsc_config3r0d0[i].off);
}
for (i = 0; i < ARRAY_SIZE(dbsc_config3r0d1); i++) {
writel(dbsc_config3r0d1[i].val,
dbsc3_1_base | dbsc_config3r0d1[i].off);
}
} else if (prr_rev != 0x4710) {
for (i = 0; i < ARRAY_SIZE(dbsc_config3r2); i++) {
writel(dbsc_config3r2[i].val,
dbsc3_0_base | dbsc_config3r2[i].off);
writel(dbsc_config3r2[i].val,
dbsc3_1_base | dbsc_config3r2[i].off);
}
}
for (i = 0; i < ARRAY_SIZE(dbsc_config4); i++) {
writel(dbsc_config4[i].val, dbsc3_0_base | dbsc_config4[i].off);
writel(dbsc_config4[i].val, dbsc3_1_base | dbsc_config4[i].off);
}
dbsc_wait(0x240);
for (i = 0; i < ARRAY_SIZE(dbsc_config5); i++) {
writel(dbsc_config5[i].val, dbsc3_0_base | dbsc_config5[i].off);
writel(dbsc_config5[i].val, dbsc3_1_base | dbsc_config5[i].off);
}
dbsc_wait(0x2a0);
for (i = 0; i < ARRAY_SIZE(dbsc_config6); i++) {
writel(dbsc_config6[i].val, dbsc3_0_base | dbsc_config6[i].off);
writel(dbsc_config6[i].val, dbsc3_1_base | dbsc_config6[i].off);
}
dbsc_wait(0x2a0);
for (i = 0; i < ARRAY_SIZE(dbsc_config7); i++) {
writel(dbsc_config7[i].val, dbsc3_0_base | dbsc_config7[i].off);
writel(dbsc_config7[i].val, dbsc3_1_base | dbsc_config7[i].off);
}
dbsc_wait(0x2a0);
for (i = 0; i < ARRAY_SIZE(dbsc_config8); i++) {
writel(dbsc_config8[i].val, dbsc3_0_base | dbsc_config8[i].off);
writel(dbsc_config8[i].val, dbsc3_1_base | dbsc_config8[i].off);
}
}
static void tpl_init_qspi(void)
{
mstp_clrbits_le32(MSTPSR9, SMSTPCR9, QSPI_MSTP917);
static const u32 qspi_base = 0xe6b10000;
writeb(0x08, qspi_base + 0x00);
writeb(0x00, qspi_base + 0x01);
writeb(0x06, qspi_base + 0x02);
writeb(0x01, qspi_base + 0x0a);
writeb(0x00, qspi_base + 0x0b);
writeb(0x00, qspi_base + 0x0c);
writeb(0x00, qspi_base + 0x0d);
writeb(0x00, qspi_base + 0x0e);
writew(0xe080, qspi_base + 0x10);
writeb(0xc0, qspi_base + 0x18);
writeb(0x00, qspi_base + 0x18);
writeb(0x00, qspi_base + 0x08);
writeb(0x48, qspi_base + 0x00);
}
void board_init_f(ulong dummy)
{
mstp_clrbits_le32(MSTPSR1, SMSTPCR1, TMU0_MSTP125);
mstp_clrbits_le32(MSTPSR7, SMSTPCR7, SCIF0_MSTP721);
/*
* SD0 clock is set to 97.5MHz by default.
* Set SD2 to the 97.5MHz as well.
*/
writel(SD_97500KHZ, SD2CKCR);
tpl_init_sys();
tpl_init_pfc();
tpl_init_gpio();
tpl_init_lbsc();
tpl_init_dbsc();
tpl_init_qspi();
}
#endif
void spl_board_init(void)
{
/* UART clocks enabled and gd valid - init serial console */
preloader_console_init();
}
void board_boot_order(u32 *spl_boot_list)
{
#ifdef CONFIG_TPL_BUILD
const u32 jtag_magic = 0x1337c0de;
const u32 load_magic = 0xb33fc0de;
/*
* If JTAG probe sets special word at 0xe6300020, then it must
* put U-Boot into RAM and TPL will start it from RAM.
*/
if (readl(CONFIG_TPL_TEXT_BASE + 0x20) == jtag_magic) {
printf("JTAG boot detected!\n");
while (readl(CONFIG_TPL_TEXT_BASE + 0x24) != load_magic)
;
spl_boot_list[0] = BOOT_DEVICE_RAM;
spl_boot_list[1] = BOOT_DEVICE_NONE;
return;
}
#endif
/* Boot from SPI NOR with YMODEM UART fallback. */
spl_boot_list[0] = BOOT_DEVICE_SPI;
spl_boot_list[1] = BOOT_DEVICE_UART;
spl_boot_list[2] = BOOT_DEVICE_NONE;
}
void reset_cpu(ulong addr)
{
}

@ -1,4 +1,5 @@
CONFIG_ARM=y
CONFIG_ENABLE_ARM_SOC_BOOT0_HOOK=y
CONFIG_ARCH_RMOBILE=y
CONFIG_SYS_TEXT_BASE=0x50000000
CONFIG_SPL_GPIO_SUPPORT=y
@ -7,18 +8,36 @@ CONFIG_SPL_LIBGENERIC_SUPPORT=y
CONFIG_SYS_MALLOC_F_LEN=0x8000
CONFIG_R8A7791=y
CONFIG_TARGET_PORTER=y
CONFIG_TPL_TEXT_BASE=0xe6300000
CONFIG_TPL_MAX_SIZE=16384
CONFIG_SPL_SERIAL_SUPPORT=y
CONFIG_TPL_LIBCOMMON_SUPPORT=y
CONFIG_TPL_LIBGENERIC_SUPPORT=y
CONFIG_SPL_SPI_FLASH_SUPPORT=y
CONFIG_SPL_SPI_SUPPORT=y
CONFIG_SPL=y
CONFIG_DEFAULT_DEVICE_TREE="r8a7791-porter-u-boot"
CONFIG_TPL_SYS_MALLOC_F_LEN=0x2000
CONFIG_FIT=y
CONFIG_BOOTDELAY=3
CONFIG_VERSION_VARIABLE=y
CONFIG_SPL_BOARD_INIT=y
CONFIG_SPL_SYS_MALLOC_SIMPLE=y
CONFIG_TPL_SYS_MALLOC_SIMPLE=y
CONFIG_SPL_I2C_SUPPORT=y
CONFIG_SPL_SPI_LOAD=y
CONFIG_SPL_YMODEM_SUPPORT=y
CONFIG_TPL=y
CONFIG_TPL_BOARD_INIT=y
CONFIG_TPL_NEEDS_SEPARATE_TEXT_BASE=y
CONFIG_TPL_RAM_SUPPORT=y
CONFIG_TPL_RAM_DEVICE=y
CONFIG_TPL_SERIAL_SUPPORT=y
CONFIG_TPL_SPI_FLASH_SUPPORT=y
CONFIG_TPL_SPI_LOAD=y
CONFIG_TPL_SPI_SUPPORT=y
CONFIG_TPL_YMODEM_SUPPORT=y
CONFIG_HUSH_PARSER=y
CONFIG_CMD_BOOTZ=y
# CONFIG_CMD_IMI is not set
# CONFIG_CMD_XIMG is not set
@ -54,7 +73,7 @@ CONFIG_RCAR_GPIO=y
CONFIG_DM_I2C=y
CONFIG_SYS_I2C_RCAR_IIC=y
CONFIG_DM_MMC=y
CONFIG_MMC_UNIPHIER=y
CONFIG_RENESAS_SDHI=y
CONFIG_SPI_FLASH=y
CONFIG_SPI_FLASH_BAR=y
CONFIG_SPI_FLASH_SPANSION=y
@ -71,6 +90,7 @@ CONFIG_PINCTRL_PFC=y
CONFIG_DM_REGULATOR=y
CONFIG_DM_REGULATOR_FIXED=y
CONFIG_DM_REGULATOR_GPIO=y
# CONFIG_TPL_DM_SERIAL is not set
CONFIG_SCIF_CONSOLE=y
CONFIG_SH_QSPI=y
CONFIG_USB=y
@ -78,3 +98,4 @@ CONFIG_DM_USB=y
CONFIG_USB_EHCI_HCD=y
CONFIG_USB_EHCI_PCI=y
CONFIG_USB_STORAGE=y
CONFIG_TPL_TINY_MEMSET=y

@ -37,7 +37,11 @@ CONFIG_RCAR_GPIO=y
CONFIG_DM_I2C=y
CONFIG_SYS_I2C_RCAR_IIC=y
CONFIG_DM_MMC=y
CONFIG_MMC_UNIPHIER=y
CONFIG_MMC_IO_VOLTAGE=y
CONFIG_MMC_UHS_SUPPORT=y
CONFIG_MMC_HS200_SUPPORT=y
CONFIG_RENESAS_SDHI=y
CONFIG_MMC_RENESAS_TUNING=y
CONFIG_PHY_MICREL=y
CONFIG_PHY_MICREL_KSZ90X1=y
CONFIG_DM_ETH=y

@ -37,7 +37,11 @@ CONFIG_RCAR_GPIO=y
CONFIG_DM_I2C=y
CONFIG_SYS_I2C_RCAR_IIC=y
CONFIG_DM_MMC=y
CONFIG_MMC_UNIPHIER=y
CONFIG_MMC_IO_VOLTAGE=y
CONFIG_MMC_UHS_SUPPORT=y
CONFIG_MMC_HS200_SUPPORT=y
CONFIG_RENESAS_SDHI=y
CONFIG_MMC_RENESAS_TUNING=y
CONFIG_PHY_MICREL=y
CONFIG_PHY_MICREL_KSZ90X1=y
CONFIG_DM_ETH=y

@ -38,7 +38,7 @@ CONFIG_RCAR_GPIO=y
CONFIG_DM_I2C=y
CONFIG_SYS_I2C_RCAR_IIC=y
CONFIG_DM_MMC=y
CONFIG_MMC_UNIPHIER=y
CONFIG_RENESAS_SDHI=y
CONFIG_PHY_MICREL=y
CONFIG_PHY_MICREL_KSZ90X1=y
CONFIG_DM_ETH=y

@ -38,7 +38,11 @@ CONFIG_RCAR_GPIO=y
CONFIG_DM_I2C=y
CONFIG_SYS_I2C_RCAR_IIC=y
CONFIG_DM_MMC=y
CONFIG_MMC_UNIPHIER=y
CONFIG_MMC_IO_VOLTAGE=y
CONFIG_MMC_UHS_SUPPORT=y
CONFIG_MMC_HS200_SUPPORT=y
CONFIG_RENESAS_SDHI=y
CONFIG_MMC_RENESAS_TUNING=y
CONFIG_PHY_MICREL=y
CONFIG_PHY_MICREL_KSZ90X1=y
CONFIG_DM_ETH=y

@ -38,7 +38,11 @@ CONFIG_RCAR_GPIO=y
CONFIG_DM_I2C=y
CONFIG_SYS_I2C_RCAR_IIC=y
CONFIG_DM_MMC=y
CONFIG_MMC_UNIPHIER=y
CONFIG_MMC_IO_VOLTAGE=y
CONFIG_MMC_UHS_SUPPORT=y
CONFIG_MMC_HS200_SUPPORT=y
CONFIG_RENESAS_SDHI=y
CONFIG_MMC_RENESAS_TUNING=y
CONFIG_PHY_MICREL=y
CONFIG_PHY_MICREL_KSZ90X1=y
CONFIG_DM_ETH=y

@ -37,7 +37,11 @@ CONFIG_RCAR_GPIO=y
CONFIG_DM_I2C=y
CONFIG_SYS_I2C_RCAR_IIC=y
CONFIG_DM_MMC=y
CONFIG_MMC_UNIPHIER=y
CONFIG_MMC_IO_VOLTAGE=y
CONFIG_MMC_UHS_SUPPORT=y
CONFIG_MMC_HS200_SUPPORT=y
CONFIG_RENESAS_SDHI=y
CONFIG_MMC_RENESAS_TUNING=y
CONFIG_PHY_MICREL=y
CONFIG_PHY_MICREL_KSZ90X1=y
CONFIG_DM_ETH=y

@ -38,7 +38,11 @@ CONFIG_RCAR_GPIO=y
CONFIG_DM_I2C=y
CONFIG_SYS_I2C_RCAR_IIC=y
CONFIG_DM_MMC=y
CONFIG_MMC_UNIPHIER=y
CONFIG_MMC_IO_VOLTAGE=y
CONFIG_MMC_UHS_SUPPORT=y
CONFIG_MMC_HS200_SUPPORT=y
CONFIG_RENESAS_SDHI=y
CONFIG_MMC_RENESAS_TUNING=y
CONFIG_MTD=y
CONFIG_MTD_NOR_FLASH=y
CONFIG_CFI_FLASH=y

@ -267,13 +267,22 @@ config SH_SDHI
Support for the on-chip SDHI host controller on SuperH/Renesas ARM SoCs platform
config MMC_UNIPHIER
bool "UniPhier/RCar SD/MMC Host Controller support"
depends on ARCH_UNIPHIER || ARCH_RMOBILE
bool "UniPhier SD/MMC Host Controller support"
depends on ARCH_UNIPHIER
depends on BLK && DM_MMC
depends on OF_CONTROL
help
This selects support for the Matsushita SD/MMC Host Controller on
SocioNext UniPhier and Renesas RCar SoCs.
SocioNext UniPhier SoCs.
config RENESAS_SDHI
bool "Renesas R-Car SD/MMC Host Controller support"
depends on ARCH_RMOBILE
depends on BLK && DM_MMC
depends on OF_CONTROL
help
This selects support for the Matsushita SD/MMC Host Controller on
Renesas R-Car SoCs.
config MMC_BCM2835
bool "BCM2835 family custom SD/MMC Host Controller support"

@ -62,5 +62,6 @@ obj-$(CONFIG_MMC_SDHCI_XENON) += xenon_sdhci.o
obj-$(CONFIG_MMC_SDHCI_ZYNQ) += zynq_sdhci.o
obj-$(CONFIG_MMC_SUNXI) += sunxi_mmc.o
obj-$(CONFIG_MMC_UNIPHIER) += uniphier-sd.o
obj-$(CONFIG_MMC_UNIPHIER) += matsushita-common.o uniphier-sd.o
obj-$(CONFIG_RENESAS_SDHI) += matsushita-common.o renesas-sdhi.o
obj-$(CONFIG_MMC_BCM2835) += bcm2835_sdhost.o

@ -0,0 +1,787 @@
/*
* Copyright (C) 2016 Socionext Inc.
* Author: Masahiro Yamada <yamada.masahiro@socionext.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <clk.h>
#include <fdtdec.h>
#include <mmc.h>
#include <dm.h>
#include <dm/pinctrl.h>
#include <linux/compat.h>
#include <linux/dma-direction.h>
#include <linux/io.h>
#include <linux/sizes.h>
#include <power/regulator.h>
#include <asm/unaligned.h>
#include "matsushita-common.h"
DECLARE_GLOBAL_DATA_PTR;
static u64 matsu_sd_readq(struct matsu_sd_priv *priv, unsigned int reg)
{
return readq(priv->regbase + (reg << 1));
}
static void matsu_sd_writeq(struct matsu_sd_priv *priv,
u64 val, unsigned int reg)
{
writeq(val, priv->regbase + (reg << 1));
}
static u16 matsu_sd_readw(struct matsu_sd_priv *priv, unsigned int reg)
{
return readw(priv->regbase + (reg >> 1));
}
static void matsu_sd_writew(struct matsu_sd_priv *priv,
u16 val, unsigned int reg)
{
writew(val, priv->regbase + (reg >> 1));
}
u32 matsu_sd_readl(struct matsu_sd_priv *priv, unsigned int reg)
{
u32 val;
if (priv->caps & MATSU_SD_CAP_64BIT)
return readl(priv->regbase + (reg << 1));
else if (priv->caps & MATSU_SD_CAP_16BIT) {
val = readw(priv->regbase + (reg >> 1)) & 0xffff;
if ((reg == MATSU_SD_RSP10) || (reg == MATSU_SD_RSP32) ||
(reg == MATSU_SD_RSP54) || (reg == MATSU_SD_RSP76)) {
val |= readw(priv->regbase + (reg >> 1) + 2) << 16;
}
return val;
} else
return readl(priv->regbase + reg);
}
void matsu_sd_writel(struct matsu_sd_priv *priv,
u32 val, unsigned int reg)
{
if (priv->caps & MATSU_SD_CAP_64BIT)
writel(val, priv->regbase + (reg << 1));
else if (priv->caps & MATSU_SD_CAP_16BIT) {
writew(val & 0xffff, priv->regbase + (reg >> 1));
if (reg == MATSU_SD_INFO1 || reg == MATSU_SD_INFO1_MASK ||
reg == MATSU_SD_INFO2 || reg == MATSU_SD_INFO2_MASK ||
reg == MATSU_SD_ARG)
writew(val >> 16, priv->regbase + (reg >> 1) + 2);
} else
writel(val, priv->regbase + reg);
}
static dma_addr_t __dma_map_single(void *ptr, size_t size,
enum dma_data_direction dir)
{
unsigned long addr = (unsigned long)ptr;
if (dir == DMA_FROM_DEVICE)
invalidate_dcache_range(addr, addr + size);
else
flush_dcache_range(addr, addr + size);
return addr;
}
static void __dma_unmap_single(dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
if (dir != DMA_TO_DEVICE)
invalidate_dcache_range(addr, addr + size);
}
static int matsu_sd_check_error(struct udevice *dev)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
u32 info2 = matsu_sd_readl(priv, MATSU_SD_INFO2);
if (info2 & MATSU_SD_INFO2_ERR_RTO) {
/*
* TIMEOUT must be returned for unsupported command. Do not
* display error log since this might be a part of sequence to
* distinguish between SD and MMC.
*/
return -ETIMEDOUT;
}
if (info2 & MATSU_SD_INFO2_ERR_TO) {
dev_err(dev, "timeout error\n");
return -ETIMEDOUT;
}
if (info2 & (MATSU_SD_INFO2_ERR_END | MATSU_SD_INFO2_ERR_CRC |
MATSU_SD_INFO2_ERR_IDX)) {
dev_err(dev, "communication out of sync\n");
return -EILSEQ;
}
if (info2 & (MATSU_SD_INFO2_ERR_ILA | MATSU_SD_INFO2_ERR_ILR |
MATSU_SD_INFO2_ERR_ILW)) {
dev_err(dev, "illegal access\n");
return -EIO;
}
return 0;
}
static int matsu_sd_wait_for_irq(struct udevice *dev, unsigned int reg,
u32 flag)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
long wait = 1000000;
int ret;
while (!(matsu_sd_readl(priv, reg) & flag)) {
if (wait-- < 0) {
dev_err(dev, "timeout\n");
return -ETIMEDOUT;
}
ret = matsu_sd_check_error(dev);
if (ret)
return ret;
udelay(1);
}
return 0;
}
#define matsu_pio_read_fifo(__width, __suffix) \
static void matsu_pio_read_fifo_##__width(struct matsu_sd_priv *priv, \
char *pbuf, uint blksz) \
{ \
u##__width *buf = (u##__width *)pbuf; \
int i; \
\
if (likely(IS_ALIGNED((uintptr_t)buf, ((__width) / 8)))) { \
for (i = 0; i < blksz / ((__width) / 8); i++) { \
*buf++ = matsu_sd_read##__suffix(priv, \
MATSU_SD_BUF); \
} \
} else { \
for (i = 0; i < blksz / ((__width) / 8); i++) { \
u##__width data; \
data = matsu_sd_read##__suffix(priv, \
MATSU_SD_BUF); \
put_unaligned(data, buf++); \
} \
} \
}
matsu_pio_read_fifo(64, q)
matsu_pio_read_fifo(32, l)
matsu_pio_read_fifo(16, w)
static int matsu_sd_pio_read_one_block(struct udevice *dev, char *pbuf,
uint blocksize)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
int ret;
/* wait until the buffer is filled with data */
ret = matsu_sd_wait_for_irq(dev, MATSU_SD_INFO2,
MATSU_SD_INFO2_BRE);
if (ret)
return ret;
/*
* Clear the status flag _before_ read the buffer out because
* MATSU_SD_INFO2_BRE is edge-triggered, not level-triggered.
*/
matsu_sd_writel(priv, 0, MATSU_SD_INFO2);
if (priv->caps & MATSU_SD_CAP_64BIT)
matsu_pio_read_fifo_64(priv, pbuf, blocksize);
else if (priv->caps & MATSU_SD_CAP_16BIT)
matsu_pio_read_fifo_16(priv, pbuf, blocksize);
else
matsu_pio_read_fifo_32(priv, pbuf, blocksize);
return 0;
}
#define matsu_pio_write_fifo(__width, __suffix) \
static void matsu_pio_write_fifo_##__width(struct matsu_sd_priv *priv, \
const char *pbuf, uint blksz)\
{ \
const u##__width *buf = (const u##__width *)pbuf; \
int i; \
\
if (likely(IS_ALIGNED((uintptr_t)buf, ((__width) / 8)))) { \
for (i = 0; i < blksz / ((__width) / 8); i++) { \
matsu_sd_write##__suffix(priv, *buf++, \
MATSU_SD_BUF); \
} \
} else { \
for (i = 0; i < blksz / ((__width) / 8); i++) { \
u##__width data = get_unaligned(buf++); \
matsu_sd_write##__suffix(priv, data, \
MATSU_SD_BUF); \
} \
} \
}
matsu_pio_write_fifo(64, q)
matsu_pio_write_fifo(32, l)
matsu_pio_write_fifo(16, w)
static int matsu_sd_pio_write_one_block(struct udevice *dev,
const char *pbuf, uint blocksize)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
int ret;
/* wait until the buffer becomes empty */
ret = matsu_sd_wait_for_irq(dev, MATSU_SD_INFO2,
MATSU_SD_INFO2_BWE);
if (ret)
return ret;
matsu_sd_writel(priv, 0, MATSU_SD_INFO2);
if (priv->caps & MATSU_SD_CAP_64BIT)
matsu_pio_write_fifo_64(priv, pbuf, blocksize);
else if (priv->caps & MATSU_SD_CAP_16BIT)
matsu_pio_write_fifo_16(priv, pbuf, blocksize);
else
matsu_pio_write_fifo_32(priv, pbuf, blocksize);
return 0;
}
static int matsu_sd_pio_xfer(struct udevice *dev, struct mmc_data *data)
{
const char *src = data->src;
char *dest = data->dest;
int i, ret;
for (i = 0; i < data->blocks; i++) {
if (data->flags & MMC_DATA_READ)
ret = matsu_sd_pio_read_one_block(dev, dest,
data->blocksize);
else
ret = matsu_sd_pio_write_one_block(dev, src,
data->blocksize);
if (ret)
return ret;
if (data->flags & MMC_DATA_READ)
dest += data->blocksize;
else
src += data->blocksize;
}
return 0;
}
static void matsu_sd_dma_start(struct matsu_sd_priv *priv,
dma_addr_t dma_addr)
{
u32 tmp;
matsu_sd_writel(priv, 0, MATSU_SD_DMA_INFO1);
matsu_sd_writel(priv, 0, MATSU_SD_DMA_INFO2);
/* enable DMA */
tmp = matsu_sd_readl(priv, MATSU_SD_EXTMODE);
tmp |= MATSU_SD_EXTMODE_DMA_EN;
matsu_sd_writel(priv, tmp, MATSU_SD_EXTMODE);
matsu_sd_writel(priv, dma_addr & U32_MAX, MATSU_SD_DMA_ADDR_L);
/* suppress the warning "right shift count >= width of type" */
dma_addr >>= min_t(int, 32, 8 * sizeof(dma_addr));
matsu_sd_writel(priv, dma_addr & U32_MAX, MATSU_SD_DMA_ADDR_H);
matsu_sd_writel(priv, MATSU_SD_DMA_CTL_START, MATSU_SD_DMA_CTL);
}
static int matsu_sd_dma_wait_for_irq(struct udevice *dev, u32 flag,
unsigned int blocks)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
long wait = 1000000 + 10 * blocks;
while (!(matsu_sd_readl(priv, MATSU_SD_DMA_INFO1) & flag)) {
if (wait-- < 0) {
dev_err(dev, "timeout during DMA\n");
return -ETIMEDOUT;
}
udelay(10);
}
if (matsu_sd_readl(priv, MATSU_SD_DMA_INFO2)) {
dev_err(dev, "error during DMA\n");
return -EIO;
}
return 0;
}
static int matsu_sd_dma_xfer(struct udevice *dev, struct mmc_data *data)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
size_t len = data->blocks * data->blocksize;
void *buf;
enum dma_data_direction dir;
dma_addr_t dma_addr;
u32 poll_flag, tmp;
int ret;
tmp = matsu_sd_readl(priv, MATSU_SD_DMA_MODE);
if (data->flags & MMC_DATA_READ) {
buf = data->dest;
dir = DMA_FROM_DEVICE;
/*
* The DMA READ completion flag position differs on Socionext
* and Renesas SoCs. It is bit 20 on Socionext SoCs and using
* bit 17 is a hardware bug and forbidden. It is bit 17 on
* Renesas SoCs and bit 20 does not work on them.
*/
poll_flag = (priv->caps & MATSU_SD_CAP_RCAR) ?
MATSU_SD_DMA_INFO1_END_RD :
MATSU_SD_DMA_INFO1_END_RD2;
tmp |= MATSU_SD_DMA_MODE_DIR_RD;
} else {
buf = (void *)data->src;
dir = DMA_TO_DEVICE;
poll_flag = MATSU_SD_DMA_INFO1_END_WR;
tmp &= ~MATSU_SD_DMA_MODE_DIR_RD;
}
matsu_sd_writel(priv, tmp, MATSU_SD_DMA_MODE);
dma_addr = __dma_map_single(buf, len, dir);
matsu_sd_dma_start(priv, dma_addr);
ret = matsu_sd_dma_wait_for_irq(dev, poll_flag, data->blocks);
__dma_unmap_single(dma_addr, len, dir);
return ret;
}
/* check if the address is DMA'able */
static bool matsu_sd_addr_is_dmaable(unsigned long addr)
{
if (!IS_ALIGNED(addr, MATSU_SD_DMA_MINALIGN))
return false;
#if defined(CONFIG_ARCH_UNIPHIER) && !defined(CONFIG_ARM64) && \
defined(CONFIG_SPL_BUILD)
/*
* For UniPhier ARMv7 SoCs, the stack is allocated in the locked ways
* of L2, which is unreachable from the DMA engine.
*/
if (addr < CONFIG_SPL_STACK)
return false;
#endif
return true;
}
int matsu_sd_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
int ret;
u32 tmp;
if (matsu_sd_readl(priv, MATSU_SD_INFO2) & MATSU_SD_INFO2_CBSY) {
dev_err(dev, "command busy\n");
return -EBUSY;
}
/* clear all status flags */
matsu_sd_writel(priv, 0, MATSU_SD_INFO1);
matsu_sd_writel(priv, 0, MATSU_SD_INFO2);
/* disable DMA once */
tmp = matsu_sd_readl(priv, MATSU_SD_EXTMODE);
tmp &= ~MATSU_SD_EXTMODE_DMA_EN;
matsu_sd_writel(priv, tmp, MATSU_SD_EXTMODE);
matsu_sd_writel(priv, cmd->cmdarg, MATSU_SD_ARG);
tmp = cmd->cmdidx;
if (data) {
matsu_sd_writel(priv, data->blocksize, MATSU_SD_SIZE);
matsu_sd_writel(priv, data->blocks, MATSU_SD_SECCNT);
/* Do not send CMD12 automatically */
tmp |= MATSU_SD_CMD_NOSTOP | MATSU_SD_CMD_DATA;
if (data->blocks > 1)
tmp |= MATSU_SD_CMD_MULTI;
if (data->flags & MMC_DATA_READ)
tmp |= MATSU_SD_CMD_RD;
}
/*
* Do not use the response type auto-detection on this hardware.
* CMD8, for example, has different response types on SD and eMMC,
* while this controller always assumes the response type for SD.
* Set the response type manually.
*/
switch (cmd->resp_type) {
case MMC_RSP_NONE:
tmp |= MATSU_SD_CMD_RSP_NONE;
break;
case MMC_RSP_R1:
tmp |= MATSU_SD_CMD_RSP_R1;
break;
case MMC_RSP_R1b:
tmp |= MATSU_SD_CMD_RSP_R1B;
break;
case MMC_RSP_R2:
tmp |= MATSU_SD_CMD_RSP_R2;
break;
case MMC_RSP_R3:
tmp |= MATSU_SD_CMD_RSP_R3;
break;
default:
dev_err(dev, "unknown response type\n");
return -EINVAL;
}
dev_dbg(dev, "sending CMD%d (SD_CMD=%08x, SD_ARG=%08x)\n",
cmd->cmdidx, tmp, cmd->cmdarg);
matsu_sd_writel(priv, tmp, MATSU_SD_CMD);
ret = matsu_sd_wait_for_irq(dev, MATSU_SD_INFO1,
MATSU_SD_INFO1_RSP);
if (ret)
return ret;
if (cmd->resp_type & MMC_RSP_136) {
u32 rsp_127_104 = matsu_sd_readl(priv, MATSU_SD_RSP76);
u32 rsp_103_72 = matsu_sd_readl(priv, MATSU_SD_RSP54);
u32 rsp_71_40 = matsu_sd_readl(priv, MATSU_SD_RSP32);
u32 rsp_39_8 = matsu_sd_readl(priv, MATSU_SD_RSP10);
cmd->response[0] = ((rsp_127_104 & 0x00ffffff) << 8) |
((rsp_103_72 & 0xff000000) >> 24);
cmd->response[1] = ((rsp_103_72 & 0x00ffffff) << 8) |
((rsp_71_40 & 0xff000000) >> 24);
cmd->response[2] = ((rsp_71_40 & 0x00ffffff) << 8) |
((rsp_39_8 & 0xff000000) >> 24);
cmd->response[3] = (rsp_39_8 & 0xffffff) << 8;
} else {
/* bit 39-8 */
cmd->response[0] = matsu_sd_readl(priv, MATSU_SD_RSP10);
}
if (data) {
/* use DMA if the HW supports it and the buffer is aligned */
if (priv->caps & MATSU_SD_CAP_DMA_INTERNAL &&
matsu_sd_addr_is_dmaable((long)data->src))
ret = matsu_sd_dma_xfer(dev, data);
else
ret = matsu_sd_pio_xfer(dev, data);
ret = matsu_sd_wait_for_irq(dev, MATSU_SD_INFO1,
MATSU_SD_INFO1_CMP);
if (ret)
return ret;
}
matsu_sd_wait_for_irq(dev, MATSU_SD_INFO2, MATSU_SD_INFO2_SCLKDIVEN);
return ret;
}
static int matsu_sd_set_bus_width(struct matsu_sd_priv *priv,
struct mmc *mmc)
{
u32 val, tmp;
switch (mmc->bus_width) {
case 0:
case 1:
val = MATSU_SD_OPTION_WIDTH_1;
break;
case 4:
val = MATSU_SD_OPTION_WIDTH_4;
break;
case 8:
val = MATSU_SD_OPTION_WIDTH_8;
break;
default:
return -EINVAL;
}
tmp = matsu_sd_readl(priv, MATSU_SD_OPTION);
tmp &= ~MATSU_SD_OPTION_WIDTH_MASK;
tmp |= val;
matsu_sd_writel(priv, tmp, MATSU_SD_OPTION);
return 0;
}
static void matsu_sd_set_ddr_mode(struct matsu_sd_priv *priv,
struct mmc *mmc)
{
u32 tmp;
tmp = matsu_sd_readl(priv, MATSU_SD_IF_MODE);
if (mmc->ddr_mode)
tmp |= MATSU_SD_IF_MODE_DDR;
else
tmp &= ~MATSU_SD_IF_MODE_DDR;
matsu_sd_writel(priv, tmp, MATSU_SD_IF_MODE);
}
static void matsu_sd_set_clk_rate(struct matsu_sd_priv *priv,
struct mmc *mmc)
{
unsigned int divisor;
u32 val, tmp;
if (!mmc->clock)
return;
divisor = DIV_ROUND_UP(priv->mclk, mmc->clock);
if (divisor <= 1)
val = (priv->caps & MATSU_SD_CAP_RCAR) ?
MATSU_SD_CLKCTL_RCAR_DIV1 : MATSU_SD_CLKCTL_DIV1;
else if (divisor <= 2)
val = MATSU_SD_CLKCTL_DIV2;
else if (divisor <= 4)
val = MATSU_SD_CLKCTL_DIV4;
else if (divisor <= 8)
val = MATSU_SD_CLKCTL_DIV8;
else if (divisor <= 16)
val = MATSU_SD_CLKCTL_DIV16;
else if (divisor <= 32)
val = MATSU_SD_CLKCTL_DIV32;
else if (divisor <= 64)
val = MATSU_SD_CLKCTL_DIV64;
else if (divisor <= 128)
val = MATSU_SD_CLKCTL_DIV128;
else if (divisor <= 256)
val = MATSU_SD_CLKCTL_DIV256;
else if (divisor <= 512 || !(priv->caps & MATSU_SD_CAP_DIV1024))
val = MATSU_SD_CLKCTL_DIV512;
else
val = MATSU_SD_CLKCTL_DIV1024;
tmp = matsu_sd_readl(priv, MATSU_SD_CLKCTL);
if (tmp & MATSU_SD_CLKCTL_SCLKEN &&
(tmp & MATSU_SD_CLKCTL_DIV_MASK) == val)
return;
/* stop the clock before changing its rate to avoid a glitch signal */
tmp &= ~MATSU_SD_CLKCTL_SCLKEN;
matsu_sd_writel(priv, tmp, MATSU_SD_CLKCTL);
tmp &= ~MATSU_SD_CLKCTL_DIV_MASK;
tmp |= val | MATSU_SD_CLKCTL_OFFEN;
matsu_sd_writel(priv, tmp, MATSU_SD_CLKCTL);
tmp |= MATSU_SD_CLKCTL_SCLKEN;
matsu_sd_writel(priv, tmp, MATSU_SD_CLKCTL);
udelay(1000);
}
static void matsu_sd_set_pins(struct udevice *dev)
{
__maybe_unused struct mmc *mmc = mmc_get_mmc_dev(dev);
#ifdef CONFIG_DM_REGULATOR
struct matsu_sd_priv *priv = dev_get_priv(dev);
if (priv->vqmmc_dev) {
if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180)
regulator_set_value(priv->vqmmc_dev, 1800000);
else
regulator_set_value(priv->vqmmc_dev, 3300000);
regulator_set_enable(priv->vqmmc_dev, true);
}
#endif
#ifdef CONFIG_PINCTRL
switch (mmc->selected_mode) {
case MMC_LEGACY:
case SD_LEGACY:
case MMC_HS:
case SD_HS:
case MMC_HS_52:
case MMC_DDR_52:
pinctrl_select_state(dev, "default");
break;
case UHS_SDR12:
case UHS_SDR25:
case UHS_SDR50:
case UHS_DDR50:
case UHS_SDR104:
case MMC_HS_200:
pinctrl_select_state(dev, "state_uhs");
break;
default:
break;
}
#endif
}
int matsu_sd_set_ios(struct udevice *dev)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
struct mmc *mmc = mmc_get_mmc_dev(dev);
int ret;
dev_dbg(dev, "clock %uHz, DDRmode %d, width %u\n",
mmc->clock, mmc->ddr_mode, mmc->bus_width);
ret = matsu_sd_set_bus_width(priv, mmc);
if (ret)
return ret;
matsu_sd_set_ddr_mode(priv, mmc);
matsu_sd_set_clk_rate(priv, mmc);
matsu_sd_set_pins(dev);
return 0;
}
int matsu_sd_get_cd(struct udevice *dev)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
if (priv->caps & MATSU_SD_CAP_NONREMOVABLE)
return 1;
return !!(matsu_sd_readl(priv, MATSU_SD_INFO1) &
MATSU_SD_INFO1_CD);
}
static void matsu_sd_host_init(struct matsu_sd_priv *priv)
{
u32 tmp;
/* soft reset of the host */
tmp = matsu_sd_readl(priv, MATSU_SD_SOFT_RST);
tmp &= ~MATSU_SD_SOFT_RST_RSTX;
matsu_sd_writel(priv, tmp, MATSU_SD_SOFT_RST);
tmp |= MATSU_SD_SOFT_RST_RSTX;
matsu_sd_writel(priv, tmp, MATSU_SD_SOFT_RST);
/* FIXME: implement eMMC hw_reset */
matsu_sd_writel(priv, MATSU_SD_STOP_SEC, MATSU_SD_STOP);
/*
* Connected to 32bit AXI.
* This register dropped backward compatibility at version 0x10.
* Write an appropriate value depending on the IP version.
*/
if (priv->version >= 0x10)
matsu_sd_writel(priv, 0x101, MATSU_SD_HOST_MODE);
else
matsu_sd_writel(priv, 0x0, MATSU_SD_HOST_MODE);
if (priv->caps & MATSU_SD_CAP_DMA_INTERNAL) {
tmp = matsu_sd_readl(priv, MATSU_SD_DMA_MODE);
tmp |= MATSU_SD_DMA_MODE_ADDR_INC;
matsu_sd_writel(priv, tmp, MATSU_SD_DMA_MODE);
}
}
int matsu_sd_bind(struct udevice *dev)
{
struct matsu_sd_plat *plat = dev_get_platdata(dev);
return mmc_bind(dev, &plat->mmc, &plat->cfg);
}
int matsu_sd_probe(struct udevice *dev, u32 quirks)
{
struct matsu_sd_plat *plat = dev_get_platdata(dev);
struct matsu_sd_priv *priv = dev_get_priv(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
fdt_addr_t base;
struct clk clk;
int ret;
base = devfdt_get_addr(dev);
if (base == FDT_ADDR_T_NONE)
return -EINVAL;
priv->regbase = devm_ioremap(dev, base, SZ_2K);
if (!priv->regbase)
return -ENOMEM;
#ifdef CONFIG_DM_REGULATOR
device_get_supply_regulator(dev, "vqmmc-supply", &priv->vqmmc_dev);
#endif
ret = clk_get_by_index(dev, 0, &clk);
if (ret < 0) {
dev_err(dev, "failed to get host clock\n");
return ret;
}
/* set to max rate */
priv->mclk = clk_set_rate(&clk, ULONG_MAX);
if (IS_ERR_VALUE(priv->mclk)) {
dev_err(dev, "failed to set rate for host clock\n");
clk_free(&clk);
return priv->mclk;
}
ret = clk_enable(&clk);
clk_free(&clk);
if (ret) {
dev_err(dev, "failed to enable host clock\n");
return ret;
}
ret = mmc_of_parse(dev, &plat->cfg);
if (ret < 0) {
dev_err(dev, "failed to parse host caps\n");
return ret;
}
plat->cfg.name = dev->name;
plat->cfg.host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
if (quirks)
priv->caps = quirks;
priv->version = matsu_sd_readl(priv, MATSU_SD_VERSION) &
MATSU_SD_VERSION_IP;
dev_dbg(dev, "version %x\n", priv->version);
if (priv->version >= 0x10) {
priv->caps |= MATSU_SD_CAP_DMA_INTERNAL;
priv->caps |= MATSU_SD_CAP_DIV1024;
}
if (fdt_get_property(gd->fdt_blob, dev_of_offset(dev), "non-removable",
NULL))
priv->caps |= MATSU_SD_CAP_NONREMOVABLE;
matsu_sd_host_init(priv);
plat->cfg.voltages = MMC_VDD_165_195 | MMC_VDD_32_33 | MMC_VDD_33_34;
plat->cfg.f_min = priv->mclk /
(priv->caps & MATSU_SD_CAP_DIV1024 ? 1024 : 512);
plat->cfg.f_max = priv->mclk;
plat->cfg.b_max = U32_MAX; /* max value of MATSU_SD_SECCNT */
upriv->mmc = &plat->mmc;
return 0;
}

@ -0,0 +1,151 @@
/*
* Copyright (C) 2016 Socionext Inc.
* Author: Masahiro Yamada <yamada.masahiro@socionext.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef __MATSUSHITA_COMMON_H__
#define __MATSUSHITA_COMMON_H__
#define MATSU_SD_CMD 0x000 /* command */
#define MATSU_SD_CMD_NOSTOP BIT(14) /* No automatic CMD12 issue */
#define MATSU_SD_CMD_MULTI BIT(13) /* multiple block transfer */
#define MATSU_SD_CMD_RD BIT(12) /* 1: read, 0: write */
#define MATSU_SD_CMD_DATA BIT(11) /* data transfer */
#define MATSU_SD_CMD_APP BIT(6) /* ACMD preceded by CMD55 */
#define MATSU_SD_CMD_NORMAL (0 << 8)/* auto-detect of resp-type */
#define MATSU_SD_CMD_RSP_NONE (3 << 8)/* response: none */
#define MATSU_SD_CMD_RSP_R1 (4 << 8)/* response: R1, R5, R6, R7 */
#define MATSU_SD_CMD_RSP_R1B (5 << 8)/* response: R1b, R5b */
#define MATSU_SD_CMD_RSP_R2 (6 << 8)/* response: R2 */
#define MATSU_SD_CMD_RSP_R3 (7 << 8)/* response: R3, R4 */
#define MATSU_SD_ARG 0x008 /* command argument */
#define MATSU_SD_STOP 0x010 /* stop action control */
#define MATSU_SD_STOP_SEC BIT(8) /* use sector count */
#define MATSU_SD_STOP_STP BIT(0) /* issue CMD12 */
#define MATSU_SD_SECCNT 0x014 /* sector counter */
#define MATSU_SD_RSP10 0x018 /* response[39:8] */
#define MATSU_SD_RSP32 0x020 /* response[71:40] */
#define MATSU_SD_RSP54 0x028 /* response[103:72] */
#define MATSU_SD_RSP76 0x030 /* response[127:104] */
#define MATSU_SD_INFO1 0x038 /* IRQ status 1 */
#define MATSU_SD_INFO1_CD BIT(5) /* state of card detect */
#define MATSU_SD_INFO1_INSERT BIT(4) /* card inserted */
#define MATSU_SD_INFO1_REMOVE BIT(3) /* card removed */
#define MATSU_SD_INFO1_CMP BIT(2) /* data complete */
#define MATSU_SD_INFO1_RSP BIT(0) /* response complete */
#define MATSU_SD_INFO2 0x03c /* IRQ status 2 */
#define MATSU_SD_INFO2_ERR_ILA BIT(15) /* illegal access err */
#define MATSU_SD_INFO2_CBSY BIT(14) /* command busy */
#define MATSU_SD_INFO2_SCLKDIVEN BIT(13) /* command setting reg ena */
#define MATSU_SD_INFO2_BWE BIT(9) /* write buffer ready */
#define MATSU_SD_INFO2_BRE BIT(8) /* read buffer ready */
#define MATSU_SD_INFO2_DAT0 BIT(7) /* SDDAT0 */
#define MATSU_SD_INFO2_ERR_RTO BIT(6) /* response time out */
#define MATSU_SD_INFO2_ERR_ILR BIT(5) /* illegal read err */
#define MATSU_SD_INFO2_ERR_ILW BIT(4) /* illegal write err */
#define MATSU_SD_INFO2_ERR_TO BIT(3) /* time out error */
#define MATSU_SD_INFO2_ERR_END BIT(2) /* END bit error */
#define MATSU_SD_INFO2_ERR_CRC BIT(1) /* CRC error */
#define MATSU_SD_INFO2_ERR_IDX BIT(0) /* cmd index error */
#define MATSU_SD_INFO1_MASK 0x040
#define MATSU_SD_INFO2_MASK 0x044
#define MATSU_SD_CLKCTL 0x048 /* clock divisor */
#define MATSU_SD_CLKCTL_DIV_MASK 0x104ff
#define MATSU_SD_CLKCTL_DIV1024 BIT(16) /* SDCLK = CLK / 1024 */
#define MATSU_SD_CLKCTL_DIV512 BIT(7) /* SDCLK = CLK / 512 */
#define MATSU_SD_CLKCTL_DIV256 BIT(6) /* SDCLK = CLK / 256 */
#define MATSU_SD_CLKCTL_DIV128 BIT(5) /* SDCLK = CLK / 128 */
#define MATSU_SD_CLKCTL_DIV64 BIT(4) /* SDCLK = CLK / 64 */
#define MATSU_SD_CLKCTL_DIV32 BIT(3) /* SDCLK = CLK / 32 */
#define MATSU_SD_CLKCTL_DIV16 BIT(2) /* SDCLK = CLK / 16 */
#define MATSU_SD_CLKCTL_DIV8 BIT(1) /* SDCLK = CLK / 8 */
#define MATSU_SD_CLKCTL_DIV4 BIT(0) /* SDCLK = CLK / 4 */
#define MATSU_SD_CLKCTL_DIV2 0 /* SDCLK = CLK / 2 */
#define MATSU_SD_CLKCTL_DIV1 BIT(10) /* SDCLK = CLK */
#define MATSU_SD_CLKCTL_RCAR_DIV1 0xff /* SDCLK = CLK (RCar ver.) */
#define MATSU_SD_CLKCTL_OFFEN BIT(9) /* stop SDCLK when unused */
#define MATSU_SD_CLKCTL_SCLKEN BIT(8) /* SDCLK output enable */
#define MATSU_SD_SIZE 0x04c /* block size */
#define MATSU_SD_OPTION 0x050
#define MATSU_SD_OPTION_WIDTH_MASK (5 << 13)
#define MATSU_SD_OPTION_WIDTH_1 (4 << 13)
#define MATSU_SD_OPTION_WIDTH_4 (0 << 13)
#define MATSU_SD_OPTION_WIDTH_8 (1 << 13)
#define MATSU_SD_BUF 0x060 /* read/write buffer */
#define MATSU_SD_EXTMODE 0x1b0
#define MATSU_SD_EXTMODE_DMA_EN BIT(1) /* transfer 1: DMA, 0: pio */
#define MATSU_SD_SOFT_RST 0x1c0
#define MATSU_SD_SOFT_RST_RSTX BIT(0) /* reset deassert */
#define MATSU_SD_VERSION 0x1c4 /* version register */
#define MATSU_SD_VERSION_IP 0xff /* IP version */
#define MATSU_SD_HOST_MODE 0x1c8
#define MATSU_SD_IF_MODE 0x1cc
#define MATSU_SD_IF_MODE_DDR BIT(0) /* DDR mode */
#define MATSU_SD_VOLT 0x1e4 /* voltage switch */
#define MATSU_SD_VOLT_MASK (3 << 0)
#define MATSU_SD_VOLT_OFF (0 << 0)
#define MATSU_SD_VOLT_330 (1 << 0)/* 3.3V signal */
#define MATSU_SD_VOLT_180 (2 << 0)/* 1.8V signal */
#define MATSU_SD_DMA_MODE 0x410
#define MATSU_SD_DMA_MODE_DIR_RD BIT(16) /* 1: from device, 0: to dev */
#define MATSU_SD_DMA_MODE_ADDR_INC BIT(0) /* 1: address inc, 0: fixed */
#define MATSU_SD_DMA_CTL 0x414
#define MATSU_SD_DMA_CTL_START BIT(0) /* start DMA (auto cleared) */
#define MATSU_SD_DMA_RST 0x418
#define MATSU_SD_DMA_RST_RD BIT(9)
#define MATSU_SD_DMA_RST_WR BIT(8)
#define MATSU_SD_DMA_INFO1 0x420
#define MATSU_SD_DMA_INFO1_END_RD2 BIT(20) /* DMA from device is complete (uniphier) */
#define MATSU_SD_DMA_INFO1_END_RD BIT(17) /* DMA from device is complete (renesas) */
#define MATSU_SD_DMA_INFO1_END_WR BIT(16) /* DMA to device is complete */
#define MATSU_SD_DMA_INFO1_MASK 0x424
#define MATSU_SD_DMA_INFO2 0x428
#define MATSU_SD_DMA_INFO2_ERR_RD BIT(17)
#define MATSU_SD_DMA_INFO2_ERR_WR BIT(16)
#define MATSU_SD_DMA_INFO2_MASK 0x42c
#define MATSU_SD_DMA_ADDR_L 0x440
#define MATSU_SD_DMA_ADDR_H 0x444
/* alignment required by the DMA engine of this controller */
#define MATSU_SD_DMA_MINALIGN 0x10
struct matsu_sd_plat {
struct mmc_config cfg;
struct mmc mmc;
};
struct matsu_sd_priv {
void __iomem *regbase;
unsigned long mclk;
unsigned int version;
u32 caps;
#define MATSU_SD_CAP_NONREMOVABLE BIT(0) /* Nonremovable e.g. eMMC */
#define MATSU_SD_CAP_DMA_INTERNAL BIT(1) /* have internal DMA engine */
#define MATSU_SD_CAP_DIV1024 BIT(2) /* divisor 1024 is available */
#define MATSU_SD_CAP_64BIT BIT(3) /* Controller is 64bit */
#define MATSU_SD_CAP_16BIT BIT(4) /* Controller is 16bit */
#define MATSU_SD_CAP_RCAR_GEN2 BIT(5) /* Renesas RCar version of IP */
#define MATSU_SD_CAP_RCAR_GEN3 BIT(6) /* Renesas RCar version of IP */
#define MATSU_SD_CAP_RCAR_UHS BIT(7) /* Renesas RCar UHS/SDR modes */
#define MATSU_SD_CAP_RCAR \
(MATSU_SD_CAP_RCAR_GEN2 | MATSU_SD_CAP_RCAR_GEN3)
#ifdef CONFIG_DM_REGULATOR
struct udevice *vqmmc_dev;
#endif
};
int matsu_sd_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data);
int matsu_sd_set_ios(struct udevice *dev);
int matsu_sd_get_cd(struct udevice *dev);
int matsu_sd_bind(struct udevice *dev);
int matsu_sd_probe(struct udevice *dev, u32 quirks);
u32 matsu_sd_readl(struct matsu_sd_priv *priv, unsigned int reg);
void matsu_sd_writel(struct matsu_sd_priv *priv,
u32 val, unsigned int reg);
#endif /* __MATSUSHITA_COMMON_H__ */

@ -0,0 +1,368 @@
/*
* Copyright (C) 2018 Marek Vasut <marek.vasut@gmail.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <clk.h>
#include <fdtdec.h>
#include <mmc.h>
#include <dm.h>
#include <linux/compat.h>
#include <linux/dma-direction.h>
#include <linux/io.h>
#include <linux/sizes.h>
#include <power/regulator.h>
#include <asm/unaligned.h>
#include "matsushita-common.h"
#if CONFIG_IS_ENABLED(MMC_HS200_SUPPORT)
/* SCC registers */
#define RENESAS_SDHI_SCC_DTCNTL 0x800
#define RENESAS_SDHI_SCC_DTCNTL_TAPEN BIT(0)
#define RENESAS_SDHI_SCC_DTCNTL_TAPNUM_SHIFT 16
#define RENESAS_SDHI_SCC_DTCNTL_TAPNUM_MASK 0xff
#define RENESAS_SDHI_SCC_TAPSET 0x804
#define RENESAS_SDHI_SCC_DT2FF 0x808
#define RENESAS_SDHI_SCC_CKSEL 0x80c
#define RENESAS_SDHI_SCC_CKSEL_DTSEL BIT(0)
#define RENESAS_SDHI_SCC_RVSCNTL 0x810
#define RENESAS_SDHI_SCC_RVSCNTL_RVSEN BIT(0)
#define RENESAS_SDHI_SCC_RVSREQ 0x814
#define RENESAS_SDHI_SCC_RVSREQ_RVSERR BIT(2)
#define RENESAS_SDHI_SCC_SMPCMP 0x818
#define RENESAS_SDHI_SCC_TMPPORT2 0x81c
#define RENESAS_SDHI_MAX_TAP 3
static unsigned int renesas_sdhi_init_tuning(struct matsu_sd_priv *priv)
{
u32 reg;
/* Initialize SCC */
matsu_sd_writel(priv, 0, MATSU_SD_INFO1);
reg = matsu_sd_readl(priv, MATSU_SD_CLKCTL);
reg &= ~MATSU_SD_CLKCTL_SCLKEN;
matsu_sd_writel(priv, reg, MATSU_SD_CLKCTL);
/* Set sampling clock selection range */
matsu_sd_writel(priv, 0x8 << RENESAS_SDHI_SCC_DTCNTL_TAPNUM_SHIFT,
RENESAS_SDHI_SCC_DTCNTL);
reg = matsu_sd_readl(priv, RENESAS_SDHI_SCC_DTCNTL);
reg |= RENESAS_SDHI_SCC_DTCNTL_TAPEN;
matsu_sd_writel(priv, reg, RENESAS_SDHI_SCC_DTCNTL);
reg = matsu_sd_readl(priv, RENESAS_SDHI_SCC_CKSEL);
reg |= RENESAS_SDHI_SCC_CKSEL_DTSEL;
matsu_sd_writel(priv, reg, RENESAS_SDHI_SCC_CKSEL);
reg = matsu_sd_readl(priv, RENESAS_SDHI_SCC_RVSCNTL);
reg &= ~RENESAS_SDHI_SCC_RVSCNTL_RVSEN;
matsu_sd_writel(priv, reg, RENESAS_SDHI_SCC_RVSCNTL);
matsu_sd_writel(priv, 0x300 /* scc_tappos */,
RENESAS_SDHI_SCC_DT2FF);
reg = matsu_sd_readl(priv, MATSU_SD_CLKCTL);
reg |= MATSU_SD_CLKCTL_SCLKEN;
matsu_sd_writel(priv, reg, MATSU_SD_CLKCTL);
/* Read TAPNUM */
return (matsu_sd_readl(priv, RENESAS_SDHI_SCC_DTCNTL) >>
RENESAS_SDHI_SCC_DTCNTL_TAPNUM_SHIFT) &
RENESAS_SDHI_SCC_DTCNTL_TAPNUM_MASK;
}
static void renesas_sdhi_reset_tuning(struct matsu_sd_priv *priv)
{
u32 reg;
/* Reset SCC */
reg = matsu_sd_readl(priv, MATSU_SD_CLKCTL);
reg &= ~MATSU_SD_CLKCTL_SCLKEN;
matsu_sd_writel(priv, reg, MATSU_SD_CLKCTL);
reg = matsu_sd_readl(priv, RENESAS_SDHI_SCC_CKSEL);
reg &= ~RENESAS_SDHI_SCC_CKSEL_DTSEL;
matsu_sd_writel(priv, reg, RENESAS_SDHI_SCC_CKSEL);
reg = matsu_sd_readl(priv, MATSU_SD_CLKCTL);
reg |= MATSU_SD_CLKCTL_SCLKEN;
matsu_sd_writel(priv, reg, MATSU_SD_CLKCTL);
reg = matsu_sd_readl(priv, RENESAS_SDHI_SCC_RVSCNTL);
reg &= ~RENESAS_SDHI_SCC_RVSCNTL_RVSEN;
matsu_sd_writel(priv, reg, RENESAS_SDHI_SCC_RVSCNTL);
reg = matsu_sd_readl(priv, RENESAS_SDHI_SCC_RVSCNTL);
reg &= ~RENESAS_SDHI_SCC_RVSCNTL_RVSEN;
matsu_sd_writel(priv, reg, RENESAS_SDHI_SCC_RVSCNTL);
}
static void renesas_sdhi_prepare_tuning(struct matsu_sd_priv *priv,
unsigned long tap)
{
/* Set sampling clock position */
matsu_sd_writel(priv, tap, RENESAS_SDHI_SCC_TAPSET);
}
static unsigned int renesas_sdhi_compare_scc_data(struct matsu_sd_priv *priv)
{
/* Get comparison of sampling data */
return matsu_sd_readl(priv, RENESAS_SDHI_SCC_SMPCMP);
}
static int renesas_sdhi_select_tuning(struct matsu_sd_priv *priv,
unsigned int tap_num, unsigned int taps,
unsigned int smpcmp)
{
unsigned long tap_cnt; /* counter of tuning success */
unsigned long tap_set; /* tap position */
unsigned long tap_start;/* start position of tuning success */
unsigned long tap_end; /* end position of tuning success */
unsigned long ntap; /* temporary counter of tuning success */
unsigned long match_cnt;/* counter of matching data */
unsigned long i;
bool select = false;
u32 reg;
/* Clear SCC_RVSREQ */
matsu_sd_writel(priv, 0, RENESAS_SDHI_SCC_RVSREQ);
/* Merge the results */
for (i = 0; i < tap_num * 2; i++) {
if (!(taps & BIT(i))) {
taps &= ~BIT(i % tap_num);
taps &= ~BIT((i % tap_num) + tap_num);
}
if (!(smpcmp & BIT(i))) {
smpcmp &= ~BIT(i % tap_num);
smpcmp &= ~BIT((i % tap_num) + tap_num);
}
}
/*
* Find the longest consecutive run of successful probes. If that
* is more than RENESAS_SDHI_MAX_TAP probes long then use the
* center index as the tap.
*/
tap_cnt = 0;
ntap = 0;
tap_start = 0;
tap_end = 0;
for (i = 0; i < tap_num * 2; i++) {
if (taps & BIT(i))
ntap++;
else {
if (ntap > tap_cnt) {
tap_start = i - ntap;
tap_end = i - 1;
tap_cnt = ntap;
}
ntap = 0;
}
}
if (ntap > tap_cnt) {
tap_start = i - ntap;
tap_end = i - 1;
tap_cnt = ntap;
}
/*
* If all of the TAP is OK, the sampling clock position is selected by
* identifying the change point of data.
*/
if (tap_cnt == tap_num * 2) {
match_cnt = 0;
ntap = 0;
tap_start = 0;
tap_end = 0;
for (i = 0; i < tap_num * 2; i++) {
if (smpcmp & BIT(i))
ntap++;
else {
if (ntap > match_cnt) {
tap_start = i - ntap;
tap_end = i - 1;
match_cnt = ntap;
}
ntap = 0;
}
}
if (ntap > match_cnt) {
tap_start = i - ntap;
tap_end = i - 1;
match_cnt = ntap;
}
if (match_cnt)
select = true;
} else if (tap_cnt >= RENESAS_SDHI_MAX_TAP)
select = true;
if (select)
tap_set = ((tap_start + tap_end) / 2) % tap_num;
else
return -EIO;
/* Set SCC */
matsu_sd_writel(priv, tap_set, RENESAS_SDHI_SCC_TAPSET);
/* Enable auto re-tuning */
reg = matsu_sd_readl(priv, RENESAS_SDHI_SCC_RVSCNTL);
reg |= RENESAS_SDHI_SCC_RVSCNTL_RVSEN;
matsu_sd_writel(priv, reg, RENESAS_SDHI_SCC_RVSCNTL);
return 0;
}
int renesas_sdhi_execute_tuning(struct udevice *dev, uint opcode)
{
struct matsu_sd_priv *priv = dev_get_priv(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct mmc *mmc = upriv->mmc;
unsigned int tap_num;
unsigned int taps = 0, smpcmp = 0;
int i, ret = 0;
u32 caps;
/* Only supported on Renesas RCar */
if (!(priv->caps & MATSU_SD_CAP_RCAR_UHS))
return -EINVAL;
/* clock tuning is not needed for upto 52MHz */
if (!((mmc->selected_mode == MMC_HS_200) ||
(mmc->selected_mode == UHS_SDR104) ||
(mmc->selected_mode == UHS_SDR50)))
return 0;
tap_num = renesas_sdhi_init_tuning(priv);
if (!tap_num)
/* Tuning is not supported */
goto out;
if (tap_num * 2 >= sizeof(taps) * 8) {
dev_err(dev,
"Too many taps, skipping tuning. Please consider updating size of taps field of tmio_mmc_host\n");
goto out;
}
/* Issue CMD19 twice for each tap */
for (i = 0; i < 2 * tap_num; i++) {
renesas_sdhi_prepare_tuning(priv, i % tap_num);
/* Force PIO for the tuning */
caps = priv->caps;
priv->caps &= ~MATSU_SD_CAP_DMA_INTERNAL;
ret = mmc_send_tuning(mmc, opcode, NULL);
priv->caps = caps;
if (ret == 0)
taps |= BIT(i);
ret = renesas_sdhi_compare_scc_data(priv);
if (ret == 0)
smpcmp |= BIT(i);
mdelay(1);
}
ret = renesas_sdhi_select_tuning(priv, tap_num, taps, smpcmp);
out:
if (ret < 0) {
dev_warn(dev, "Tuning procedure failed\n");
renesas_sdhi_reset_tuning(priv);
}
return ret;
}
#endif
static int renesas_sdhi_set_ios(struct udevice *dev)
{
int ret = matsu_sd_set_ios(dev);
mdelay(10);
#if CONFIG_IS_ENABLED(MMC_HS200_SUPPORT)
struct matsu_sd_priv *priv = dev_get_priv(dev);
renesas_sdhi_reset_tuning(priv);
#endif
return ret;
}
static const struct dm_mmc_ops renesas_sdhi_ops = {
.send_cmd = matsu_sd_send_cmd,
.set_ios = renesas_sdhi_set_ios,
.get_cd = matsu_sd_get_cd,
#if CONFIG_IS_ENABLED(MMC_HS200_SUPPORT)
.execute_tuning = renesas_sdhi_execute_tuning,
#endif
};
#define RENESAS_GEN2_QUIRKS MATSU_SD_CAP_RCAR_GEN2
#define RENESAS_GEN3_QUIRKS \
MATSU_SD_CAP_64BIT | MATSU_SD_CAP_RCAR_GEN3 | MATSU_SD_CAP_RCAR_UHS
static const struct udevice_id renesas_sdhi_match[] = {
{ .compatible = "renesas,sdhi-r8a7790", .data = RENESAS_GEN2_QUIRKS },
{ .compatible = "renesas,sdhi-r8a7791", .data = RENESAS_GEN2_QUIRKS },
{ .compatible = "renesas,sdhi-r8a7792", .data = RENESAS_GEN2_QUIRKS },
{ .compatible = "renesas,sdhi-r8a7793", .data = RENESAS_GEN2_QUIRKS },
{ .compatible = "renesas,sdhi-r8a7794", .data = RENESAS_GEN2_QUIRKS },
{ .compatible = "renesas,sdhi-r8a7795", .data = RENESAS_GEN3_QUIRKS },
{ .compatible = "renesas,sdhi-r8a7796", .data = RENESAS_GEN3_QUIRKS },
{ .compatible = "renesas,sdhi-r8a77965", .data = RENESAS_GEN3_QUIRKS },
{ .compatible = "renesas,sdhi-r8a77970", .data = RENESAS_GEN3_QUIRKS },
{ .compatible = "renesas,sdhi-r8a77995", .data = RENESAS_GEN3_QUIRKS },
{ /* sentinel */ }
};
static int renesas_sdhi_probe(struct udevice *dev)
{
u32 quirks = dev_get_driver_data(dev);
struct fdt_resource reg_res;
DECLARE_GLOBAL_DATA_PTR;
int ret;
if (quirks == RENESAS_GEN2_QUIRKS) {
ret = fdt_get_resource(gd->fdt_blob, dev_of_offset(dev),
"reg", 0, &reg_res);
if (ret < 0) {
dev_err(dev, "\"reg\" resource not found, ret=%i\n",
ret);
return ret;
}
if (fdt_resource_size(&reg_res) == 0x100)
quirks |= MATSU_SD_CAP_16BIT;
}
ret = matsu_sd_probe(dev, quirks);
#if CONFIG_IS_ENABLED(MMC_HS200_SUPPORT)
if (!ret)
renesas_sdhi_reset_tuning(dev_get_priv(dev));
#endif
return ret;
}
U_BOOT_DRIVER(renesas_sdhi) = {
.name = "renesas-sdhi",
.id = UCLASS_MMC,
.of_match = renesas_sdhi_match,
.bind = matsu_sd_bind,
.probe = renesas_sdhi_probe,
.priv_auto_alloc_size = sizeof(struct matsu_sd_priv),
.platdata_auto_alloc_size = sizeof(struct matsu_sd_plat),
.ops = &renesas_sdhi_ops,
};

@ -17,857 +17,31 @@
#include <power/regulator.h>
#include <asm/unaligned.h>
DECLARE_GLOBAL_DATA_PTR;
#define UNIPHIER_SD_CMD 0x000 /* command */
#define UNIPHIER_SD_CMD_NOSTOP BIT(14) /* No automatic CMD12 issue */
#define UNIPHIER_SD_CMD_MULTI BIT(13) /* multiple block transfer */
#define UNIPHIER_SD_CMD_RD BIT(12) /* 1: read, 0: write */
#define UNIPHIER_SD_CMD_DATA BIT(11) /* data transfer */
#define UNIPHIER_SD_CMD_APP BIT(6) /* ACMD preceded by CMD55 */
#define UNIPHIER_SD_CMD_NORMAL (0 << 8)/* auto-detect of resp-type */
#define UNIPHIER_SD_CMD_RSP_NONE (3 << 8)/* response: none */
#define UNIPHIER_SD_CMD_RSP_R1 (4 << 8)/* response: R1, R5, R6, R7 */
#define UNIPHIER_SD_CMD_RSP_R1B (5 << 8)/* response: R1b, R5b */
#define UNIPHIER_SD_CMD_RSP_R2 (6 << 8)/* response: R2 */
#define UNIPHIER_SD_CMD_RSP_R3 (7 << 8)/* response: R3, R4 */
#define UNIPHIER_SD_ARG 0x008 /* command argument */
#define UNIPHIER_SD_STOP 0x010 /* stop action control */
#define UNIPHIER_SD_STOP_SEC BIT(8) /* use sector count */
#define UNIPHIER_SD_STOP_STP BIT(0) /* issue CMD12 */
#define UNIPHIER_SD_SECCNT 0x014 /* sector counter */
#define UNIPHIER_SD_RSP10 0x018 /* response[39:8] */
#define UNIPHIER_SD_RSP32 0x020 /* response[71:40] */
#define UNIPHIER_SD_RSP54 0x028 /* response[103:72] */
#define UNIPHIER_SD_RSP76 0x030 /* response[127:104] */
#define UNIPHIER_SD_INFO1 0x038 /* IRQ status 1 */
#define UNIPHIER_SD_INFO1_CD BIT(5) /* state of card detect */
#define UNIPHIER_SD_INFO1_INSERT BIT(4) /* card inserted */
#define UNIPHIER_SD_INFO1_REMOVE BIT(3) /* card removed */
#define UNIPHIER_SD_INFO1_CMP BIT(2) /* data complete */
#define UNIPHIER_SD_INFO1_RSP BIT(0) /* response complete */
#define UNIPHIER_SD_INFO2 0x03c /* IRQ status 2 */
#define UNIPHIER_SD_INFO2_ERR_ILA BIT(15) /* illegal access err */
#define UNIPHIER_SD_INFO2_CBSY BIT(14) /* command busy */
#define UNIPHIER_SD_INFO2_BWE BIT(9) /* write buffer ready */
#define UNIPHIER_SD_INFO2_BRE BIT(8) /* read buffer ready */
#define UNIPHIER_SD_INFO2_DAT0 BIT(7) /* SDDAT0 */
#define UNIPHIER_SD_INFO2_ERR_RTO BIT(6) /* response time out */
#define UNIPHIER_SD_INFO2_ERR_ILR BIT(5) /* illegal read err */
#define UNIPHIER_SD_INFO2_ERR_ILW BIT(4) /* illegal write err */
#define UNIPHIER_SD_INFO2_ERR_TO BIT(3) /* time out error */
#define UNIPHIER_SD_INFO2_ERR_END BIT(2) /* END bit error */
#define UNIPHIER_SD_INFO2_ERR_CRC BIT(1) /* CRC error */
#define UNIPHIER_SD_INFO2_ERR_IDX BIT(0) /* cmd index error */
#define UNIPHIER_SD_INFO1_MASK 0x040
#define UNIPHIER_SD_INFO2_MASK 0x044
#define UNIPHIER_SD_CLKCTL 0x048 /* clock divisor */
#define UNIPHIER_SD_CLKCTL_DIV_MASK 0x104ff
#define UNIPHIER_SD_CLKCTL_DIV1024 BIT(16) /* SDCLK = CLK / 1024 */
#define UNIPHIER_SD_CLKCTL_DIV512 BIT(7) /* SDCLK = CLK / 512 */
#define UNIPHIER_SD_CLKCTL_DIV256 BIT(6) /* SDCLK = CLK / 256 */
#define UNIPHIER_SD_CLKCTL_DIV128 BIT(5) /* SDCLK = CLK / 128 */
#define UNIPHIER_SD_CLKCTL_DIV64 BIT(4) /* SDCLK = CLK / 64 */
#define UNIPHIER_SD_CLKCTL_DIV32 BIT(3) /* SDCLK = CLK / 32 */
#define UNIPHIER_SD_CLKCTL_DIV16 BIT(2) /* SDCLK = CLK / 16 */
#define UNIPHIER_SD_CLKCTL_DIV8 BIT(1) /* SDCLK = CLK / 8 */
#define UNIPHIER_SD_CLKCTL_DIV4 BIT(0) /* SDCLK = CLK / 4 */
#define UNIPHIER_SD_CLKCTL_DIV2 0 /* SDCLK = CLK / 2 */
#define UNIPHIER_SD_CLKCTL_DIV1 BIT(10) /* SDCLK = CLK */
#define UNIPHIER_SD_CLKCTL_OFFEN BIT(9) /* stop SDCLK when unused */
#define UNIPHIER_SD_CLKCTL_SCLKEN BIT(8) /* SDCLK output enable */
#define UNIPHIER_SD_SIZE 0x04c /* block size */
#define UNIPHIER_SD_OPTION 0x050
#define UNIPHIER_SD_OPTION_WIDTH_MASK (5 << 13)
#define UNIPHIER_SD_OPTION_WIDTH_1 (4 << 13)
#define UNIPHIER_SD_OPTION_WIDTH_4 (0 << 13)
#define UNIPHIER_SD_OPTION_WIDTH_8 (1 << 13)
#define UNIPHIER_SD_BUF 0x060 /* read/write buffer */
#define UNIPHIER_SD_EXTMODE 0x1b0
#define UNIPHIER_SD_EXTMODE_DMA_EN BIT(1) /* transfer 1: DMA, 0: pio */
#define UNIPHIER_SD_SOFT_RST 0x1c0
#define UNIPHIER_SD_SOFT_RST_RSTX BIT(0) /* reset deassert */
#define UNIPHIER_SD_VERSION 0x1c4 /* version register */
#define UNIPHIER_SD_VERSION_IP 0xff /* IP version */
#define UNIPHIER_SD_HOST_MODE 0x1c8
#define UNIPHIER_SD_IF_MODE 0x1cc
#define UNIPHIER_SD_IF_MODE_DDR BIT(0) /* DDR mode */
#define UNIPHIER_SD_VOLT 0x1e4 /* voltage switch */
#define UNIPHIER_SD_VOLT_MASK (3 << 0)
#define UNIPHIER_SD_VOLT_OFF (0 << 0)
#define UNIPHIER_SD_VOLT_330 (1 << 0)/* 3.3V signal */
#define UNIPHIER_SD_VOLT_180 (2 << 0)/* 1.8V signal */
#define UNIPHIER_SD_DMA_MODE 0x410
#define UNIPHIER_SD_DMA_MODE_DIR_RD BIT(16) /* 1: from device, 0: to dev */
#define UNIPHIER_SD_DMA_MODE_ADDR_INC BIT(0) /* 1: address inc, 0: fixed */
#define UNIPHIER_SD_DMA_CTL 0x414
#define UNIPHIER_SD_DMA_CTL_START BIT(0) /* start DMA (auto cleared) */
#define UNIPHIER_SD_DMA_RST 0x418
#define UNIPHIER_SD_DMA_RST_RD BIT(9)
#define UNIPHIER_SD_DMA_RST_WR BIT(8)
#define UNIPHIER_SD_DMA_INFO1 0x420
#define UNIPHIER_SD_DMA_INFO1_END_RD2 BIT(20) /* DMA from device is complete*/
#define UNIPHIER_SD_DMA_INFO1_END_RD BIT(17) /* Don't use! Hardware bug */
#define UNIPHIER_SD_DMA_INFO1_END_WR BIT(16) /* DMA to device is complete */
#define UNIPHIER_SD_DMA_INFO1_MASK 0x424
#define UNIPHIER_SD_DMA_INFO2 0x428
#define UNIPHIER_SD_DMA_INFO2_ERR_RD BIT(17)
#define UNIPHIER_SD_DMA_INFO2_ERR_WR BIT(16)
#define UNIPHIER_SD_DMA_INFO2_MASK 0x42c
#define UNIPHIER_SD_DMA_ADDR_L 0x440
#define UNIPHIER_SD_DMA_ADDR_H 0x444
/* alignment required by the DMA engine of this controller */
#define UNIPHIER_SD_DMA_MINALIGN 0x10
struct uniphier_sd_plat {
struct mmc_config cfg;
struct mmc mmc;
};
struct uniphier_sd_priv {
void __iomem *regbase;
unsigned long mclk;
unsigned int version;
u32 caps;
#define UNIPHIER_SD_CAP_NONREMOVABLE BIT(0) /* Nonremovable e.g. eMMC */
#define UNIPHIER_SD_CAP_DMA_INTERNAL BIT(1) /* have internal DMA engine */
#define UNIPHIER_SD_CAP_DIV1024 BIT(2) /* divisor 1024 is available */
#define UNIPHIER_SD_CAP_64BIT BIT(3) /* Controller is 64bit */
};
static u64 uniphier_sd_readq(struct uniphier_sd_priv *priv, unsigned int reg)
{
if (priv->caps & UNIPHIER_SD_CAP_64BIT)
return readq(priv->regbase + (reg << 1));
else
return readq(priv->regbase + reg);
}
static void uniphier_sd_writeq(struct uniphier_sd_priv *priv,
u64 val, unsigned int reg)
{
if (priv->caps & UNIPHIER_SD_CAP_64BIT)
writeq(val, priv->regbase + (reg << 1));
else
writeq(val, priv->regbase + reg);
}
static u32 uniphier_sd_readl(struct uniphier_sd_priv *priv, unsigned int reg)
{
if (priv->caps & UNIPHIER_SD_CAP_64BIT)
return readl(priv->regbase + (reg << 1));
else
return readl(priv->regbase + reg);
}
static void uniphier_sd_writel(struct uniphier_sd_priv *priv,
u32 val, unsigned int reg)
{
if (priv->caps & UNIPHIER_SD_CAP_64BIT)
writel(val, priv->regbase + (reg << 1));
else
writel(val, priv->regbase + reg);
}
static dma_addr_t __dma_map_single(void *ptr, size_t size,
enum dma_data_direction dir)
{
unsigned long addr = (unsigned long)ptr;
if (dir == DMA_FROM_DEVICE)
invalidate_dcache_range(addr, addr + size);
else
flush_dcache_range(addr, addr + size);
return addr;
}
static void __dma_unmap_single(dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
if (dir != DMA_TO_DEVICE)
invalidate_dcache_range(addr, addr + size);
}
static int uniphier_sd_check_error(struct udevice *dev)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
u32 info2 = uniphier_sd_readl(priv, UNIPHIER_SD_INFO2);
if (info2 & UNIPHIER_SD_INFO2_ERR_RTO) {
/*
* TIMEOUT must be returned for unsupported command. Do not
* display error log since this might be a part of sequence to
* distinguish between SD and MMC.
*/
return -ETIMEDOUT;
}
if (info2 & UNIPHIER_SD_INFO2_ERR_TO) {
dev_err(dev, "timeout error\n");
return -ETIMEDOUT;
}
if (info2 & (UNIPHIER_SD_INFO2_ERR_END | UNIPHIER_SD_INFO2_ERR_CRC |
UNIPHIER_SD_INFO2_ERR_IDX)) {
dev_err(dev, "communication out of sync\n");
return -EILSEQ;
}
if (info2 & (UNIPHIER_SD_INFO2_ERR_ILA | UNIPHIER_SD_INFO2_ERR_ILR |
UNIPHIER_SD_INFO2_ERR_ILW)) {
dev_err(dev, "illegal access\n");
return -EIO;
}
return 0;
}
static int uniphier_sd_wait_for_irq(struct udevice *dev, unsigned int reg,
u32 flag)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
long wait = 1000000;
int ret;
while (!(uniphier_sd_readl(priv, reg) & flag)) {
if (wait-- < 0) {
dev_err(dev, "timeout\n");
return -ETIMEDOUT;
}
ret = uniphier_sd_check_error(dev);
if (ret)
return ret;
udelay(1);
}
return 0;
}
static int uniphier_sd_pio_read_one_block(struct udevice *dev, char *pbuf,
uint blocksize)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
int i, ret;
/* wait until the buffer is filled with data */
ret = uniphier_sd_wait_for_irq(dev, UNIPHIER_SD_INFO2,
UNIPHIER_SD_INFO2_BRE);
if (ret)
return ret;
/*
* Clear the status flag _before_ read the buffer out because
* UNIPHIER_SD_INFO2_BRE is edge-triggered, not level-triggered.
*/
uniphier_sd_writel(priv, 0, UNIPHIER_SD_INFO2);
if (priv->caps & UNIPHIER_SD_CAP_64BIT) {
u64 *buf = (u64 *)pbuf;
if (likely(IS_ALIGNED((uintptr_t)buf, 8))) {
for (i = 0; i < blocksize / 8; i++) {
*buf++ = uniphier_sd_readq(priv,
UNIPHIER_SD_BUF);
}
} else {
for (i = 0; i < blocksize / 8; i++) {
u64 data;
data = uniphier_sd_readq(priv,
UNIPHIER_SD_BUF);
put_unaligned(data, buf++);
}
}
} else {
u32 *buf = (u32 *)pbuf;
if (likely(IS_ALIGNED((uintptr_t)buf, 4))) {
for (i = 0; i < blocksize / 4; i++) {
*buf++ = uniphier_sd_readl(priv,
UNIPHIER_SD_BUF);
}
} else {
for (i = 0; i < blocksize / 4; i++) {
u32 data;
data = uniphier_sd_readl(priv, UNIPHIER_SD_BUF);
put_unaligned(data, buf++);
}
}
}
return 0;
}
static int uniphier_sd_pio_write_one_block(struct udevice *dev,
const char *pbuf, uint blocksize)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
int i, ret;
/* wait until the buffer becomes empty */
ret = uniphier_sd_wait_for_irq(dev, UNIPHIER_SD_INFO2,
UNIPHIER_SD_INFO2_BWE);
if (ret)
return ret;
uniphier_sd_writel(priv, 0, UNIPHIER_SD_INFO2);
if (priv->caps & UNIPHIER_SD_CAP_64BIT) {
const u64 *buf = (const u64 *)pbuf;
if (likely(IS_ALIGNED((uintptr_t)buf, 8))) {
for (i = 0; i < blocksize / 8; i++) {
uniphier_sd_writeq(priv, *buf++,
UNIPHIER_SD_BUF);
}
} else {
for (i = 0; i < blocksize / 8; i++) {
u64 data = get_unaligned(buf++);
uniphier_sd_writeq(priv, data,
UNIPHIER_SD_BUF);
}
}
} else {
const u32 *buf = (const u32 *)pbuf;
if (likely(IS_ALIGNED((uintptr_t)buf, 4))) {
for (i = 0; i < blocksize / 4; i++) {
uniphier_sd_writel(priv, *buf++,
UNIPHIER_SD_BUF);
}
} else {
for (i = 0; i < blocksize / 4; i++) {
u32 data = get_unaligned(buf++);
uniphier_sd_writel(priv, data,
UNIPHIER_SD_BUF);
}
}
}
return 0;
}
static int uniphier_sd_pio_xfer(struct udevice *dev, struct mmc_data *data)
{
const char *src = data->src;
char *dest = data->dest;
int i, ret;
for (i = 0; i < data->blocks; i++) {
if (data->flags & MMC_DATA_READ)
ret = uniphier_sd_pio_read_one_block(dev, dest,
data->blocksize);
else
ret = uniphier_sd_pio_write_one_block(dev, src,
data->blocksize);
if (ret)
return ret;
if (data->flags & MMC_DATA_READ)
dest += data->blocksize;
else
src += data->blocksize;
}
return 0;
}
static void uniphier_sd_dma_start(struct uniphier_sd_priv *priv,
dma_addr_t dma_addr)
{
u32 tmp;
uniphier_sd_writel(priv, 0, UNIPHIER_SD_DMA_INFO1);
uniphier_sd_writel(priv, 0, UNIPHIER_SD_DMA_INFO2);
/* enable DMA */
tmp = uniphier_sd_readl(priv, UNIPHIER_SD_EXTMODE);
tmp |= UNIPHIER_SD_EXTMODE_DMA_EN;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_EXTMODE);
uniphier_sd_writel(priv, dma_addr & U32_MAX, UNIPHIER_SD_DMA_ADDR_L);
/* suppress the warning "right shift count >= width of type" */
dma_addr >>= min_t(int, 32, 8 * sizeof(dma_addr));
uniphier_sd_writel(priv, dma_addr & U32_MAX, UNIPHIER_SD_DMA_ADDR_H);
uniphier_sd_writel(priv, UNIPHIER_SD_DMA_CTL_START, UNIPHIER_SD_DMA_CTL);
}
static int uniphier_sd_dma_wait_for_irq(struct udevice *dev, u32 flag,
unsigned int blocks)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
long wait = 1000000 + 10 * blocks;
while (!(uniphier_sd_readl(priv, UNIPHIER_SD_DMA_INFO1) & flag)) {
if (wait-- < 0) {
dev_err(dev, "timeout during DMA\n");
return -ETIMEDOUT;
}
udelay(10);
}
if (uniphier_sd_readl(priv, UNIPHIER_SD_DMA_INFO2)) {
dev_err(dev, "error during DMA\n");
return -EIO;
}
return 0;
}
static int uniphier_sd_dma_xfer(struct udevice *dev, struct mmc_data *data)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
size_t len = data->blocks * data->blocksize;
void *buf;
enum dma_data_direction dir;
dma_addr_t dma_addr;
u32 poll_flag, tmp;
int ret;
tmp = uniphier_sd_readl(priv, UNIPHIER_SD_DMA_MODE);
if (data->flags & MMC_DATA_READ) {
buf = data->dest;
dir = DMA_FROM_DEVICE;
poll_flag = UNIPHIER_SD_DMA_INFO1_END_RD2;
tmp |= UNIPHIER_SD_DMA_MODE_DIR_RD;
} else {
buf = (void *)data->src;
dir = DMA_TO_DEVICE;
poll_flag = UNIPHIER_SD_DMA_INFO1_END_WR;
tmp &= ~UNIPHIER_SD_DMA_MODE_DIR_RD;
}
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_DMA_MODE);
dma_addr = __dma_map_single(buf, len, dir);
uniphier_sd_dma_start(priv, dma_addr);
ret = uniphier_sd_dma_wait_for_irq(dev, poll_flag, data->blocks);
__dma_unmap_single(dma_addr, len, dir);
return ret;
}
/* check if the address is DMA'able */
static bool uniphier_sd_addr_is_dmaable(unsigned long addr)
{
if (!IS_ALIGNED(addr, UNIPHIER_SD_DMA_MINALIGN))
return false;
#if defined(CONFIG_ARCH_UNIPHIER) && !defined(CONFIG_ARM64) && \
defined(CONFIG_SPL_BUILD)
/*
* For UniPhier ARMv7 SoCs, the stack is allocated in the locked ways
* of L2, which is unreachable from the DMA engine.
*/
if (addr < CONFIG_SPL_STACK)
return false;
#endif
return true;
}
static int uniphier_sd_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
int ret;
u32 tmp;
if (uniphier_sd_readl(priv, UNIPHIER_SD_INFO2) & UNIPHIER_SD_INFO2_CBSY) {
dev_err(dev, "command busy\n");
return -EBUSY;
}
/* clear all status flags */
uniphier_sd_writel(priv, 0, UNIPHIER_SD_INFO1);
uniphier_sd_writel(priv, 0, UNIPHIER_SD_INFO2);
/* disable DMA once */
tmp = uniphier_sd_readl(priv, UNIPHIER_SD_EXTMODE);
tmp &= ~UNIPHIER_SD_EXTMODE_DMA_EN;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_EXTMODE);
uniphier_sd_writel(priv, cmd->cmdarg, UNIPHIER_SD_ARG);
tmp = cmd->cmdidx;
if (data) {
uniphier_sd_writel(priv, data->blocksize, UNIPHIER_SD_SIZE);
uniphier_sd_writel(priv, data->blocks, UNIPHIER_SD_SECCNT);
/* Do not send CMD12 automatically */
tmp |= UNIPHIER_SD_CMD_NOSTOP | UNIPHIER_SD_CMD_DATA;
if (data->blocks > 1)
tmp |= UNIPHIER_SD_CMD_MULTI;
if (data->flags & MMC_DATA_READ)
tmp |= UNIPHIER_SD_CMD_RD;
}
/*
* Do not use the response type auto-detection on this hardware.
* CMD8, for example, has different response types on SD and eMMC,
* while this controller always assumes the response type for SD.
* Set the response type manually.
*/
switch (cmd->resp_type) {
case MMC_RSP_NONE:
tmp |= UNIPHIER_SD_CMD_RSP_NONE;
break;
case MMC_RSP_R1:
tmp |= UNIPHIER_SD_CMD_RSP_R1;
break;
case MMC_RSP_R1b:
tmp |= UNIPHIER_SD_CMD_RSP_R1B;
break;
case MMC_RSP_R2:
tmp |= UNIPHIER_SD_CMD_RSP_R2;
break;
case MMC_RSP_R3:
tmp |= UNIPHIER_SD_CMD_RSP_R3;
break;
default:
dev_err(dev, "unknown response type\n");
return -EINVAL;
}
dev_dbg(dev, "sending CMD%d (SD_CMD=%08x, SD_ARG=%08x)\n",
cmd->cmdidx, tmp, cmd->cmdarg);
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_CMD);
ret = uniphier_sd_wait_for_irq(dev, UNIPHIER_SD_INFO1,
UNIPHIER_SD_INFO1_RSP);
if (ret)
return ret;
if (cmd->resp_type & MMC_RSP_136) {
u32 rsp_127_104 = uniphier_sd_readl(priv, UNIPHIER_SD_RSP76);
u32 rsp_103_72 = uniphier_sd_readl(priv, UNIPHIER_SD_RSP54);
u32 rsp_71_40 = uniphier_sd_readl(priv, UNIPHIER_SD_RSP32);
u32 rsp_39_8 = uniphier_sd_readl(priv, UNIPHIER_SD_RSP10);
cmd->response[0] = ((rsp_127_104 & 0x00ffffff) << 8) |
((rsp_103_72 & 0xff000000) >> 24);
cmd->response[1] = ((rsp_103_72 & 0x00ffffff) << 8) |
((rsp_71_40 & 0xff000000) >> 24);
cmd->response[2] = ((rsp_71_40 & 0x00ffffff) << 8) |
((rsp_39_8 & 0xff000000) >> 24);
cmd->response[3] = (rsp_39_8 & 0xffffff) << 8;
} else {
/* bit 39-8 */
cmd->response[0] = uniphier_sd_readl(priv, UNIPHIER_SD_RSP10);
}
if (data) {
/* use DMA if the HW supports it and the buffer is aligned */
if (priv->caps & UNIPHIER_SD_CAP_DMA_INTERNAL &&
uniphier_sd_addr_is_dmaable((long)data->src))
ret = uniphier_sd_dma_xfer(dev, data);
else
ret = uniphier_sd_pio_xfer(dev, data);
ret = uniphier_sd_wait_for_irq(dev, UNIPHIER_SD_INFO1,
UNIPHIER_SD_INFO1_CMP);
if (ret)
return ret;
}
return ret;
}
static int uniphier_sd_set_bus_width(struct uniphier_sd_priv *priv,
struct mmc *mmc)
{
u32 val, tmp;
switch (mmc->bus_width) {
case 1:
val = UNIPHIER_SD_OPTION_WIDTH_1;
break;
case 4:
val = UNIPHIER_SD_OPTION_WIDTH_4;
break;
case 8:
val = UNIPHIER_SD_OPTION_WIDTH_8;
break;
default:
return -EINVAL;
}
tmp = uniphier_sd_readl(priv, UNIPHIER_SD_OPTION);
tmp &= ~UNIPHIER_SD_OPTION_WIDTH_MASK;
tmp |= val;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_OPTION);
return 0;
}
static void uniphier_sd_set_ddr_mode(struct uniphier_sd_priv *priv,
struct mmc *mmc)
{
u32 tmp;
tmp = uniphier_sd_readl(priv, UNIPHIER_SD_IF_MODE);
if (mmc->ddr_mode)
tmp |= UNIPHIER_SD_IF_MODE_DDR;
else
tmp &= ~UNIPHIER_SD_IF_MODE_DDR;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_IF_MODE);
}
static void uniphier_sd_set_clk_rate(struct uniphier_sd_priv *priv,
struct mmc *mmc)
{
unsigned int divisor;
u32 val, tmp;
if (!mmc->clock)
return;
divisor = DIV_ROUND_UP(priv->mclk, mmc->clock);
if (divisor <= 1)
val = UNIPHIER_SD_CLKCTL_DIV1;
else if (divisor <= 2)
val = UNIPHIER_SD_CLKCTL_DIV2;
else if (divisor <= 4)
val = UNIPHIER_SD_CLKCTL_DIV4;
else if (divisor <= 8)
val = UNIPHIER_SD_CLKCTL_DIV8;
else if (divisor <= 16)
val = UNIPHIER_SD_CLKCTL_DIV16;
else if (divisor <= 32)
val = UNIPHIER_SD_CLKCTL_DIV32;
else if (divisor <= 64)
val = UNIPHIER_SD_CLKCTL_DIV64;
else if (divisor <= 128)
val = UNIPHIER_SD_CLKCTL_DIV128;
else if (divisor <= 256)
val = UNIPHIER_SD_CLKCTL_DIV256;
else if (divisor <= 512 || !(priv->caps & UNIPHIER_SD_CAP_DIV1024))
val = UNIPHIER_SD_CLKCTL_DIV512;
else
val = UNIPHIER_SD_CLKCTL_DIV1024;
tmp = uniphier_sd_readl(priv, UNIPHIER_SD_CLKCTL);
if (tmp & UNIPHIER_SD_CLKCTL_SCLKEN &&
(tmp & UNIPHIER_SD_CLKCTL_DIV_MASK) == val)
return;
/* stop the clock before changing its rate to avoid a glitch signal */
tmp &= ~UNIPHIER_SD_CLKCTL_SCLKEN;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_CLKCTL);
tmp &= ~UNIPHIER_SD_CLKCTL_DIV_MASK;
tmp |= val | UNIPHIER_SD_CLKCTL_OFFEN;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_CLKCTL);
tmp |= UNIPHIER_SD_CLKCTL_SCLKEN;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_CLKCTL);
udelay(1000);
}
static int uniphier_sd_set_ios(struct udevice *dev)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
struct mmc *mmc = mmc_get_mmc_dev(dev);
int ret;
dev_dbg(dev, "clock %uHz, DDRmode %d, width %u\n",
mmc->clock, mmc->ddr_mode, mmc->bus_width);
ret = uniphier_sd_set_bus_width(priv, mmc);
if (ret)
return ret;
uniphier_sd_set_ddr_mode(priv, mmc);
uniphier_sd_set_clk_rate(priv, mmc);
return 0;
}
static int uniphier_sd_get_cd(struct udevice *dev)
{
struct uniphier_sd_priv *priv = dev_get_priv(dev);
if (priv->caps & UNIPHIER_SD_CAP_NONREMOVABLE)
return 1;
return !!(uniphier_sd_readl(priv, UNIPHIER_SD_INFO1) &
UNIPHIER_SD_INFO1_CD);
}
#include "matsushita-common.h"
static const struct dm_mmc_ops uniphier_sd_ops = {
.send_cmd = uniphier_sd_send_cmd,
.set_ios = uniphier_sd_set_ios,
.get_cd = uniphier_sd_get_cd,
.send_cmd = matsu_sd_send_cmd,
.set_ios = matsu_sd_set_ios,
.get_cd = matsu_sd_get_cd,
};
static void uniphier_sd_host_init(struct uniphier_sd_priv *priv)
{
u32 tmp;
/* soft reset of the host */
tmp = uniphier_sd_readl(priv, UNIPHIER_SD_SOFT_RST);
tmp &= ~UNIPHIER_SD_SOFT_RST_RSTX;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_SOFT_RST);
tmp |= UNIPHIER_SD_SOFT_RST_RSTX;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_SOFT_RST);
/* FIXME: implement eMMC hw_reset */
uniphier_sd_writel(priv, UNIPHIER_SD_STOP_SEC, UNIPHIER_SD_STOP);
/*
* Connected to 32bit AXI.
* This register dropped backward compatibility at version 0x10.
* Write an appropriate value depending on the IP version.
*/
uniphier_sd_writel(priv, priv->version >= 0x10 ? 0x00000101 : 0x00000000,
UNIPHIER_SD_HOST_MODE);
if (priv->caps & UNIPHIER_SD_CAP_DMA_INTERNAL) {
tmp = uniphier_sd_readl(priv, UNIPHIER_SD_DMA_MODE);
tmp |= UNIPHIER_SD_DMA_MODE_ADDR_INC;
uniphier_sd_writel(priv, tmp, UNIPHIER_SD_DMA_MODE);
}
}
static int uniphier_sd_bind(struct udevice *dev)
{
struct uniphier_sd_plat *plat = dev_get_platdata(dev);
return mmc_bind(dev, &plat->mmc, &plat->cfg);
}
static int uniphier_sd_probe(struct udevice *dev)
{
struct uniphier_sd_plat *plat = dev_get_platdata(dev);
struct uniphier_sd_priv *priv = dev_get_priv(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
const u32 quirks = dev_get_driver_data(dev);
fdt_addr_t base;
struct clk clk;
int ret;
#ifdef CONFIG_DM_REGULATOR
struct udevice *vqmmc_dev;
#endif
base = devfdt_get_addr(dev);
if (base == FDT_ADDR_T_NONE)
return -EINVAL;
priv->regbase = devm_ioremap(dev, base, SZ_2K);
if (!priv->regbase)
return -ENOMEM;
#ifdef CONFIG_DM_REGULATOR
ret = device_get_supply_regulator(dev, "vqmmc-supply", &vqmmc_dev);
if (!ret) {
/* Set the regulator to 3.3V until we support 1.8V modes */
regulator_set_value(vqmmc_dev, 3300000);
regulator_set_enable(vqmmc_dev, true);
}
#endif
ret = clk_get_by_index(dev, 0, &clk);
if (ret < 0) {
dev_err(dev, "failed to get host clock\n");
return ret;
}
/* set to max rate */
priv->mclk = clk_set_rate(&clk, ULONG_MAX);
if (IS_ERR_VALUE(priv->mclk)) {
dev_err(dev, "failed to set rate for host clock\n");
clk_free(&clk);
return priv->mclk;
}
ret = clk_enable(&clk);
clk_free(&clk);
if (ret) {
dev_err(dev, "failed to enable host clock\n");
return ret;
}
plat->cfg.name = dev->name;
plat->cfg.host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS;
switch (fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), "bus-width",
1)) {
case 8:
plat->cfg.host_caps |= MMC_MODE_8BIT;
break;
case 4:
plat->cfg.host_caps |= MMC_MODE_4BIT;
break;
case 1:
break;
default:
dev_err(dev, "Invalid \"bus-width\" value\n");
return -EINVAL;
}
if (quirks) {
priv->caps = quirks;
} else {
priv->version = uniphier_sd_readl(priv, UNIPHIER_SD_VERSION) &
UNIPHIER_SD_VERSION_IP;
dev_dbg(dev, "version %x\n", priv->version);
if (priv->version >= 0x10) {
priv->caps |= UNIPHIER_SD_CAP_DMA_INTERNAL;
priv->caps |= UNIPHIER_SD_CAP_DIV1024;
}
}
if (fdt_get_property(gd->fdt_blob, dev_of_offset(dev), "non-removable",
NULL))
priv->caps |= UNIPHIER_SD_CAP_NONREMOVABLE;
uniphier_sd_host_init(priv);
plat->cfg.voltages = MMC_VDD_165_195 | MMC_VDD_32_33 | MMC_VDD_33_34;
plat->cfg.f_min = priv->mclk /
(priv->caps & UNIPHIER_SD_CAP_DIV1024 ? 1024 : 512);
plat->cfg.f_max = priv->mclk;
plat->cfg.b_max = U32_MAX; /* max value of UNIPHIER_SD_SECCNT */
upriv->mmc = &plat->mmc;
return 0;
}
static const struct udevice_id uniphier_sd_match[] = {
{ .compatible = "renesas,sdhi-r8a7790", .data = 0 },
{ .compatible = "renesas,sdhi-r8a7791", .data = 0 },
{ .compatible = "renesas,sdhi-r8a7792", .data = 0 },
{ .compatible = "renesas,sdhi-r8a7793", .data = 0 },
{ .compatible = "renesas,sdhi-r8a7794", .data = 0 },
{ .compatible = "renesas,sdhi-r8a7795", .data = UNIPHIER_SD_CAP_64BIT },
{ .compatible = "renesas,sdhi-r8a7796", .data = UNIPHIER_SD_CAP_64BIT },
{ .compatible = "renesas,sdhi-r8a77965", .data = UNIPHIER_SD_CAP_64BIT },
{ .compatible = "renesas,sdhi-r8a77970", .data = UNIPHIER_SD_CAP_64BIT },
{ .compatible = "renesas,sdhi-r8a77995", .data = UNIPHIER_SD_CAP_64BIT },
{ .compatible = "socionext,uniphier-sdhc", .data = 0 },
{ /* sentinel */ }
};
static int uniphier_sd_probe(struct udevice *dev)
{
return matsu_sd_probe(dev, 0);
}
U_BOOT_DRIVER(uniphier_mmc) = {
.name = "uniphier-mmc",
.id = UCLASS_MMC,
.of_match = uniphier_sd_match,
.bind = uniphier_sd_bind,
.bind = matsu_sd_bind,
.probe = uniphier_sd_probe,
.priv_auto_alloc_size = sizeof(struct uniphier_sd_priv),
.platdata_auto_alloc_size = sizeof(struct uniphier_sd_plat),
.priv_auto_alloc_size = sizeof(struct matsu_sd_priv),
.platdata_auto_alloc_size = sizeof(struct matsu_sd_plat),
.ops = &uniphier_sd_ops,
};

@ -40,6 +40,13 @@ config FLASH_PIC32
This enables access to Microchip PIC32 internal non-CFI flash
chips through PIC32 Non-Volatile-Memory Controller.
config RENESAS_RPC_HF
bool "Renesas RCar Gen3 RPC Hyperflash driver"
depends on RCAR_GEN3 && MTD
help
This enables access to Hyperflash memory through the Renesas
RCar Gen3 RPC controller.
endmenu
source "drivers/mtd/nand/Kconfig"

@ -20,3 +20,4 @@ obj-$(CONFIG_MW_EEPROM) += mw_eeprom.o
obj-$(CONFIG_FLASH_PIC32) += pic32_flash.o
obj-$(CONFIG_ST_SMI) += st_smi.o
obj-$(CONFIG_STM32_FLASH) += stm32_flash.o
obj-$(CONFIG_RENESAS_RPC_HF) += renesas_rpc_hf.o

@ -0,0 +1,398 @@
/*
* Renesas RCar Gen3 RPC Hyperflash driver
*
* Copyright (C) 2016 Renesas Electronics Corporation
* Copyright (C) 2016 Cogent Embedded, Inc.
* Copyright (C) 2017 Marek Vasut <marek.vasut@gmail.com>
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <asm/io.h>
#include <clk.h>
#include <dm.h>
#include <dm/of_access.h>
#include <errno.h>
#include <fdt_support.h>
#include <flash.h>
#include <mtd.h>
#include <wait_bit.h>
#include <mtd/cfi_flash.h>
#define RPC_CMNCR 0x0000 /* R/W */
#define RPC_CMNCR_MD BIT(31)
#define RPC_CMNCR_MOIIO0(val) (((val) & 0x3) << 16)
#define RPC_CMNCR_MOIIO1(val) (((val) & 0x3) << 18)
#define RPC_CMNCR_MOIIO2(val) (((val) & 0x3) << 20)
#define RPC_CMNCR_MOIIO3(val) (((val) & 0x3) << 22)
#define RPC_CMNCR_MOIIO_HIZ (RPC_CMNCR_MOIIO0(3) | RPC_CMNCR_MOIIO1(3) | \
RPC_CMNCR_MOIIO2(3) | RPC_CMNCR_MOIIO3(3))
#define RPC_CMNCR_IO0FV(val) (((val) & 0x3) << 8)
#define RPC_CMNCR_IO2FV(val) (((val) & 0x3) << 12)
#define RPC_CMNCR_IO3FV(val) (((val) & 0x3) << 14)
#define RPC_CMNCR_IOFV_HIZ (RPC_CMNCR_IO0FV(3) | RPC_CMNCR_IO2FV(3) | \
RPC_CMNCR_IO3FV(3))
#define RPC_CMNCR_BSZ(val) (((val) & 0x3) << 0)
#define RPC_SSLDR 0x0004 /* R/W */
#define RPC_SSLDR_SPNDL(d) (((d) & 0x7) << 16)
#define RPC_SSLDR_SLNDL(d) (((d) & 0x7) << 8)
#define RPC_SSLDR_SCKDL(d) (((d) & 0x7) << 0)
#define RPC_DRCR 0x000C /* R/W */
#define RPC_DRCR_SSLN BIT(24)
#define RPC_DRCR_RBURST(v) (((v) & 0x1F) << 16)
#define RPC_DRCR_RCF BIT(9)
#define RPC_DRCR_RBE BIT(8)
#define RPC_DRCR_SSLE BIT(0)
#define RPC_DRCMR 0x0010 /* R/W */
#define RPC_DRCMR_CMD(c) (((c) & 0xFF) << 16)
#define RPC_DRCMR_OCMD(c) (((c) & 0xFF) << 0)
#define RPC_DREAR 0x0014 /* R/W */
#define RPC_DREAR_EAV(v) (((v) & 0xFF) << 16)
#define RPC_DREAR_EAC(v) (((v) & 0x7) << 0)
#define RPC_DROPR 0x0018 /* R/W */
#define RPC_DROPR_OPD3(o) (((o) & 0xFF) << 24)
#define RPC_DROPR_OPD2(o) (((o) & 0xFF) << 16)
#define RPC_DROPR_OPD1(o) (((o) & 0xFF) << 8)
#define RPC_DROPR_OPD0(o) (((o) & 0xFF) << 0)
#define RPC_DRENR 0x001C /* R/W */
#define RPC_DRENR_CDB(o) (u32)((((o) & 0x3) << 30))
#define RPC_DRENR_OCDB(o) (((o) & 0x3) << 28)
#define RPC_DRENR_ADB(o) (((o) & 0x3) << 24)
#define RPC_DRENR_OPDB(o) (((o) & 0x3) << 20)
#define RPC_DRENR_SPIDB(o) (((o) & 0x3) << 16)
#define RPC_DRENR_DME BIT(15)
#define RPC_DRENR_CDE BIT(14)
#define RPC_DRENR_OCDE BIT(12)
#define RPC_DRENR_ADE(v) (((v) & 0xF) << 8)
#define RPC_DRENR_OPDE(v) (((v) & 0xF) << 4)
#define RPC_SMCR 0x0020 /* R/W */
#define RPC_SMCR_SSLKP BIT(8)
#define RPC_SMCR_SPIRE BIT(2)
#define RPC_SMCR_SPIWE BIT(1)
#define RPC_SMCR_SPIE BIT(0)
#define RPC_SMCMR 0x0024 /* R/W */
#define RPC_SMCMR_CMD(c) (((c) & 0xFF) << 16)
#define RPC_SMCMR_OCMD(c) (((c) & 0xFF) << 0)
#define RPC_SMADR 0x0028 /* R/W */
#define RPC_SMOPR 0x002C /* R/W */
#define RPC_SMOPR_OPD0(o) (((o) & 0xFF) << 0)
#define RPC_SMOPR_OPD1(o) (((o) & 0xFF) << 8)
#define RPC_SMOPR_OPD2(o) (((o) & 0xFF) << 16)
#define RPC_SMOPR_OPD3(o) (((o) & 0xFF) << 24)
#define RPC_SMENR 0x0030 /* R/W */
#define RPC_SMENR_CDB(o) (((o) & 0x3) << 30)
#define RPC_SMENR_OCDB(o) (((o) & 0x3) << 28)
#define RPC_SMENR_ADB(o) (((o) & 0x3) << 24)
#define RPC_SMENR_OPDB(o) (((o) & 0x3) << 20)
#define RPC_SMENR_SPIDB(o) (((o) & 0x3) << 16)
#define RPC_SMENR_DME BIT(15)
#define RPC_SMENR_CDE BIT(14)
#define RPC_SMENR_OCDE BIT(12)
#define RPC_SMENR_ADE(v) (((v) & 0xF) << 8)
#define RPC_SMENR_OPDE(v) (((v) & 0xF) << 4)
#define RPC_SMENR_SPIDE(v) (((v) & 0xF) << 0)
#define RPC_SMRDR0 0x0038 /* R */
#define RPC_SMRDR1 0x003C /* R */
#define RPC_SMWDR0 0x0040 /* R/W */
#define RPC_SMWDR1 0x0044 /* R/W */
#define RPC_CMNSR 0x0048 /* R */
#define RPC_CMNSR_SSLF BIT(1)
#define RPC_CMNSR_TEND BIT(0)
#define RPC_DRDMCR 0x0058 /* R/W */
#define RPC_DRDMCR_DMCYC(v) (((v) & 0xF) << 0)
#define RPC_DRDRENR 0x005C /* R/W */
#define RPC_DRDRENR_HYPE (0x5 << 12)
#define RPC_DRDRENR_ADDRE BIT(8)
#define RPC_DRDRENR_OPDRE BIT(4)
#define RPC_DRDRENR_DRDRE BIT(0)
#define RPC_SMDMCR 0x0060 /* R/W */
#define RPC_SMDMCR_DMCYC(v) (((v) & 0xF) << 0)
#define RPC_SMDRENR 0x0064 /* R/W */
#define RPC_SMDRENR_HYPE (0x5 << 12)
#define RPC_SMDRENR_ADDRE BIT(8)
#define RPC_SMDRENR_OPDRE BIT(4)
#define RPC_SMDRENR_SPIDRE BIT(0)
#define RPC_PHYCNT 0x007C /* R/W */
#define RPC_PHYCNT_CAL BIT(31)
#define PRC_PHYCNT_OCTA_AA BIT(22)
#define PRC_PHYCNT_OCTA_SA BIT(23)
#define PRC_PHYCNT_EXDS BIT(21)
#define RPC_PHYCNT_OCT BIT(20)
#define RPC_PHYCNT_WBUF2 BIT(4)
#define RPC_PHYCNT_WBUF BIT(2)
#define RPC_PHYCNT_MEM(v) (((v) & 0x3) << 0)
#define RPC_PHYINT 0x0088 /* R/W */
#define RPC_PHYINT_RSTEN BIT(18)
#define RPC_PHYINT_WPEN BIT(17)
#define RPC_PHYINT_INTEN BIT(16)
#define RPC_PHYINT_RST BIT(2)
#define RPC_PHYINT_WP BIT(1)
#define RPC_PHYINT_INT BIT(0)
#define RPC_WBUF 0x8000 /* R/W size=4/8/16/32/64Bytes */
#define RPC_WBUF_SIZE 0x100
static phys_addr_t rpc_base;
enum rpc_hf_size {
RPC_HF_SIZE_16BIT = RPC_SMENR_SPIDE(0x8),
RPC_HF_SIZE_32BIT = RPC_SMENR_SPIDE(0xC),
RPC_HF_SIZE_64BIT = RPC_SMENR_SPIDE(0xF),
};
static int rpc_hf_wait_tend(void)
{
void __iomem *reg = (void __iomem *)rpc_base + RPC_CMNSR;
return wait_for_bit_le32(reg, RPC_CMNSR_TEND, true, 1000, 0);
}
static int rpc_hf_mode(bool man)
{
int ret;
ret = rpc_hf_wait_tend();
if (ret)
return ret;
clrsetbits_le32(rpc_base + RPC_PHYCNT,
RPC_PHYCNT_WBUF | RPC_PHYCNT_WBUF2 |
RPC_PHYCNT_CAL | RPC_PHYCNT_MEM(3),
RPC_PHYCNT_CAL | RPC_PHYCNT_MEM(3));
clrsetbits_le32(rpc_base + RPC_CMNCR,
RPC_CMNCR_MD | RPC_CMNCR_BSZ(3),
RPC_CMNCR_MOIIO_HIZ | RPC_CMNCR_IOFV_HIZ |
(man ? RPC_CMNCR_MD : 0) | RPC_CMNCR_BSZ(1));
if (man)
return 0;
writel(RPC_DRCR_RBURST(0x1F) | RPC_DRCR_RCF | RPC_DRCR_RBE,
rpc_base + RPC_DRCR);
writel(RPC_DRCMR_CMD(0xA0), rpc_base + RPC_DRCMR);
writel(RPC_DRENR_CDB(2) | RPC_DRENR_OCDB(2) | RPC_DRENR_ADB(2) |
RPC_DRENR_SPIDB(2) | RPC_DRENR_CDE | RPC_DRENR_OCDE |
RPC_DRENR_ADE(4), rpc_base + RPC_DRENR);
writel(RPC_DRDMCR_DMCYC(0xE), rpc_base + RPC_DRDMCR);
writel(RPC_DRDRENR_HYPE | RPC_DRDRENR_ADDRE | RPC_DRDRENR_DRDRE,
rpc_base + RPC_DRDRENR);
/* Dummy read */
readl(rpc_base + RPC_DRCR);
return 0;
}
static int rpc_hf_xfer(void *addr, u64 wdata, u64 *rdata,
enum rpc_hf_size size, bool write)
{
int ret;
u32 val;
ret = rpc_hf_mode(1);
if (ret)
return ret;
/* Submit HF address, SMCMR CMD[7] ~= CA Bit# 47 (R/nW) */
writel(write ? 0 : RPC_SMCMR_CMD(0x80), rpc_base + RPC_SMCMR);
writel((uintptr_t)addr >> 1, rpc_base + RPC_SMADR);
writel(0x0, rpc_base + RPC_SMOPR);
writel(RPC_SMDRENR_HYPE | RPC_SMDRENR_ADDRE | RPC_SMDRENR_SPIDRE,
rpc_base + RPC_SMDRENR);
val = RPC_SMENR_CDB(2) | RPC_SMENR_OCDB(2) |
RPC_SMENR_ADB(2) | RPC_SMENR_SPIDB(2) |
RPC_SMENR_CDE | RPC_SMENR_OCDE | RPC_SMENR_ADE(4) | size;
if (write) {
writel(val, rpc_base + RPC_SMENR);
if (size == RPC_HF_SIZE_64BIT)
writeq(cpu_to_be64(wdata), rpc_base + RPC_SMWDR0);
else
writel(cpu_to_be32(wdata), rpc_base + RPC_SMWDR0);
writel(RPC_SMCR_SPIWE | RPC_SMCR_SPIE, rpc_base + RPC_SMCR);
} else {
val |= RPC_SMENR_DME;
writel(RPC_SMDMCR_DMCYC(0xE), rpc_base + RPC_SMDMCR);
writel(val, rpc_base + RPC_SMENR);
writel(RPC_SMCR_SPIRE | RPC_SMCR_SPIE, rpc_base + RPC_SMCR);
ret = rpc_hf_wait_tend();
if (ret)
return ret;
if (size == RPC_HF_SIZE_64BIT)
*rdata = be64_to_cpu(readq(rpc_base + RPC_SMRDR0));
else
*rdata = be32_to_cpu(readl(rpc_base + RPC_SMRDR0));
}
return rpc_hf_mode(0);
}
static void rpc_hf_write_cmd(void *addr, u64 wdata, enum rpc_hf_size size)
{
int ret;
ret = rpc_hf_xfer(addr, wdata, NULL, size, 1);
if (ret)
printf("RPC: Write failed, ret=%i\n", ret);
}
static u64 rpc_hf_read_reg(void *addr, enum rpc_hf_size size)
{
u64 rdata = 0;
int ret;
ret = rpc_hf_xfer(addr, 0, &rdata, size, 0);
if (ret)
printf("RPC: Read failed, ret=%i\n", ret);
return rdata;
}
void flash_write8(u8 value, void *addr)
{
rpc_hf_write_cmd(addr, value, RPC_HF_SIZE_16BIT);
}
void flash_write16(u16 value, void *addr)
{
rpc_hf_write_cmd(addr, value, RPC_HF_SIZE_16BIT);
}
void flash_write32(u32 value, void *addr)
{
rpc_hf_write_cmd(addr, value, RPC_HF_SIZE_32BIT);
}
void flash_write64(u64 value, void *addr)
{
rpc_hf_write_cmd(addr, value, RPC_HF_SIZE_64BIT);
}
u8 flash_read8(void *addr)
{
return rpc_hf_read_reg(addr, RPC_HF_SIZE_16BIT);
}
u16 flash_read16(void *addr)
{
return rpc_hf_read_reg(addr, RPC_HF_SIZE_16BIT);
}
u32 flash_read32(void *addr)
{
return rpc_hf_read_reg(addr, RPC_HF_SIZE_32BIT);
}
u64 flash_read64(void *addr)
{
return rpc_hf_read_reg(addr, RPC_HF_SIZE_64BIT);
}
static int rpc_hf_bind(struct udevice *parent)
{
const void *fdt = gd->fdt_blob;
ofnode node;
int ret, off;
/*
* Check if there are any SPI NOR child nodes, if so, do NOT bind
* as this controller will be operated by the QSPI driver instead.
*/
dev_for_each_subnode(node, parent) {
off = ofnode_to_offset(node);
ret = fdt_node_check_compatible(fdt, off, "spi-flash");
if (!ret)
return -ENODEV;
ret = fdt_node_check_compatible(fdt, off, "jedec,spi-nor");
if (!ret)
return -ENODEV;
}
return 0;
}
static int rpc_hf_probe(struct udevice *dev)
{
void *blob = (void *)gd->fdt_blob;
const fdt32_t *cell;
int node = dev_of_offset(dev);
int parent, addrc, sizec, len, ret;
struct clk clk;
phys_addr_t flash_base;
parent = fdt_parent_offset(blob, node);
fdt_support_default_count_cells(blob, parent, &addrc, &sizec);
cell = fdt_getprop(blob, node, "reg", &len);
if (!cell)
return -ENOENT;
if (addrc != 2 || sizec != 2)
return -EINVAL;
ret = clk_get_by_index(dev, 0, &clk);
if (ret < 0) {
dev_err(dev, "Failed to get RPC clock\n");
return ret;
}
ret = clk_enable(&clk);
clk_free(&clk);
if (ret) {
dev_err(dev, "Failed to enable RPC clock\n");
return ret;
}
rpc_base = fdt_translate_address(blob, node, cell);
flash_base = fdt_translate_address(blob, node, cell + addrc + sizec);
flash_info[0].dev = dev;
flash_info[0].base = flash_base;
cfi_flash_num_flash_banks = 1;
gd->bd->bi_flashstart = flash_base;
return 0;
}
static const struct udevice_id rpc_hf_ids[] = {
{ .compatible = "renesas,rpc" },
{}
};
U_BOOT_DRIVER(rpc_hf) = {
.name = "rpc_hf",
.id = UCLASS_MTD,
.of_match = rpc_hf_ids,
.bind = rpc_hf_bind,
.probe = rpc_hf_probe,
};

@ -114,6 +114,14 @@ config PIC32_SPI
to access the SPI NOR flash, MMC-over-SPI on platforms based on
Microchip PIC32 family devices.
config RENESAS_RPC_SPI
bool "Renesas RPC SPI driver"
depends on RCAR_GEN3
help
Enable the Renesas RPC SPI driver, used to access SPI NOR flash
on Renesas RCar Gen3 SoCs. This uses driver model and requires a
device tree binding to operate.
config ROCKCHIP_SPI
bool "Rockchip SPI driver"
help

@ -39,6 +39,7 @@ obj-$(CONFIG_MXS_SPI) += mxs_spi.o
obj-$(CONFIG_ATCSPI200_SPI) += atcspi200_spi.o
obj-$(CONFIG_OMAP3_SPI) += omap3_spi.o
obj-$(CONFIG_PIC32_SPI) += pic32_spi.o
obj-$(CONFIG_RENESAS_RPC_SPI) += renesas_rpc_spi.o
obj-$(CONFIG_ROCKCHIP_SPI) += rk_spi.o
obj-$(CONFIG_SANDBOX_SPI) += sandbox_spi.o
obj-$(CONFIG_SH_SPI) += sh_spi.o

@ -0,0 +1,465 @@
/*
* Renesas RCar Gen3 RPC QSPI driver
*
* Copyright (C) 2018 Marek Vasut <marek.vasut@gmail.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <clk.h>
#include <dm.h>
#include <dm/of_access.h>
#include <dt-structs.h>
#include <errno.h>
#include <linux/errno.h>
#include <spi.h>
#include <wait_bit.h>
#define RPC_CMNCR 0x0000 /* R/W */
#define RPC_CMNCR_MD BIT(31)
#define RPC_CMNCR_SFDE BIT(24)
#define RPC_CMNCR_MOIIO3(val) (((val) & 0x3) << 22)
#define RPC_CMNCR_MOIIO2(val) (((val) & 0x3) << 20)
#define RPC_CMNCR_MOIIO1(val) (((val) & 0x3) << 18)
#define RPC_CMNCR_MOIIO0(val) (((val) & 0x3) << 16)
#define RPC_CMNCR_MOIIO_HIZ (RPC_CMNCR_MOIIO0(3) | RPC_CMNCR_MOIIO1(3) | \
RPC_CMNCR_MOIIO2(3) | RPC_CMNCR_MOIIO3(3))
#define RPC_CMNCR_IO3FV(val) (((val) & 0x3) << 14)
#define RPC_CMNCR_IO2FV(val) (((val) & 0x3) << 12)
#define RPC_CMNCR_IO0FV(val) (((val) & 0x3) << 8)
#define RPC_CMNCR_IOFV_HIZ (RPC_CMNCR_IO0FV(3) | RPC_CMNCR_IO2FV(3) | \
RPC_CMNCR_IO3FV(3))
#define RPC_CMNCR_CPHAT BIT(6)
#define RPC_CMNCR_CPHAR BIT(5)
#define RPC_CMNCR_SSLP BIT(4)
#define RPC_CMNCR_CPOL BIT(3)
#define RPC_CMNCR_BSZ(val) (((val) & 0x3) << 0)
#define RPC_SSLDR 0x0004 /* R/W */
#define RPC_SSLDR_SPNDL(d) (((d) & 0x7) << 16)
#define RPC_SSLDR_SLNDL(d) (((d) & 0x7) << 8)
#define RPC_SSLDR_SCKDL(d) (((d) & 0x7) << 0)
#define RPC_DRCR 0x000C /* R/W */
#define RPC_DRCR_SSLN BIT(24)
#define RPC_DRCR_RBURST(v) (((v) & 0x1F) << 16)
#define RPC_DRCR_RCF BIT(9)
#define RPC_DRCR_RBE BIT(8)
#define RPC_DRCR_SSLE BIT(0)
#define RPC_DRCMR 0x0010 /* R/W */
#define RPC_DRCMR_CMD(c) (((c) & 0xFF) << 16)
#define RPC_DRCMR_OCMD(c) (((c) & 0xFF) << 0)
#define RPC_DREAR 0x0014 /* R/W */
#define RPC_DREAR_EAV(v) (((v) & 0xFF) << 16)
#define RPC_DREAR_EAC(v) (((v) & 0x7) << 0)
#define RPC_DROPR 0x0018 /* R/W */
#define RPC_DROPR_OPD3(o) (((o) & 0xFF) << 24)
#define RPC_DROPR_OPD2(o) (((o) & 0xFF) << 16)
#define RPC_DROPR_OPD1(o) (((o) & 0xFF) << 8)
#define RPC_DROPR_OPD0(o) (((o) & 0xFF) << 0)
#define RPC_DRENR 0x001C /* R/W */
#define RPC_DRENR_CDB(o) (u32)((((o) & 0x3) << 30))
#define RPC_DRENR_OCDB(o) (((o) & 0x3) << 28)
#define RPC_DRENR_ADB(o) (((o) & 0x3) << 24)
#define RPC_DRENR_OPDB(o) (((o) & 0x3) << 20)
#define RPC_DRENR_SPIDB(o) (((o) & 0x3) << 16)
#define RPC_DRENR_DME BIT(15)
#define RPC_DRENR_CDE BIT(14)
#define RPC_DRENR_OCDE BIT(12)
#define RPC_DRENR_ADE(v) (((v) & 0xF) << 8)
#define RPC_DRENR_OPDE(v) (((v) & 0xF) << 4)
#define RPC_SMCR 0x0020 /* R/W */
#define RPC_SMCR_SSLKP BIT(8)
#define RPC_SMCR_SPIRE BIT(2)
#define RPC_SMCR_SPIWE BIT(1)
#define RPC_SMCR_SPIE BIT(0)
#define RPC_SMCMR 0x0024 /* R/W */
#define RPC_SMCMR_CMD(c) (((c) & 0xFF) << 16)
#define RPC_SMCMR_OCMD(c) (((c) & 0xFF) << 0)
#define RPC_SMADR 0x0028 /* R/W */
#define RPC_SMOPR 0x002C /* R/W */
#define RPC_SMOPR_OPD0(o) (((o) & 0xFF) << 0)
#define RPC_SMOPR_OPD1(o) (((o) & 0xFF) << 8)
#define RPC_SMOPR_OPD2(o) (((o) & 0xFF) << 16)
#define RPC_SMOPR_OPD3(o) (((o) & 0xFF) << 24)
#define RPC_SMENR 0x0030 /* R/W */
#define RPC_SMENR_CDB(o) (((o) & 0x3) << 30)
#define RPC_SMENR_OCDB(o) (((o) & 0x3) << 28)
#define RPC_SMENR_ADB(o) (((o) & 0x3) << 24)
#define RPC_SMENR_OPDB(o) (((o) & 0x3) << 20)
#define RPC_SMENR_SPIDB(o) (((o) & 0x3) << 16)
#define RPC_SMENR_DME BIT(15)
#define RPC_SMENR_CDE BIT(14)
#define RPC_SMENR_OCDE BIT(12)
#define RPC_SMENR_ADE(v) (((v) & 0xF) << 8)
#define RPC_SMENR_OPDE(v) (((v) & 0xF) << 4)
#define RPC_SMENR_SPIDE(v) (((v) & 0xF) << 0)
#define RPC_SMRDR0 0x0038 /* R */
#define RPC_SMRDR1 0x003C /* R */
#define RPC_SMWDR0 0x0040 /* R/W */
#define RPC_SMWDR1 0x0044 /* R/W */
#define RPC_CMNSR 0x0048 /* R */
#define RPC_CMNSR_SSLF BIT(1)
#define RPC_CMNSR_TEND BIT(0)
#define RPC_DRDMCR 0x0058 /* R/W */
#define RPC_DRDMCR_DMCYC(v) (((v) & 0xF) << 0)
#define RPC_DRDRENR 0x005C /* R/W */
#define RPC_DRDRENR_HYPE (0x5 << 12)
#define RPC_DRDRENR_ADDRE BIT(8)
#define RPC_DRDRENR_OPDRE BIT(4)
#define RPC_DRDRENR_DRDRE BIT(0)
#define RPC_SMDMCR 0x0060 /* R/W */
#define RPC_SMDMCR_DMCYC(v) (((v) & 0xF) << 0)
#define RPC_SMDRENR 0x0064 /* R/W */
#define RPC_SMDRENR_HYPE (0x5 << 12)
#define RPC_SMDRENR_ADDRE BIT(8)
#define RPC_SMDRENR_OPDRE BIT(4)
#define RPC_SMDRENR_SPIDRE BIT(0)
#define RPC_PHYCNT 0x007C /* R/W */
#define RPC_PHYCNT_CAL BIT(31)
#define PRC_PHYCNT_OCTA_AA BIT(22)
#define PRC_PHYCNT_OCTA_SA BIT(23)
#define PRC_PHYCNT_EXDS BIT(21)
#define RPC_PHYCNT_OCT BIT(20)
#define RPC_PHYCNT_STRTIM(v) (((v) & 0x7) << 15)
#define RPC_PHYCNT_WBUF2 BIT(4)
#define RPC_PHYCNT_WBUF BIT(2)
#define RPC_PHYCNT_MEM(v) (((v) & 0x3) << 0)
#define RPC_PHYINT 0x0088 /* R/W */
#define RPC_PHYINT_RSTEN BIT(18)
#define RPC_PHYINT_WPEN BIT(17)
#define RPC_PHYINT_INTEN BIT(16)
#define RPC_PHYINT_RST BIT(2)
#define RPC_PHYINT_WP BIT(1)
#define RPC_PHYINT_INT BIT(0)
#define RPC_WBUF 0x8000 /* R/W size=4/8/16/32/64Bytes */
#define RPC_WBUF_SIZE 0x100
DECLARE_GLOBAL_DATA_PTR;
struct rpc_spi_platdata {
fdt_addr_t regs;
fdt_addr_t extr;
s32 freq; /* Default clock freq, -1 for none */
};
struct rpc_spi_priv {
fdt_addr_t regs;
fdt_addr_t extr;
struct clk clk;
u8 cmdcopy[8];
u32 cmdlen;
bool cmdstarted;
};
static int rpc_spi_wait_sslf(struct udevice *dev)
{
struct rpc_spi_priv *priv = dev_get_priv(dev->parent);
return wait_for_bit_le32((void *)priv->regs + RPC_CMNSR, RPC_CMNSR_SSLF,
false, 1000, false);
}
static int rpc_spi_wait_tend(struct udevice *dev)
{
struct rpc_spi_priv *priv = dev_get_priv(dev->parent);
return wait_for_bit_le32((void *)priv->regs + RPC_CMNSR, RPC_CMNSR_TEND,
true, 1000, false);
}
static void rpc_spi_flush_read_cache(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct rpc_spi_priv *priv = dev_get_priv(bus);
/* Flush read cache */
writel(RPC_DRCR_SSLN | RPC_DRCR_RBURST(0x1f) |
RPC_DRCR_RCF | RPC_DRCR_RBE | RPC_DRCR_SSLE,
priv->regs + RPC_DRCR);
readl(priv->regs + RPC_DRCR);
}
static int rpc_spi_claim_bus(struct udevice *dev, bool manual)
{
struct udevice *bus = dev->parent;
struct rpc_spi_priv *priv = dev_get_priv(bus);
/*
* NOTE: The 0x260 are undocumented bits, but they must be set.
* NOTE: On H3 ES1.x (not supported in mainline U-Boot), the
* RPC_PHYCNT_STRTIM shall be 0, while on newer parts, the
* RPC_PHYCNT_STRTIM shall be 6.
*/
writel(RPC_PHYCNT_CAL | RPC_PHYCNT_STRTIM(6) | 0x260,
priv->regs + RPC_PHYCNT);
writel((manual ? RPC_CMNCR_MD : 0) | RPC_CMNCR_SFDE |
RPC_CMNCR_MOIIO_HIZ | RPC_CMNCR_IOFV_HIZ | RPC_CMNCR_BSZ(0),
priv->regs + RPC_CMNCR);
writel(RPC_SSLDR_SPNDL(7) | RPC_SSLDR_SLNDL(7) |
RPC_SSLDR_SCKDL(7), priv->regs + RPC_SSLDR);
rpc_spi_flush_read_cache(dev);
return 0;
}
static int rpc_spi_release_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct rpc_spi_priv *priv = dev_get_priv(bus);
/* NOTE: The 0x260 are undocumented bits, but they must be set. */
writel(RPC_PHYCNT_STRTIM(6) | 0x260, priv->regs + RPC_PHYCNT);
rpc_spi_flush_read_cache(dev);
return 0;
}
static int rpc_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev->parent;
struct rpc_spi_priv *priv = dev_get_priv(bus);
u32 wlen = dout ? (bitlen / 8) : 0;
u32 rlen = din ? (bitlen / 8) : 0;
u32 wloop = DIV_ROUND_UP(wlen, 4);
u32 smenr, smcr, offset;
int ret = 0;
if (!priv->cmdstarted) {
if (!wlen || rlen)
BUG();
memcpy(priv->cmdcopy, dout, wlen);
priv->cmdlen = wlen;
/* Command transfer start */
priv->cmdstarted = true;
if (!(flags & SPI_XFER_END))
return 0;
}
offset = (priv->cmdcopy[1] << 16) | (priv->cmdcopy[2] << 8) |
(priv->cmdcopy[3] << 0);
smenr = 0;
if (wlen || (!rlen && !wlen) || flags == SPI_XFER_ONCE) {
if (wlen && flags == SPI_XFER_END)
smenr = RPC_SMENR_SPIDE(0xf);
rpc_spi_claim_bus(dev, true);
writel(0, priv->regs + RPC_SMCR);
if (priv->cmdlen >= 1) { /* Command(1) */
writel(RPC_SMCMR_CMD(priv->cmdcopy[0]),
priv->regs + RPC_SMCMR);
smenr |= RPC_SMENR_CDE;
} else {
writel(0, priv->regs + RPC_SMCMR);
}
if (priv->cmdlen >= 4) { /* Address(3) */
writel(offset, priv->regs + RPC_SMADR);
smenr |= RPC_SMENR_ADE(7);
} else {
writel(0, priv->regs + RPC_SMADR);
}
if (priv->cmdlen >= 5) { /* Dummy(n) */
writel(8 * (priv->cmdlen - 4) - 1,
priv->regs + RPC_SMDMCR);
smenr |= RPC_SMENR_DME;
} else {
writel(0, priv->regs + RPC_SMDMCR);
}
writel(0, priv->regs + RPC_SMOPR);
writel(0, priv->regs + RPC_SMDRENR);
if (wlen && flags == SPI_XFER_END) {
u32 *datout = (u32 *)dout;
while (wloop--) {
smcr = RPC_SMCR_SPIWE | RPC_SMCR_SPIE;
if (wloop >= 1)
smcr |= RPC_SMCR_SSLKP;
writel(smenr, priv->regs + RPC_SMENR);
writel(*datout, priv->regs + RPC_SMWDR0);
writel(smcr, priv->regs + RPC_SMCR);
ret = rpc_spi_wait_tend(dev);
if (ret)
goto err;
datout++;
smenr = RPC_SMENR_SPIDE(0xf);
}
ret = rpc_spi_wait_sslf(dev);
} else {
writel(smenr, priv->regs + RPC_SMENR);
writel(RPC_SMCR_SPIE, priv->regs + RPC_SMCR);
ret = rpc_spi_wait_tend(dev);
}
} else { /* Read data only, using DRx ext access */
rpc_spi_claim_bus(dev, false);
if (priv->cmdlen >= 1) { /* Command(1) */
writel(RPC_DRCMR_CMD(priv->cmdcopy[0]),
priv->regs + RPC_DRCMR);
smenr |= RPC_DRENR_CDE;
} else {
writel(0, priv->regs + RPC_DRCMR);
}
if (priv->cmdlen >= 4) /* Address(3) */
smenr |= RPC_DRENR_ADE(7);
if (priv->cmdlen >= 5) { /* Dummy(n) */
writel(8 * (priv->cmdlen - 4) - 1,
priv->regs + RPC_DRDMCR);
smenr |= RPC_DRENR_DME;
} else {
writel(0, priv->regs + RPC_DRDMCR);
}
writel(0, priv->regs + RPC_DROPR);
writel(smenr, priv->regs + RPC_DRENR);
if (rlen)
memcpy_fromio(din, (void *)(priv->extr + offset), rlen);
else
readl(priv->extr); /* Dummy read */
}
err:
priv->cmdstarted = false;
rpc_spi_release_bus(dev);
return ret;
}
static int rpc_spi_set_speed(struct udevice *bus, uint speed)
{
/* This is a SPI NOR controller, do nothing. */
return 0;
}
static int rpc_spi_set_mode(struct udevice *bus, uint mode)
{
/* This is a SPI NOR controller, do nothing. */
return 0;
}
static int rpc_spi_bind(struct udevice *parent)
{
const void *fdt = gd->fdt_blob;
ofnode node;
int ret, off;
/*
* Check if there are any SPI NOR child nodes, if so, bind as
* this controller will be operated in SPI mode.
*/
dev_for_each_subnode(node, parent) {
off = ofnode_to_offset(node);
ret = fdt_node_check_compatible(fdt, off, "spi-flash");
if (!ret)
return 0;
ret = fdt_node_check_compatible(fdt, off, "jedec,spi-nor");
if (!ret)
return 0;
}
return -ENODEV;
}
static int rpc_spi_probe(struct udevice *dev)
{
struct rpc_spi_platdata *plat = dev_get_platdata(dev);
struct rpc_spi_priv *priv = dev_get_priv(dev);
priv->regs = plat->regs;
priv->extr = plat->extr;
clk_enable(&priv->clk);
return 0;
}
static int rpc_spi_ofdata_to_platdata(struct udevice *bus)
{
struct rpc_spi_platdata *plat = dev_get_platdata(bus);
struct rpc_spi_priv *priv = dev_get_priv(bus);
int ret;
plat->regs = dev_read_addr_index(bus, 0);
plat->extr = dev_read_addr_index(bus, 1);
ret = clk_get_by_index(bus, 0, &priv->clk);
if (ret < 0) {
printf("%s: Could not get clock for %s: %d\n",
__func__, bus->name, ret);
return ret;
}
plat->freq = dev_read_u32_default(bus, "spi-max-freq", 50000000);
return 0;
}
static const struct dm_spi_ops rpc_spi_ops = {
.xfer = rpc_spi_xfer,
.set_speed = rpc_spi_set_speed,
.set_mode = rpc_spi_set_mode,
};
static const struct udevice_id rpc_spi_ids[] = {
{ .compatible = "renesas,rpc-r8a7795" },
{ .compatible = "renesas,rpc-r8a7796" },
{ .compatible = "renesas,rpc-r8a77965" },
{ .compatible = "renesas,rpc-r8a77970" },
{ .compatible = "renesas,rpc-r8a77995" },
{ }
};
U_BOOT_DRIVER(rpc_spi) = {
.name = "rpc_spi",
.id = UCLASS_SPI,
.of_match = rpc_spi_ids,
.ops = &rpc_spi_ops,
.ofdata_to_platdata = rpc_spi_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct rpc_spi_platdata),
.priv_auto_alloc_size = sizeof(struct rpc_spi_priv),
.bind = rpc_spi_bind,
.probe = rpc_spi_probe,
};

@ -11,6 +11,7 @@
#include <console.h>
#include <malloc.h>
#include <spi.h>
#include <wait_bit.h>
#include <asm/arch/rmobile.h>
#include <asm/io.h>
@ -35,33 +36,35 @@
SPCMD_BRDV0
#define SPBFCR_TXRST BIT(7)
#define SPBFCR_RXRST BIT(6)
#define SPBFCR_TXTRG 0x30
#define SPBFCR_RXTRG 0x07
/* SH QSPI register set */
struct sh_qspi_regs {
unsigned char spcr;
unsigned char sslp;
unsigned char sppcr;
unsigned char spsr;
unsigned long spdr;
unsigned char spscr;
unsigned char spssr;
unsigned char spbr;
unsigned char spdcr;
unsigned char spckd;
unsigned char sslnd;
unsigned char spnd;
unsigned char dummy0;
unsigned short spcmd0;
unsigned short spcmd1;
unsigned short spcmd2;
unsigned short spcmd3;
unsigned char spbfcr;
unsigned char dummy1;
unsigned short spbdcr;
unsigned long spbmul0;
unsigned long spbmul1;
unsigned long spbmul2;
unsigned long spbmul3;
u8 spcr;
u8 sslp;
u8 sppcr;
u8 spsr;
u32 spdr;
u8 spscr;
u8 spssr;
u8 spbr;
u8 spdcr;
u8 spckd;
u8 sslnd;
u8 spnd;
u8 dummy0;
u16 spcmd0;
u16 spcmd1;
u16 spcmd2;
u16 spcmd3;
u8 spbfcr;
u8 dummy1;
u16 spbdcr;
u32 spbmul0;
u32 spbmul1;
u32 spbmul2;
u32 spbmul3;
};
struct sh_qspi_slave {
@ -200,11 +203,11 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
void *din, unsigned long flags)
{
struct sh_qspi_slave *ss = to_sh_qspi(slave);
unsigned long nbyte;
int ret = 0;
unsigned char dtdata = 0, drdata;
unsigned char *tdata = &dtdata, *rdata = &drdata;
unsigned long *spbmul0 = &ss->regs->spbmul0;
u32 nbyte, chunk;
int i, ret = 0;
u8 dtdata = 0, drdata;
u8 *tdata = &dtdata, *rdata = &drdata;
u32 *spbmul0 = &ss->regs->spbmul0;
if (dout == NULL && din == NULL) {
if (flags & SPI_XFER_END)
@ -230,46 +233,44 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
writel(nbyte, spbmul0);
if (dout != NULL)
tdata = (unsigned char *)dout;
tdata = (u8 *)dout;
if (din != NULL)
rdata = din;
while (nbyte > 0) {
while (!(readb(&ss->regs->spsr) & SPSR_SPTEF)) {
if (ctrlc()) {
puts("abort\n");
return 1;
}
udelay(10);
/*
* Check if there is 32 Byte chunk and if there is, transfer
* it in one burst, otherwise transfer on byte-by-byte basis.
*/
chunk = (nbyte >= 32) ? 32 : 1;
clrsetbits_8(&ss->regs->spbfcr, SPBFCR_TXTRG | SPBFCR_RXTRG,
chunk == 32 ? SPBFCR_TXTRG | SPBFCR_RXTRG : 0);
ret = wait_for_bit_8(&ss->regs->spsr, SPSR_SPTEF,
true, 1000, true);
if (ret)
return ret;
for (i = 0; i < chunk; i++) {
writeb(*tdata, &ss->regs->spdr);
if (dout != NULL)
tdata++;
}
writeb(*tdata, (unsigned char *)(&ss->regs->spdr));
ret = wait_for_bit_8(&ss->regs->spsr, SPSR_SPRFF,
true, 1000, true);
if (ret)
return ret;
while ((readw(&ss->regs->spbdcr) != SPBDCR_RXBC0)) {
if (ctrlc()) {
puts("abort\n");
return 1;
}
udelay(1);
for (i = 0; i < chunk; i++) {
*rdata = readb(&ss->regs->spdr);
if (din != NULL)
rdata++;
}
while (!(readb(&ss->regs->spsr) & SPSR_SPRFF)) {
if (ctrlc()) {
puts("abort\n");
return 1;
}
udelay(10);
}
*rdata = readb((unsigned char *)(&ss->regs->spdr));
if (dout != NULL)
tdata++;
if (din != NULL)
rdata++;
nbyte--;
nbyte -= chunk;
}
if (flags & SPI_XFER_END)

@ -59,4 +59,10 @@
#define CONFIG_SPL_MAX_SIZE 0x40000
#define CONFIG_SYS_SPI_U_BOOT_OFFS 0x140000
/* TPL support */
#ifdef CONFIG_TPL_BUILD
#define CONFIG_CONS_SCIF0
#define CONFIG_SH_SCIF_CLK_FREQ 65000000
#endif
#endif /* __PORTER_H */

@ -51,6 +51,7 @@
#define CONFIG_SYS_MONITOR_LEN (256 * 1024)
#define CONFIG_SYS_MALLOC_LEN (1 * 1024 * 1024)
#define CONFIG_SYS_BOOTMAPSZ (8 * 1024 * 1024)
#define CONFIG_SYS_BOOTM_LEN (64 << 20)
/* ENV setting */
#define CONFIG_ENV_OVERWRITE

Loading…
Cancel
Save