mtd: nand: Add core infrastructure to deal with NAND devices

Add an intermediate layer to abstract NAND device interface so that
some logic can be shared between SPI NANDs, parallel/raw NANDs,
OneNANDs, ...

Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Acked-by: Jagan Teki <jagan@openedev.com>
lime2-spi
Boris Brezillon 6 years ago committed by Jagan Teki
parent 3657b2f4a3
commit b95db8d33a
  1. 3
      drivers/mtd/nand/Kconfig
  2. 2
      drivers/mtd/nand/Makefile
  3. 132
      drivers/mtd/nand/bbt.c
  4. 243
      drivers/mtd/nand/core.c
  5. 731
      include/linux/mtd/nand.h

@ -1 +1,4 @@
config MTD_NAND_CORE
tristate
source "drivers/mtd/nand/raw/Kconfig"

@ -1,2 +1,4 @@
# SPDX-License-Identifier: GPL-2.0+
nandcore-objs := core.o bbt.o
obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o

@ -0,0 +1,132 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017 Free Electrons
*
* Authors:
* Boris Brezillon <boris.brezillon@free-electrons.com>
* Peter Pan <peterpandong@micron.com>
*/
#define pr_fmt(fmt) "nand-bbt: " fmt
#include <linux/mtd/nand.h>
#ifndef __UBOOT__
#include <linux/slab.h>
#endif
/**
* nanddev_bbt_init() - Initialize the BBT (Bad Block Table)
* @nand: NAND device
*
* Initialize the in-memory BBT.
*
* Return: 0 in case of success, a negative error code otherwise.
*/
int nanddev_bbt_init(struct nand_device *nand)
{
unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS);
unsigned int nblocks = nanddev_neraseblocks(nand);
unsigned int nwords = DIV_ROUND_UP(nblocks * bits_per_block,
BITS_PER_LONG);
nand->bbt.cache = kzalloc(nwords, GFP_KERNEL);
if (!nand->bbt.cache)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL_GPL(nanddev_bbt_init);
/**
* nanddev_bbt_cleanup() - Cleanup the BBT (Bad Block Table)
* @nand: NAND device
*
* Undoes what has been done in nanddev_bbt_init()
*/
void nanddev_bbt_cleanup(struct nand_device *nand)
{
kfree(nand->bbt.cache);
}
EXPORT_SYMBOL_GPL(nanddev_bbt_cleanup);
/**
* nanddev_bbt_update() - Update a BBT
* @nand: nand device
*
* Update the BBT. Currently a NOP function since on-flash bbt is not yet
* supported.
*
* Return: 0 in case of success, a negative error code otherwise.
*/
int nanddev_bbt_update(struct nand_device *nand)
{
return 0;
}
EXPORT_SYMBOL_GPL(nanddev_bbt_update);
/**
* nanddev_bbt_get_block_status() - Return the status of an eraseblock
* @nand: nand device
* @entry: the BBT entry
*
* Return: a positive number nand_bbt_block_status status or -%ERANGE if @entry
* is bigger than the BBT size.
*/
int nanddev_bbt_get_block_status(const struct nand_device *nand,
unsigned int entry)
{
unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS);
unsigned long *pos = nand->bbt.cache +
((entry * bits_per_block) / BITS_PER_LONG);
unsigned int offs = (entry * bits_per_block) % BITS_PER_LONG;
unsigned long status;
if (entry >= nanddev_neraseblocks(nand))
return -ERANGE;
status = pos[0] >> offs;
if (bits_per_block + offs > BITS_PER_LONG)
status |= pos[1] << (BITS_PER_LONG - offs);
return status & GENMASK(bits_per_block - 1, 0);
}
EXPORT_SYMBOL_GPL(nanddev_bbt_get_block_status);
/**
* nanddev_bbt_set_block_status() - Update the status of an eraseblock in the
* in-memory BBT
* @nand: nand device
* @entry: the BBT entry to update
* @status: the new status
*
* Update an entry of the in-memory BBT. If you want to push the updated BBT
* the NAND you should call nanddev_bbt_update().
*
* Return: 0 in case of success or -%ERANGE if @entry is bigger than the BBT
* size.
*/
int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
enum nand_bbt_block_status status)
{
unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS);
unsigned long *pos = nand->bbt.cache +
((entry * bits_per_block) / BITS_PER_LONG);
unsigned int offs = (entry * bits_per_block) % BITS_PER_LONG;
unsigned long val = status & GENMASK(bits_per_block - 1, 0);
if (entry >= nanddev_neraseblocks(nand))
return -ERANGE;
pos[0] &= ~GENMASK(offs + bits_per_block - 1, offs);
pos[0] |= val << offs;
if (bits_per_block + offs > BITS_PER_LONG) {
unsigned int rbits = bits_per_block + offs - BITS_PER_LONG;
pos[1] &= ~GENMASK(rbits - 1, 0);
pos[1] |= val >> rbits;
}
return 0;
}
EXPORT_SYMBOL_GPL(nanddev_bbt_set_block_status);

@ -0,0 +1,243 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017 Free Electrons
*
* Authors:
* Boris Brezillon <boris.brezillon@free-electrons.com>
* Peter Pan <peterpandong@micron.com>
*/
#define pr_fmt(fmt) "nand: " fmt
#ifndef __UBOOT__
#include <linux/module.h>
#endif
#include <linux/mtd/nand.h>
/**
* nanddev_isbad() - Check if a block is bad
* @nand: NAND device
* @pos: position pointing to the block we want to check
*
* Return: true if the block is bad, false otherwise.
*/
bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos)
{
if (nanddev_bbt_is_initialized(nand)) {
unsigned int entry;
int status;
entry = nanddev_bbt_pos_to_entry(nand, pos);
status = nanddev_bbt_get_block_status(nand, entry);
/* Lazy block status retrieval */
if (status == NAND_BBT_BLOCK_STATUS_UNKNOWN) {
if (nand->ops->isbad(nand, pos))
status = NAND_BBT_BLOCK_FACTORY_BAD;
else
status = NAND_BBT_BLOCK_GOOD;
nanddev_bbt_set_block_status(nand, entry, status);
}
if (status == NAND_BBT_BLOCK_WORN ||
status == NAND_BBT_BLOCK_FACTORY_BAD)
return true;
return false;
}
return nand->ops->isbad(nand, pos);
}
EXPORT_SYMBOL_GPL(nanddev_isbad);
/**
* nanddev_markbad() - Mark a block as bad
* @nand: NAND device
* @pos: position of the block to mark bad
*
* Mark a block bad. This function is updating the BBT if available and
* calls the low-level markbad hook (nand->ops->markbad()).
*
* Return: 0 in case of success, a negative error code otherwise.
*/
int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos)
{
struct mtd_info *mtd = nanddev_to_mtd(nand);
unsigned int entry;
int ret = 0;
if (nanddev_isbad(nand, pos))
return 0;
ret = nand->ops->markbad(nand, pos);
if (ret)
pr_warn("failed to write BBM to block @%llx (err = %d)\n",
nanddev_pos_to_offs(nand, pos), ret);
if (!nanddev_bbt_is_initialized(nand))
goto out;
entry = nanddev_bbt_pos_to_entry(nand, pos);
ret = nanddev_bbt_set_block_status(nand, entry, NAND_BBT_BLOCK_WORN);
if (ret)
goto out;
ret = nanddev_bbt_update(nand);
out:
if (!ret)
mtd->ecc_stats.badblocks++;
return ret;
}
EXPORT_SYMBOL_GPL(nanddev_markbad);
/**
* nanddev_isreserved() - Check whether an eraseblock is reserved or not
* @nand: NAND device
* @pos: NAND position to test
*
* Checks whether the eraseblock pointed by @pos is reserved or not.
*
* Return: true if the eraseblock is reserved, false otherwise.
*/
bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos)
{
unsigned int entry;
int status;
if (!nanddev_bbt_is_initialized(nand))
return false;
/* Return info from the table */
entry = nanddev_bbt_pos_to_entry(nand, pos);
status = nanddev_bbt_get_block_status(nand, entry);
return status == NAND_BBT_BLOCK_RESERVED;
}
EXPORT_SYMBOL_GPL(nanddev_isreserved);
/**
* nanddev_erase() - Erase a NAND portion
* @nand: NAND device
* @pos: position of the block to erase
*
* Erases the block if it's not bad.
*
* Return: 0 in case of success, a negative error code otherwise.
*/
int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos)
{
if (nanddev_isbad(nand, pos) || nanddev_isreserved(nand, pos)) {
pr_warn("attempt to erase a bad/reserved block @%llx\n",
nanddev_pos_to_offs(nand, pos));
return -EIO;
}
return nand->ops->erase(nand, pos);
}
EXPORT_SYMBOL_GPL(nanddev_erase);
/**
* nanddev_mtd_erase() - Generic mtd->_erase() implementation for NAND devices
* @mtd: MTD device
* @einfo: erase request
*
* This is a simple mtd->_erase() implementation iterating over all blocks
* concerned by @einfo and calling nand->ops->erase() on each of them.
*
* Note that mtd->_erase should not be directly assigned to this helper,
* because there's no locking here. NAND specialized layers should instead
* implement there own wrapper around nanddev_mtd_erase() taking the
* appropriate lock before calling nanddev_mtd_erase().
*
* Return: 0 in case of success, a negative error code otherwise.
*/
int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
struct nand_pos pos, last;
int ret;
nanddev_offs_to_pos(nand, einfo->addr, &pos);
nanddev_offs_to_pos(nand, einfo->addr + einfo->len - 1, &last);
while (nanddev_pos_cmp(&pos, &last) <= 0) {
ret = nanddev_erase(nand, &pos);
if (ret) {
einfo->fail_addr = nanddev_pos_to_offs(nand, &pos);
return ret;
}
nanddev_pos_next_eraseblock(nand, &pos);
}
return 0;
}
EXPORT_SYMBOL_GPL(nanddev_mtd_erase);
/**
* nanddev_init() - Initialize a NAND device
* @nand: NAND device
* @ops: NAND device operations
* @owner: NAND device owner
*
* Initializes a NAND device object. Consistency checks are done on @ops and
* @nand->memorg. Also takes care of initializing the BBT.
*
* Return: 0 in case of success, a negative error code otherwise.
*/
int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
struct module *owner)
{
struct mtd_info *mtd = nanddev_to_mtd(nand);
struct nand_memory_organization *memorg = nanddev_get_memorg(nand);
if (!nand || !ops)
return -EINVAL;
if (!ops->erase || !ops->markbad || !ops->isbad)
return -EINVAL;
if (!memorg->bits_per_cell || !memorg->pagesize ||
!memorg->pages_per_eraseblock || !memorg->eraseblocks_per_lun ||
!memorg->planes_per_lun || !memorg->luns_per_target ||
!memorg->ntargets)
return -EINVAL;
nand->rowconv.eraseblock_addr_shift =
fls(memorg->pages_per_eraseblock - 1);
nand->rowconv.lun_addr_shift = fls(memorg->eraseblocks_per_lun - 1) +
nand->rowconv.eraseblock_addr_shift;
nand->ops = ops;
mtd->type = memorg->bits_per_cell == 1 ?
MTD_NANDFLASH : MTD_MLCNANDFLASH;
mtd->flags = MTD_CAP_NANDFLASH;
mtd->erasesize = memorg->pagesize * memorg->pages_per_eraseblock;
mtd->writesize = memorg->pagesize;
mtd->writebufsize = memorg->pagesize;
mtd->oobsize = memorg->oobsize;
mtd->size = nanddev_size(nand);
mtd->owner = owner;
return nanddev_bbt_init(nand);
}
EXPORT_SYMBOL_GPL(nanddev_init);
/**
* nanddev_cleanup() - Release resources allocated in nanddev_init()
* @nand: NAND device
*
* Basically undoes what has been done in nanddev_init().
*/
void nanddev_cleanup(struct nand_device *nand)
{
if (nanddev_bbt_is_initialized(nand))
nanddev_bbt_cleanup(nand);
}
EXPORT_SYMBOL_GPL(nanddev_cleanup);
MODULE_DESCRIPTION("Generic NAND framework");
MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
MODULE_LICENSE("GPL v2");

@ -0,0 +1,731 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright 2017 - Free Electrons
*
* Authors:
* Boris Brezillon <boris.brezillon@free-electrons.com>
* Peter Pan <peterpandong@micron.com>
*/
#ifndef __LINUX_MTD_NAND_H
#define __LINUX_MTD_NAND_H
#include <linux/mtd/mtd.h>
/**
* struct nand_memory_organization - Memory organization structure
* @bits_per_cell: number of bits per NAND cell
* @pagesize: page size
* @oobsize: OOB area size
* @pages_per_eraseblock: number of pages per eraseblock
* @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
* @planes_per_lun: number of planes per LUN
* @luns_per_target: number of LUN per target (target is a synonym for die)
* @ntargets: total number of targets exposed by the NAND device
*/
struct nand_memory_organization {
unsigned int bits_per_cell;
unsigned int pagesize;
unsigned int oobsize;
unsigned int pages_per_eraseblock;
unsigned int eraseblocks_per_lun;
unsigned int planes_per_lun;
unsigned int luns_per_target;
unsigned int ntargets;
};
#define NAND_MEMORG(bpc, ps, os, ppe, epl, ppl, lpt, nt) \
{ \
.bits_per_cell = (bpc), \
.pagesize = (ps), \
.oobsize = (os), \
.pages_per_eraseblock = (ppe), \
.eraseblocks_per_lun = (epl), \
.planes_per_lun = (ppl), \
.luns_per_target = (lpt), \
.ntargets = (nt), \
}
/**
* struct nand_row_converter - Information needed to convert an absolute offset
* into a row address
* @lun_addr_shift: position of the LUN identifier in the row address
* @eraseblock_addr_shift: position of the eraseblock identifier in the row
* address
*/
struct nand_row_converter {
unsigned int lun_addr_shift;
unsigned int eraseblock_addr_shift;
};
/**
* struct nand_pos - NAND position object
* @target: the NAND target/die
* @lun: the LUN identifier
* @plane: the plane within the LUN
* @eraseblock: the eraseblock within the LUN
* @page: the page within the LUN
*
* These information are usually used by specific sub-layers to select the
* appropriate target/die and generate a row address to pass to the device.
*/
struct nand_pos {
unsigned int target;
unsigned int lun;
unsigned int plane;
unsigned int eraseblock;
unsigned int page;
};
/**
* struct nand_page_io_req - NAND I/O request object
* @pos: the position this I/O request is targeting
* @dataoffs: the offset within the page
* @datalen: number of data bytes to read from/write to this page
* @databuf: buffer to store data in or get data from
* @ooboffs: the OOB offset within the page
* @ooblen: the number of OOB bytes to read from/write to this page
* @oobbuf: buffer to store OOB data in or get OOB data from
*
* This object is used to pass per-page I/O requests to NAND sub-layers. This
* way all useful information are already formatted in a useful way and
* specific NAND layers can focus on translating these information into
* specific commands/operations.
*/
struct nand_page_io_req {
struct nand_pos pos;
unsigned int dataoffs;
unsigned int datalen;
union {
const void *out;
void *in;
} databuf;
unsigned int ooboffs;
unsigned int ooblen;
union {
const void *out;
void *in;
} oobbuf;
};
/**
* struct nand_ecc_req - NAND ECC requirements
* @strength: ECC strength
* @step_size: ECC step/block size
*/
struct nand_ecc_req {
unsigned int strength;
unsigned int step_size;
};
#define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
/**
* struct nand_bbt - bad block table object
* @cache: in memory BBT cache
*/
struct nand_bbt {
unsigned long *cache;
};
struct nand_device;
/**
* struct nand_ops - NAND operations
* @erase: erase a specific block. No need to check if the block is bad before
* erasing, this has been taken care of by the generic NAND layer
* @markbad: mark a specific block bad. No need to check if the block is
* already marked bad, this has been taken care of by the generic
* NAND layer. This method should just write the BBM (Bad Block
* Marker) so that future call to struct_nand_ops->isbad() return
* true
* @isbad: check whether a block is bad or not. This method should just read
* the BBM and return whether the block is bad or not based on what it
* reads
*
* These are all low level operations that should be implemented by specialized
* NAND layers (SPI NAND, raw NAND, ...).
*/
struct nand_ops {
int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
};
/**
* struct nand_device - NAND device
* @mtd: MTD instance attached to the NAND device
* @memorg: memory layout
* @eccreq: ECC requirements
* @rowconv: position to row address converter
* @bbt: bad block table info
* @ops: NAND operations attached to the NAND device
*
* Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
* should declare their own NAND object embedding a nand_device struct (that's
* how inheritance is done).
* struct_nand_device->memorg and struct_nand_device->eccreq should be filled
* at device detection time to reflect the NAND device
* capabilities/requirements. Once this is done nanddev_init() can be called.
* It will take care of converting NAND information into MTD ones, which means
* the specialized NAND layers should never manually tweak
* struct_nand_device->mtd except for the ->_read/write() hooks.
*/
struct nand_device {
struct mtd_info *mtd;
struct nand_memory_organization memorg;
struct nand_ecc_req eccreq;
struct nand_row_converter rowconv;
struct nand_bbt bbt;
const struct nand_ops *ops;
};
/**
* struct nand_io_iter - NAND I/O iterator
* @req: current I/O request
* @oobbytes_per_page: maximum number of OOB bytes per page
* @dataleft: remaining number of data bytes to read/write
* @oobleft: remaining number of OOB bytes to read/write
*
* Can be used by specialized NAND layers to iterate over all pages covered
* by an MTD I/O request, which should greatly simplifies the boiler-plate
* code needed to read/write data from/to a NAND device.
*/
struct nand_io_iter {
struct nand_page_io_req req;
unsigned int oobbytes_per_page;
unsigned int dataleft;
unsigned int oobleft;
};
/**
* mtd_to_nanddev() - Get the NAND device attached to the MTD instance
* @mtd: MTD instance
*
* Return: the NAND device embedding @mtd.
*/
static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
{
return mtd->priv;
}
/**
* nanddev_to_mtd() - Get the MTD device attached to a NAND device
* @nand: NAND device
*
* Return: the MTD device embedded in @nand.
*/
static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
{
return nand->mtd;
}
/*
* nanddev_bits_per_cell() - Get the number of bits per cell
* @nand: NAND device
*
* Return: the number of bits per cell.
*/
static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
{
return nand->memorg.bits_per_cell;
}
/**
* nanddev_page_size() - Get NAND page size
* @nand: NAND device
*
* Return: the page size.
*/
static inline size_t nanddev_page_size(const struct nand_device *nand)
{
return nand->memorg.pagesize;
}
/**
* nanddev_per_page_oobsize() - Get NAND OOB size
* @nand: NAND device
*
* Return: the OOB size.
*/
static inline unsigned int
nanddev_per_page_oobsize(const struct nand_device *nand)
{
return nand->memorg.oobsize;
}
/**
* nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
* @nand: NAND device
*
* Return: the number of pages per eraseblock.
*/
static inline unsigned int
nanddev_pages_per_eraseblock(const struct nand_device *nand)
{
return nand->memorg.pages_per_eraseblock;
}
/**
* nanddev_per_page_oobsize() - Get NAND erase block size
* @nand: NAND device
*
* Return: the eraseblock size.
*/
static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
{
return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
}
/**
* nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
* @nand: NAND device
*
* Return: the number of eraseblocks per LUN.
*/
static inline unsigned int
nanddev_eraseblocks_per_lun(const struct nand_device *nand)
{
return nand->memorg.eraseblocks_per_lun;
}
/**
* nanddev_target_size() - Get the total size provided by a single target/die
* @nand: NAND device
*
* Return: the total size exposed by a single target/die in bytes.
*/
static inline u64 nanddev_target_size(const struct nand_device *nand)
{
return (u64)nand->memorg.luns_per_target *
nand->memorg.eraseblocks_per_lun *
nand->memorg.pages_per_eraseblock *
nand->memorg.pagesize;
}
/**
* nanddev_ntarget() - Get the total of targets
* @nand: NAND device
*
* Return: the number of targets/dies exposed by @nand.
*/
static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
{
return nand->memorg.ntargets;
}
/**
* nanddev_neraseblocks() - Get the total number of erasablocks
* @nand: NAND device
*
* Return: the total number of eraseblocks exposed by @nand.
*/
static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
{
return (u64)nand->memorg.luns_per_target *
nand->memorg.eraseblocks_per_lun *
nand->memorg.pages_per_eraseblock;
}
/**
* nanddev_size() - Get NAND size
* @nand: NAND device
*
* Return: the total size (in bytes) exposed by @nand.
*/
static inline u64 nanddev_size(const struct nand_device *nand)
{
return nanddev_target_size(nand) * nanddev_ntargets(nand);
}
/**
* nanddev_get_memorg() - Extract memory organization info from a NAND device
* @nand: NAND device
*
* This can be used by the upper layer to fill the memorg info before calling
* nanddev_init().
*
* Return: the memorg object embedded in the NAND device.
*/
static inline struct nand_memory_organization *
nanddev_get_memorg(struct nand_device *nand)
{
return &nand->memorg;
}
int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
struct module *owner);
void nanddev_cleanup(struct nand_device *nand);
/**
* nanddev_register() - Register a NAND device
* @nand: NAND device
*
* Register a NAND device.
* This function is just a wrapper around mtd_device_register()
* registering the MTD device embedded in @nand.
*
* Return: 0 in case of success, a negative error code otherwise.
*/
static inline int nanddev_register(struct nand_device *nand)
{
return mtd_device_register(nand->mtd, NULL, 0);
}
/**
* nanddev_unregister() - Unregister a NAND device
* @nand: NAND device
*
* Unregister a NAND device.
* This function is just a wrapper around mtd_device_unregister()
* unregistering the MTD device embedded in @nand.
*
* Return: 0 in case of success, a negative error code otherwise.
*/
static inline int nanddev_unregister(struct nand_device *nand)
{
return mtd_device_unregister(nand->mtd);
}
/**
* nanddev_set_of_node() - Attach a DT node to a NAND device
* @nand: NAND device
* @np: DT node
*
* Attach a DT node to a NAND device.
*/
static inline void nanddev_set_of_node(struct nand_device *nand,
const struct device_node *np)
{
mtd_set_of_node(nand->mtd, np);
}
/**
* nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
* @nand: NAND device
*
* Return: the DT node attached to @nand.
*/
static inline const struct device_node *nanddev_get_of_node(struct nand_device *nand)
{
return mtd_get_of_node(nand->mtd);
}
/**
* nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
* @nand: NAND device
* @offs: absolute NAND offset (usually passed by the MTD layer)
* @pos: a NAND position object to fill in
*
* Converts @offs into a nand_pos representation.
*
* Return: the offset within the NAND page pointed by @pos.
*/
static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
loff_t offs,
struct nand_pos *pos)
{
unsigned int pageoffs;
u64 tmp = offs;
pageoffs = do_div(tmp, nand->memorg.pagesize);
pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
pos->lun = do_div(tmp, nand->memorg.luns_per_target);
pos->target = tmp;
return pageoffs;
}
/**
* nanddev_pos_cmp() - Compare two NAND positions
* @a: First NAND position
* @b: Second NAND position
*
* Compares two NAND positions.
*
* Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
*/
static inline int nanddev_pos_cmp(const struct nand_pos *a,
const struct nand_pos *b)
{
if (a->target != b->target)
return a->target < b->target ? -1 : 1;
if (a->lun != b->lun)
return a->lun < b->lun ? -1 : 1;
if (a->eraseblock != b->eraseblock)
return a->eraseblock < b->eraseblock ? -1 : 1;
if (a->page != b->page)
return a->page < b->page ? -1 : 1;
return 0;
}
/**
* nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
* @nand: NAND device
* @pos: the NAND position to convert
*
* Converts @pos NAND position into an absolute offset.
*
* Return: the absolute offset. Note that @pos points to the beginning of a
* page, if one wants to point to a specific offset within this page
* the returned offset has to be adjusted manually.
*/
static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
const struct nand_pos *pos)
{
unsigned int npages;
npages = pos->page +
((pos->eraseblock +
(pos->lun +
(pos->target * nand->memorg.luns_per_target)) *
nand->memorg.eraseblocks_per_lun) *
nand->memorg.pages_per_eraseblock);
return (loff_t)npages * nand->memorg.pagesize;
}
/**
* nanddev_pos_to_row() - Extract a row address from a NAND position
* @nand: NAND device
* @pos: the position to convert
*
* Converts a NAND position into a row address that can then be passed to the
* device.
*
* Return: the row address extracted from @pos.
*/
static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
const struct nand_pos *pos)
{
return (pos->lun << nand->rowconv.lun_addr_shift) |
(pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
pos->page;
}
/**
* nanddev_pos_next_target() - Move a position to the next target/die
* @nand: NAND device
* @pos: the position to update
*
* Updates @pos to point to the start of the next target/die. Useful when you
* want to iterate over all targets/dies of a NAND device.
*/
static inline void nanddev_pos_next_target(struct nand_device *nand,
struct nand_pos *pos)
{
pos->page = 0;
pos->plane = 0;
pos->eraseblock = 0;
pos->lun = 0;
pos->target++;
}
/**
* nanddev_pos_next_lun() - Move a position to the next LUN
* @nand: NAND device
* @pos: the position to update
*
* Updates @pos to point to the start of the next LUN. Useful when you want to
* iterate over all LUNs of a NAND device.
*/
static inline void nanddev_pos_next_lun(struct nand_device *nand,
struct nand_pos *pos)
{
if (pos->lun >= nand->memorg.luns_per_target - 1)
return nanddev_pos_next_target(nand, pos);
pos->lun++;
pos->page = 0;
pos->plane = 0;
pos->eraseblock = 0;
}
/**
* nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
* @nand: NAND device
* @pos: the position to update
*
* Updates @pos to point to the start of the next eraseblock. Useful when you
* want to iterate over all eraseblocks of a NAND device.
*/
static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
struct nand_pos *pos)
{
if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
return nanddev_pos_next_lun(nand, pos);
pos->eraseblock++;
pos->page = 0;
pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
}
/**
* nanddev_pos_next_eraseblock() - Move a position to the next page
* @nand: NAND device
* @pos: the position to update
*
* Updates @pos to point to the start of the next page. Useful when you want to
* iterate over all pages of a NAND device.
*/
static inline void nanddev_pos_next_page(struct nand_device *nand,
struct nand_pos *pos)
{
if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
return nanddev_pos_next_eraseblock(nand, pos);
pos->page++;
}
/**
* nand_io_iter_init - Initialize a NAND I/O iterator
* @nand: NAND device
* @offs: absolute offset
* @req: MTD request
* @iter: NAND I/O iterator
*
* Initializes a NAND iterator based on the information passed by the MTD
* layer.
*/
static inline void nanddev_io_iter_init(struct nand_device *nand,
loff_t offs, struct mtd_oob_ops *req,
struct nand_io_iter *iter)
{
struct mtd_info *mtd = nanddev_to_mtd(nand);
iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
iter->req.ooboffs = req->ooboffs;
iter->oobbytes_per_page = mtd_oobavail(mtd, req);
iter->dataleft = req->len;
iter->oobleft = req->ooblen;
iter->req.databuf.in = req->datbuf;
iter->req.datalen = min_t(unsigned int,
nand->memorg.pagesize - iter->req.dataoffs,
iter->dataleft);
iter->req.oobbuf.in = req->oobbuf;
iter->req.ooblen = min_t(unsigned int,
iter->oobbytes_per_page - iter->req.ooboffs,
iter->oobleft);
}
/**
* nand_io_iter_next_page - Move to the next page
* @nand: NAND device
* @iter: NAND I/O iterator
*
* Updates the @iter to point to the next page.
*/
static inline void nanddev_io_iter_next_page(struct nand_device *nand,
struct nand_io_iter *iter)
{
nanddev_pos_next_page(nand, &iter->req.pos);
iter->dataleft -= iter->req.datalen;
iter->req.databuf.in += iter->req.datalen;
iter->oobleft -= iter->req.ooblen;
iter->req.oobbuf.in += iter->req.ooblen;
iter->req.dataoffs = 0;
iter->req.ooboffs = 0;
iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
iter->dataleft);
iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
iter->oobleft);
}
/**
* nand_io_iter_end - Should end iteration or not
* @nand: NAND device
* @iter: NAND I/O iterator
*
* Check whether @iter has reached the end of the NAND portion it was asked to
* iterate on or not.
*
* Return: true if @iter has reached the end of the iteration request, false
* otherwise.
*/
static inline bool nanddev_io_iter_end(struct nand_device *nand,
const struct nand_io_iter *iter)
{
if (iter->dataleft || iter->oobleft)
return false;
return true;
}
/**
* nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
* request
* @nand: NAND device
* @start: start address to read/write from
* @req: MTD I/O request
* @iter: NAND I/O iterator
*
* Should be used for iterate over pages that are contained in an MTD request.
*/
#define nanddev_io_for_each_page(nand, start, req, iter) \
for (nanddev_io_iter_init(nand, start, req, iter); \
!nanddev_io_iter_end(nand, iter); \
nanddev_io_iter_next_page(nand, iter))
bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos);
int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
/* BBT related functions */
enum nand_bbt_block_status {
NAND_BBT_BLOCK_STATUS_UNKNOWN,
NAND_BBT_BLOCK_GOOD,
NAND_BBT_BLOCK_WORN,
NAND_BBT_BLOCK_RESERVED,
NAND_BBT_BLOCK_FACTORY_BAD,
NAND_BBT_BLOCK_NUM_STATUS,
};
int nanddev_bbt_init(struct nand_device *nand);
void nanddev_bbt_cleanup(struct nand_device *nand);
int nanddev_bbt_update(struct nand_device *nand);
int nanddev_bbt_get_block_status(const struct nand_device *nand,
unsigned int entry);
int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
enum nand_bbt_block_status status);
int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
/**
* nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
* @nand: NAND device
* @pos: the NAND position we want to get BBT entry for
*
* Return the BBT entry used to store information about the eraseblock pointed
* by @pos.
*
* Return: the BBT entry storing information about eraseblock pointed by @pos.
*/
static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
const struct nand_pos *pos)
{
return pos->eraseblock +
((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
nand->memorg.eraseblocks_per_lun);
}
/**
* nanddev_bbt_is_initialized() - Check if the BBT has been initialized
* @nand: NAND device
*
* Return: true if the BBT has been initialized, false otherwise.
*/
static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
{
return !!nand->bbt.cache;
}
/* MTD -> NAND helper functions. */
int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
#endif /* __LINUX_MTD_NAND_H */
Loading…
Cancel
Save