Legacy NAND had been scheduled for removal. Any boards that use this were already not building in the previous release due to an #error. The disk on chip code in common/cmd_doc.c relies on legacy NAND, and it has also been removed. There is newer disk on chip code in drivers/mtd/nand; someone with access to hardware and sufficient time and motivation can try to get that working, but for now disk on chip is not supported. Signed-off-by: Scott Wood <scottwood@freescale.com>master
parent
fbdaafaee7
commit
be33b046b5
File diff suppressed because it is too large
Load Diff
@ -1,513 +0,0 @@ |
||||
/*
|
||||
* ECC algorithm for M-systems disk on chip. We use the excellent Reed |
||||
* Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the |
||||
* GNU GPL License. The rest is simply to convert the disk on chip |
||||
* syndrom into a standard syndom. |
||||
* |
||||
* Author: Fabrice Bellard (fabrice.bellard@netgem.com) |
||||
* Copyright (C) 2000 Netgem S.A. |
||||
* |
||||
* $Id: docecc.c,v 1.4 2001/10/02 15:05:13 dwmw2 Exp $ |
||||
* |
||||
* This program is free software; you can redistribute it and/or modify |
||||
* it under the terms of the GNU General Public License as published by |
||||
* the Free Software Foundation; either version 2 of the License, or |
||||
* (at your option) any later version. |
||||
* |
||||
* This program is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
* GNU General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU General Public License |
||||
* along with this program; if not, write to the Free Software |
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||||
*/ |
||||
|
||||
#include <config.h> |
||||
#include <common.h> |
||||
#include <malloc.h> |
||||
|
||||
#undef ECC_DEBUG |
||||
#undef PSYCHO_DEBUG |
||||
|
||||
#include <linux/mtd/doc2000.h> |
||||
|
||||
/* need to undef it (from asm/termbits.h) */ |
||||
#undef B0 |
||||
|
||||
#define MM 10 /* Symbol size in bits */ |
||||
#define KK (1023-4) /* Number of data symbols per block */ |
||||
#define B0 510 /* First root of generator polynomial, alpha form */ |
||||
#define PRIM 1 /* power of alpha used to generate roots of generator poly */ |
||||
#define NN ((1 << MM) - 1) |
||||
|
||||
typedef unsigned short dtype; |
||||
|
||||
/* 1+x^3+x^10 */ |
||||
static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; |
||||
|
||||
/* This defines the type used to store an element of the Galois Field
|
||||
* used by the code. Make sure this is something larger than a char if |
||||
* if anything larger than GF(256) is used. |
||||
* |
||||
* Note: unsigned char will work up to GF(256) but int seems to run |
||||
* faster on the Pentium. |
||||
*/ |
||||
typedef int gf; |
||||
|
||||
/* No legal value in index form represents zero, so
|
||||
* we need a special value for this purpose |
||||
*/ |
||||
#define A0 (NN) |
||||
|
||||
/* Compute x % NN, where NN is 2**MM - 1,
|
||||
* without a slow divide |
||||
*/ |
||||
static inline gf |
||||
modnn(int x) |
||||
{ |
||||
while (x >= NN) { |
||||
x -= NN; |
||||
x = (x >> MM) + (x & NN); |
||||
} |
||||
return x; |
||||
} |
||||
|
||||
#define CLEAR(a,n) {\ |
||||
int ci;\
|
||||
for(ci=(n)-1;ci >=0;ci--)\
|
||||
(a)[ci] = 0;\
|
||||
} |
||||
|
||||
#define COPY(a,b,n) {\ |
||||
int ci;\
|
||||
for(ci=(n)-1;ci >=0;ci--)\
|
||||
(a)[ci] = (b)[ci];\
|
||||
} |
||||
|
||||
#define COPYDOWN(a,b,n) {\ |
||||
int ci;\
|
||||
for(ci=(n)-1;ci >=0;ci--)\
|
||||
(a)[ci] = (b)[ci];\
|
||||
} |
||||
|
||||
#define Ldec 1 |
||||
|
||||
/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
|
||||
lookup tables: index->polynomial form alpha_to[] contains j=alpha**i; |
||||
polynomial form -> index form index_of[j=alpha**i] = i |
||||
alpha=2 is the primitive element of GF(2**m) |
||||
HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: |
||||
Let @ represent the primitive element commonly called "alpha" that |
||||
is the root of the primitive polynomial p(x). Then in GF(2^m), for any |
||||
0 <= i <= 2^m-2, |
||||
@^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) |
||||
where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation |
||||
of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for |
||||
example the polynomial representation of @^5 would be given by the binary |
||||
representation of the integer "alpha_to[5]". |
||||
Similarily, index_of[] can be used as follows: |
||||
As above, let @ represent the primitive element of GF(2^m) that is |
||||
the root of the primitive polynomial p(x). In order to find the power |
||||
of @ (alpha) that has the polynomial representation |
||||
a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) |
||||
we consider the integer "i" whose binary representation with a(0) being LSB |
||||
and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry |
||||
"index_of[i]". Now, @^index_of[i] is that element whose polynomial |
||||
representation is (a(0),a(1),a(2),...,a(m-1)). |
||||
NOTE: |
||||
The element alpha_to[2^m-1] = 0 always signifying that the |
||||
representation of "@^infinity" = 0 is (0,0,0,...,0). |
||||
Similarily, the element index_of[0] = A0 always signifying |
||||
that the power of alpha which has the polynomial representation |
||||
(0,0,...,0) is "infinity". |
||||
|
||||
*/ |
||||
|
||||
static void |
||||
generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1]) |
||||
{ |
||||
register int i, mask; |
||||
|
||||
mask = 1; |
||||
Alpha_to[MM] = 0; |
||||
for (i = 0; i < MM; i++) { |
||||
Alpha_to[i] = mask; |
||||
Index_of[Alpha_to[i]] = i; |
||||
/* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ |
||||
if (Pp[i] != 0) |
||||
Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */ |
||||
mask <<= 1; /* single left-shift */ |
||||
} |
||||
Index_of[Alpha_to[MM]] = MM; |
||||
/*
|
||||
* Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by |
||||
* poly-repr of @^i shifted left one-bit and accounting for any @^MM |
||||
* term that may occur when poly-repr of @^i is shifted. |
||||
*/ |
||||
mask >>= 1; |
||||
for (i = MM + 1; i < NN; i++) { |
||||
if (Alpha_to[i - 1] >= mask) |
||||
Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); |
||||
else |
||||
Alpha_to[i] = Alpha_to[i - 1] << 1; |
||||
Index_of[Alpha_to[i]] = i; |
||||
} |
||||
Index_of[0] = A0; |
||||
Alpha_to[NN] = 0; |
||||
} |
||||
|
||||
/*
|
||||
* Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content |
||||
* of the feedback shift register after having processed the data and |
||||
* the ECC. |
||||
* |
||||
* Return number of symbols corrected, or -1 if codeword is illegal |
||||
* or uncorrectable. If eras_pos is non-null, the detected error locations |
||||
* are written back. NOTE! This array must be at least NN-KK elements long. |
||||
* The corrected data are written in eras_val[]. They must be xor with the data |
||||
* to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] . |
||||
* |
||||
* First "no_eras" erasures are declared by the calling program. Then, the |
||||
* maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). |
||||
* If the number of channel errors is not greater than "t_after_eras" the |
||||
* transmitted codeword will be recovered. Details of algorithm can be found |
||||
* in R. Blahut's "Theory ... of Error-Correcting Codes". |
||||
|
||||
* Warning: the eras_pos[] array must not contain duplicate entries; decoder failure |
||||
* will result. The decoder *could* check for this condition, but it would involve |
||||
* extra time on every decoding operation. |
||||
* */ |
||||
static int |
||||
eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1], |
||||
gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK], |
||||
int no_eras) |
||||
{ |
||||
int deg_lambda, el, deg_omega; |
||||
int i, j, r,k; |
||||
gf u,q,tmp,num1,num2,den,discr_r; |
||||
gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly
|
||||
* and syndrome poly */ |
||||
gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1]; |
||||
gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK]; |
||||
int syn_error, count; |
||||
|
||||
syn_error = 0; |
||||
for(i=0;i<NN-KK;i++) |
||||
syn_error |= bb[i]; |
||||
|
||||
if (!syn_error) { |
||||
/* if remainder is zero, data[] is a codeword and there are no
|
||||
* errors to correct. So return data[] unmodified |
||||
*/ |
||||
count = 0; |
||||
goto finish; |
||||
} |
||||
|
||||
for(i=1;i<=NN-KK;i++){ |
||||
s[i] = bb[0]; |
||||
} |
||||
for(j=1;j<NN-KK;j++){ |
||||
if(bb[j] == 0) |
||||
continue; |
||||
tmp = Index_of[bb[j]]; |
||||
|
||||
for(i=1;i<=NN-KK;i++) |
||||
s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)]; |
||||
} |
||||
|
||||
/* undo the feedback register implicit multiplication and convert
|
||||
syndromes to index form */ |
||||
|
||||
for(i=1;i<=NN-KK;i++) { |
||||
tmp = Index_of[s[i]]; |
||||
if (tmp != A0) |
||||
tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM); |
||||
s[i] = tmp; |
||||
} |
||||
|
||||
CLEAR(&lambda[1],NN-KK); |
||||
lambda[0] = 1; |
||||
|
||||
if (no_eras > 0) { |
||||
/* Init lambda to be the erasure locator polynomial */ |
||||
lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])]; |
||||
for (i = 1; i < no_eras; i++) { |
||||
u = modnn(PRIM*eras_pos[i]); |
||||
for (j = i+1; j > 0; j--) { |
||||
tmp = Index_of[lambda[j - 1]]; |
||||
if(tmp != A0) |
||||
lambda[j] ^= Alpha_to[modnn(u + tmp)]; |
||||
} |
||||
} |
||||
#ifdef ECC_DEBUG |
||||
/* Test code that verifies the erasure locator polynomial just constructed
|
||||
Needed only for decoder debugging. */ |
||||
|
||||
/* find roots of the erasure location polynomial */ |
||||
for(i=1;i<=no_eras;i++) |
||||
reg[i] = Index_of[lambda[i]]; |
||||
count = 0; |
||||
for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { |
||||
q = 1; |
||||
for (j = 1; j <= no_eras; j++) |
||||
if (reg[j] != A0) { |
||||
reg[j] = modnn(reg[j] + j); |
||||
q ^= Alpha_to[reg[j]]; |
||||
} |
||||
if (q != 0) |
||||
continue; |
||||
/* store root and error location number indices */ |
||||
root[count] = i; |
||||
loc[count] = k; |
||||
count++; |
||||
} |
||||
if (count != no_eras) { |
||||
printf("\n lambda(x) is WRONG\n"); |
||||
count = -1; |
||||
goto finish; |
||||
} |
||||
#ifdef PSYCHO_DEBUG |
||||
printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); |
||||
for (i = 0; i < count; i++) |
||||
printf("%d ", loc[i]); |
||||
printf("\n"); |
||||
#endif |
||||
#endif |
||||
} |
||||
for(i=0;i<NN-KK+1;i++) |
||||
b[i] = Index_of[lambda[i]]; |
||||
|
||||
/*
|
||||
* Begin Berlekamp-Massey algorithm to determine error+erasure |
||||
* locator polynomial |
||||
*/ |
||||
r = no_eras; |
||||
el = no_eras; |
||||
while (++r <= NN-KK) { /* r is the step number */ |
||||
/* Compute discrepancy at the r-th step in poly-form */ |
||||
discr_r = 0; |
||||
for (i = 0; i < r; i++){ |
||||
if ((lambda[i] != 0) && (s[r - i] != A0)) { |
||||
discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])]; |
||||
} |
||||
} |
||||
discr_r = Index_of[discr_r]; /* Index form */ |
||||
if (discr_r == A0) { |
||||
/* 2 lines below: B(x) <-- x*B(x) */ |
||||
COPYDOWN(&b[1],b,NN-KK); |
||||
b[0] = A0; |
||||
} else { |
||||
/* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ |
||||
t[0] = lambda[0]; |
||||
for (i = 0 ; i < NN-KK; i++) { |
||||
if(b[i] != A0) |
||||
t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])]; |
||||
else |
||||
t[i+1] = lambda[i+1]; |
||||
} |
||||
if (2 * el <= r + no_eras - 1) { |
||||
el = r + no_eras - el; |
||||
/*
|
||||
* 2 lines below: B(x) <-- inv(discr_r) * |
||||
* lambda(x) |
||||
*/ |
||||
for (i = 0; i <= NN-KK; i++) |
||||
b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN); |
||||
} else { |
||||
/* 2 lines below: B(x) <-- x*B(x) */ |
||||
COPYDOWN(&b[1],b,NN-KK); |
||||
b[0] = A0; |
||||
} |
||||
COPY(lambda,t,NN-KK+1); |
||||
} |
||||
} |
||||
|
||||
/* Convert lambda to index form and compute deg(lambda(x)) */ |
||||
deg_lambda = 0; |
||||
for(i=0;i<NN-KK+1;i++){ |
||||
lambda[i] = Index_of[lambda[i]]; |
||||
if(lambda[i] != A0) |
||||
deg_lambda = i; |
||||
} |
||||
/*
|
||||
* Find roots of the error+erasure locator polynomial by Chien |
||||
* Search |
||||
*/ |
||||
COPY(®[1],&lambda[1],NN-KK); |
||||
count = 0; /* Number of roots of lambda(x) */ |
||||
for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { |
||||
q = 1; |
||||
for (j = deg_lambda; j > 0; j--){ |
||||
if (reg[j] != A0) { |
||||
reg[j] = modnn(reg[j] + j); |
||||
q ^= Alpha_to[reg[j]]; |
||||
} |
||||
} |
||||
if (q != 0) |
||||
continue; |
||||
/* store root (index-form) and error location number */ |
||||
root[count] = i; |
||||
loc[count] = k; |
||||
/* If we've already found max possible roots,
|
||||
* abort the search to save time |
||||
*/ |
||||
if(++count == deg_lambda) |
||||
break; |
||||
} |
||||
if (deg_lambda != count) { |
||||
/*
|
||||
* deg(lambda) unequal to number of roots => uncorrectable |
||||
* error detected |
||||
*/ |
||||
count = -1; |
||||
goto finish; |
||||
} |
||||
/*
|
||||
* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo |
||||
* x**(NN-KK)). in index form. Also find deg(omega). |
||||
*/ |
||||
deg_omega = 0; |
||||
for (i = 0; i < NN-KK;i++){ |
||||
tmp = 0; |
||||
j = (deg_lambda < i) ? deg_lambda : i; |
||||
for(;j >= 0; j--){ |
||||
if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) |
||||
tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; |
||||
} |
||||
if(tmp != 0) |
||||
deg_omega = i; |
||||
omega[i] = Index_of[tmp]; |
||||
} |
||||
omega[NN-KK] = A0; |
||||
|
||||
/*
|
||||
* Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = |
||||
* inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form |
||||
*/ |
||||
for (j = count-1; j >=0; j--) { |
||||
num1 = 0; |
||||
for (i = deg_omega; i >= 0; i--) { |
||||
if (omega[i] != A0) |
||||
num1 ^= Alpha_to[modnn(omega[i] + i * root[j])]; |
||||
} |
||||
num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; |
||||
den = 0; |
||||
|
||||
/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ |
||||
for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { |
||||
if(lambda[i+1] != A0) |
||||
den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; |
||||
} |
||||
if (den == 0) { |
||||
#ifdef ECC_DEBUG |
||||
printf("\n ERROR: denominator = 0\n"); |
||||
#endif |
||||
/* Convert to dual- basis */ |
||||
count = -1; |
||||
goto finish; |
||||
} |
||||
/* Apply error to data */ |
||||
if (num1 != 0) { |
||||
eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; |
||||
} else { |
||||
eras_val[j] = 0; |
||||
} |
||||
} |
||||
finish: |
||||
for(i=0;i<count;i++) |
||||
eras_pos[i] = loc[i]; |
||||
return count; |
||||
} |
||||
|
||||
/***************************************************************************/ |
||||
/* The DOC specific code begins here */ |
||||
|
||||
#define SECTOR_SIZE 512 |
||||
/* The sector bytes are packed into NB_DATA MM bits words */ |
||||
#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM) |
||||
|
||||
/*
|
||||
* Correct the errors in 'sector[]' by using 'ecc1[]' which is the |
||||
* content of the feedback shift register applyied to the sector and |
||||
* the ECC. Return the number of errors corrected (and correct them in |
||||
* sector), or -1 if error |
||||
*/ |
||||
int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6]) |
||||
{ |
||||
int parity, i, nb_errors; |
||||
gf bb[NN - KK + 1]; |
||||
gf error_val[NN-KK]; |
||||
int error_pos[NN-KK], pos, bitpos, index, val; |
||||
dtype *Alpha_to, *Index_of; |
||||
|
||||
/* init log and exp tables here to save memory. However, it is slower */ |
||||
Alpha_to = malloc((NN + 1) * sizeof(dtype)); |
||||
if (!Alpha_to) |
||||
return -1; |
||||
|
||||
Index_of = malloc((NN + 1) * sizeof(dtype)); |
||||
if (!Index_of) { |
||||
free(Alpha_to); |
||||
return -1; |
||||
} |
||||
|
||||
generate_gf(Alpha_to, Index_of); |
||||
|
||||
parity = ecc1[1]; |
||||
|
||||
bb[0] = (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8); |
||||
bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6); |
||||
bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4); |
||||
bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2); |
||||
|
||||
nb_errors = eras_dec_rs(Alpha_to, Index_of, bb, |
||||
error_val, error_pos, 0); |
||||
if (nb_errors <= 0) |
||||
goto the_end; |
||||
|
||||
/* correct the errors */ |
||||
for(i=0;i<nb_errors;i++) { |
||||
pos = error_pos[i]; |
||||
if (pos >= NB_DATA && pos < KK) { |
||||
nb_errors = -1; |
||||
goto the_end; |
||||
} |
||||
if (pos < NB_DATA) { |
||||
/* extract bit position (MSB first) */ |
||||
pos = 10 * (NB_DATA - 1 - pos) - 6; |
||||
/* now correct the following 10 bits. At most two bytes
|
||||
can be modified since pos is even */ |
||||
index = (pos >> 3) ^ 1; |
||||
bitpos = pos & 7; |
||||
if ((index >= 0 && index < SECTOR_SIZE) || |
||||
index == (SECTOR_SIZE + 1)) { |
||||
val = error_val[i] >> (2 + bitpos); |
||||
parity ^= val; |
||||
if (index < SECTOR_SIZE) |
||||
sector[index] ^= val; |
||||
} |
||||
index = ((pos >> 3) + 1) ^ 1; |
||||
bitpos = (bitpos + 10) & 7; |
||||
if (bitpos == 0) |
||||
bitpos = 8; |
||||
if ((index >= 0 && index < SECTOR_SIZE) || |
||||
index == (SECTOR_SIZE + 1)) { |
||||
val = error_val[i] << (8 - bitpos); |
||||
parity ^= val; |
||||
if (index < SECTOR_SIZE) |
||||
sector[index] ^= val; |
||||
} |
||||
} |
||||
} |
||||
|
||||
/* use parity to test extra errors */ |
||||
if ((parity & 0xff) != 0) |
||||
nb_errors = -1; |
||||
|
||||
the_end: |
||||
free(Alpha_to); |
||||
free(Index_of); |
||||
return nb_errors; |
||||
} |
@ -1,48 +0,0 @@ |
||||
#
|
||||
# (C) Copyright 2006
|
||||
# Wolfgang Denk, DENX Software Engineering, wd@denx.de.
|
||||
#
|
||||
# See file CREDITS for list of people who contributed to this
|
||||
# project.
|
||||
#
|
||||
# This program is free software; you can redistribute it and/or
|
||||
# modify it under the terms of the GNU General Public License as
|
||||
# published by the Free Software Foundation; either version 2 of
|
||||
# the License, or (at your option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this program; if not, write to the Free Software
|
||||
# Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
||||
# MA 02111-1307 USA
|
||||
#
|
||||
|
||||
include $(TOPDIR)/config.mk |
||||
|
||||
LIB := $(obj)libnand_legacy.a
|
||||
|
||||
ifdef CONFIG_CMD_NAND |
||||
COBJS-$(CONFIG_NAND_LEGACY) := nand_legacy.o
|
||||
endif |
||||
|
||||
COBJS := $(COBJS-y)
|
||||
SRCS := $(COBJS:.o=.c)
|
||||
OBJS := $(addprefix $(obj),$(COBJS))
|
||||
|
||||
all: $(LIB) |
||||
|
||||
$(LIB): $(obj).depend $(OBJS) |
||||
$(AR) $(ARFLAGS) $@ $(OBJS)
|
||||
|
||||
#########################################################################
|
||||
|
||||
# defines $(obj).depend target
|
||||
include $(SRCTREE)/rules.mk |
||||
|
||||
sinclude $(obj).depend |
||||
|
||||
#########################################################################
|
File diff suppressed because it is too large
Load Diff
@ -1,60 +0,0 @@ |
||||
/*
|
||||
* u-boot/include/linux/mtd/nand_ids.h |
||||
* |
||||
* Copyright (c) 2000 David Woodhouse <dwmw2@mvhi.com> |
||||
* Steven J. Hill <sjhill@cotw.com> |
||||
* |
||||
* $Id: nand_ids.h,v 1.1 2000/10/13 16:16:26 mdeans Exp $ |
||||
* |
||||
* This program is free software; you can redistribute it and/or modify |
||||
* it under the terms of the GNU General Public License version 2 as |
||||
* published by the Free Software Foundation. |
||||
* |
||||
* Info: |
||||
* Contains standard defines and IDs for NAND flash devices |
||||
* |
||||
* Changelog: |
||||
* 01-31-2000 DMW Created |
||||
* 09-18-2000 SJH Moved structure out of the Disk-On-Chip drivers |
||||
* so it can be used by other NAND flash device |
||||
* drivers. I also changed the copyright since none |
||||
* of the original contents of this file are specific |
||||
* to DoC devices. David can whack me with a baseball |
||||
* bat later if I did something naughty. |
||||
* 10-11-2000 SJH Added private NAND flash structure for driver |
||||
* 2000-10-13 BE Moved out of 'nand.h' - avoids duplication. |
||||
*/ |
||||
|
||||
#ifndef __LINUX_MTD_NAND_IDS_H |
||||
#define __LINUX_MTD_NAND_IDS_H |
||||
|
||||
#ifndef CONFIG_NAND_LEGACY |
||||
#error This module is for the legacy NAND support |
||||
#endif |
||||
|
||||
static struct nand_flash_dev nand_flash_ids[] = { |
||||
{"Toshiba TC5816BDC", NAND_MFR_TOSHIBA, 0x64, 21, 1, 2, 0x1000, 0}, |
||||
{"Toshiba TC5832DC", NAND_MFR_TOSHIBA, 0x6b, 22, 0, 2, 0x2000, 0}, |
||||
{"Toshiba TH58V128DC", NAND_MFR_TOSHIBA, 0x73, 24, 0, 2, 0x4000, 0}, |
||||
{"Toshiba TC58256FT/DC", NAND_MFR_TOSHIBA, 0x75, 25, 0, 2, 0x4000, 0}, |
||||
{"Toshiba TH58512FT", NAND_MFR_TOSHIBA, 0x76, 26, 0, 3, 0x4000, 0}, |
||||
{"Toshiba TC58V32DC", NAND_MFR_TOSHIBA, 0xe5, 22, 0, 2, 0x2000, 0}, |
||||
{"Toshiba TC58V64AFT/DC", NAND_MFR_TOSHIBA, 0xe6, 23, 0, 2, 0x2000, 0}, |
||||
{"Toshiba TC58V16BDC", NAND_MFR_TOSHIBA, 0xea, 21, 1, 2, 0x1000, 0}, |
||||
{"Toshiba TH58100FT", NAND_MFR_TOSHIBA, 0x79, 27, 0, 3, 0x4000, 0}, |
||||
{"Samsung KM29N16000", NAND_MFR_SAMSUNG, 0x64, 21, 1, 2, 0x1000, 0}, |
||||
{"Samsung unknown 4Mb", NAND_MFR_SAMSUNG, 0x6b, 22, 0, 2, 0x2000, 0}, |
||||
{"Samsung KM29U128T", NAND_MFR_SAMSUNG, 0x73, 24, 0, 2, 0x4000, 0}, |
||||
{"Samsung KM29U256T", NAND_MFR_SAMSUNG, 0x75, 25, 0, 2, 0x4000, 0}, |
||||
{"Samsung unknown 64Mb", NAND_MFR_SAMSUNG, 0x76, 26, 0, 3, 0x4000, 0}, |
||||
{"Samsung KM29W32000", NAND_MFR_SAMSUNG, 0xe3, 22, 0, 2, 0x2000, 0}, |
||||
{"Samsung unknown 4Mb", NAND_MFR_SAMSUNG, 0xe5, 22, 0, 2, 0x2000, 0}, |
||||
{"Samsung KM29U64000", NAND_MFR_SAMSUNG, 0xe6, 23, 0, 2, 0x2000, 0}, |
||||
{"Samsung KM29W16000", NAND_MFR_SAMSUNG, 0xea, 21, 1, 2, 0x1000, 0}, |
||||
{"Samsung K9F5616Q0C", NAND_MFR_SAMSUNG, 0x45, 25, 0, 2, 0x4000, 1}, |
||||
{"Samsung K9K1216Q0C", NAND_MFR_SAMSUNG, 0x46, 26, 0, 3, 0x4000, 1}, |
||||
{"Samsung K9F1G08U0M", NAND_MFR_SAMSUNG, 0xf1, 27, 0, 2, 0, 0}, |
||||
{NULL,} |
||||
}; |
||||
|
||||
#endif /* __LINUX_MTD_NAND_IDS_H */ |
@ -1,196 +0,0 @@ |
||||
/*
|
||||
* linux/include/linux/mtd/nand.h |
||||
* |
||||
* Copyright (c) 2000 David Woodhouse <dwmw2@mvhi.com> |
||||
* Steven J. Hill <sjhill@cotw.com> |
||||
* Thomas Gleixner <gleixner@autronix.de> |
||||
* |
||||
* $Id: nand.h,v 1.7 2003/07/24 23:30:46 a0384864 Exp $ |
||||
* |
||||
* This program is free software; you can redistribute it and/or modify |
||||
* it under the terms of the GNU General Public License version 2 as |
||||
* published by the Free Software Foundation. |
||||
* |
||||
* Info: |
||||
* Contains standard defines and IDs for NAND flash devices |
||||
* |
||||
* Changelog: |
||||
* 01-31-2000 DMW Created |
||||
* 09-18-2000 SJH Moved structure out of the Disk-On-Chip drivers |
||||
* so it can be used by other NAND flash device |
||||
* drivers. I also changed the copyright since none |
||||
* of the original contents of this file are specific |
||||
* to DoC devices. David can whack me with a baseball |
||||
* bat later if I did something naughty. |
||||
* 10-11-2000 SJH Added private NAND flash structure for driver |
||||
* 10-24-2000 SJH Added prototype for 'nand_scan' function |
||||
* 10-29-2001 TG changed nand_chip structure to support |
||||
* hardwarespecific function for accessing control lines |
||||
* 02-21-2002 TG added support for different read/write adress and |
||||
* ready/busy line access function |
||||
* 02-26-2002 TG added chip_delay to nand_chip structure to optimize |
||||
* command delay times for different chips |
||||
* 04-28-2002 TG OOB config defines moved from nand.c to avoid duplicate |
||||
* defines in jffs2/wbuf.c |
||||
*/ |
||||
#ifndef __LINUX_MTD_NAND_LEGACY_H |
||||
#define __LINUX_MTD_NAND_LEGACY_H |
||||
|
||||
#ifndef CONFIG_NAND_LEGACY |
||||
#error This module is for the legacy NAND support |
||||
#endif |
||||
|
||||
/* The maximum number of NAND chips in an array */ |
||||
#ifndef CONFIG_SYS_NAND_MAX_CHIPS |
||||
#define CONFIG_SYS_NAND_MAX_CHIPS 1 |
||||
#endif |
||||
|
||||
/*
|
||||
* Standard NAND flash commands |
||||
*/ |
||||
#define NAND_CMD_READ0 0 |
||||
#define NAND_CMD_READ1 1 |
||||
#define NAND_CMD_PAGEPROG 0x10 |
||||
#define NAND_CMD_READOOB 0x50 |
||||
#define NAND_CMD_ERASE1 0x60 |
||||
#define NAND_CMD_STATUS 0x70 |
||||
#define NAND_CMD_SEQIN 0x80 |
||||
#define NAND_CMD_READID 0x90 |
||||
#define NAND_CMD_ERASE2 0xd0 |
||||
#define NAND_CMD_RESET 0xff |
||||
|
||||
/*
|
||||
* NAND Private Flash Chip Data |
||||
* |
||||
* Structure overview: |
||||
* |
||||
* IO_ADDR - address to access the 8 I/O lines of the flash device |
||||
* |
||||
* hwcontrol - hardwarespecific function for accesing control-lines |
||||
* |
||||
* dev_ready - hardwarespecific function for accesing device ready/busy line |
||||
* |
||||
* chip_lock - spinlock used to protect access to this structure |
||||
* |
||||
* wq - wait queue to sleep on if a NAND operation is in progress |
||||
* |
||||
* state - give the current state of the NAND device |
||||
* |
||||
* page_shift - number of address bits in a page (column address bits) |
||||
* |
||||
* data_buf - data buffer passed to/from MTD user modules |
||||
* |
||||
* data_cache - data cache for redundant page access and shadow for |
||||
* ECC failure |
||||
* |
||||
* ecc_code_buf - used only for holding calculated or read ECCs for |
||||
* a page read or written when ECC is in use |
||||
* |
||||
* reserved - padding to make structure fall on word boundary if |
||||
* when ECC is in use |
||||
*/ |
||||
struct Nand { |
||||
char floor, chip; |
||||
unsigned long curadr; |
||||
unsigned char curmode; |
||||
/* Also some erase/write/pipeline info when we get that far */ |
||||
}; |
||||
|
||||
struct nand_chip { |
||||
int page_shift; |
||||
u_char *data_buf; |
||||
u_char *data_cache; |
||||
int cache_page; |
||||
u_char ecc_code_buf[6]; |
||||
u_char reserved[2]; |
||||
char ChipID; /* Type of DiskOnChip */ |
||||
struct Nand *chips; |
||||
int chipshift; |
||||
char* chips_name; |
||||
unsigned long erasesize; |
||||
unsigned long mfr; /* Flash IDs - only one type of flash per device */ |
||||
unsigned long id; |
||||
char* name; |
||||
int numchips; |
||||
char page256; |
||||
char pageadrlen; |
||||
unsigned long IO_ADDR; /* address to access the 8 I/O lines to the flash device */ |
||||
unsigned long totlen; |
||||
uint oobblock; /* Size of OOB blocks (e.g. 512) */ |
||||
uint oobsize; /* Amount of OOB data per block (e.g. 16) */ |
||||
uint eccsize; |
||||
int bus16; |
||||
}; |
||||
|
||||
/*
|
||||
* NAND Flash Manufacturer ID Codes |
||||
*/ |
||||
#define NAND_MFR_TOSHIBA 0x98 |
||||
#define NAND_MFR_SAMSUNG 0xec |
||||
|
||||
/*
|
||||
* NAND Flash Device ID Structure |
||||
* |
||||
* Structure overview: |
||||
* |
||||
* name - Complete name of device |
||||
* |
||||
* manufacture_id - manufacturer ID code of device. |
||||
* |
||||
* model_id - model ID code of device. |
||||
* |
||||
* chipshift - total number of address bits for the device which |
||||
* is used to calculate address offsets and the total |
||||
* number of bytes the device is capable of. |
||||
* |
||||
* page256 - denotes if flash device has 256 byte pages or not. |
||||
* |
||||
* pageadrlen - number of bytes minus one needed to hold the |
||||
* complete address into the flash array. Keep in |
||||
* mind that when a read or write is done to a |
||||
* specific address, the address is input serially |
||||
* 8 bits at a time. This structure member is used |
||||
* by the read/write routines as a loop index for |
||||
* shifting the address out 8 bits at a time. |
||||
* |
||||
* erasesize - size of an erase block in the flash device. |
||||
*/ |
||||
struct nand_flash_dev { |
||||
char * name; |
||||
int manufacture_id; |
||||
int model_id; |
||||
int chipshift; |
||||
char page256; |
||||
char pageadrlen; |
||||
unsigned long erasesize; |
||||
int bus16; |
||||
}; |
||||
|
||||
/*
|
||||
* Constants for oob configuration |
||||
*/ |
||||
#define NAND_NOOB_ECCPOS0 0 |
||||
#define NAND_NOOB_ECCPOS1 1 |
||||
#define NAND_NOOB_ECCPOS2 2 |
||||
#define NAND_NOOB_ECCPOS3 3 |
||||
#define NAND_NOOB_ECCPOS4 6 |
||||
#define NAND_NOOB_ECCPOS5 7 |
||||
#define NAND_NOOB_BADBPOS -1 |
||||
#define NAND_NOOB_ECCVPOS -1 |
||||
|
||||
#define NAND_JFFS2_OOB_ECCPOS0 0 |
||||
#define NAND_JFFS2_OOB_ECCPOS1 1 |
||||
#define NAND_JFFS2_OOB_ECCPOS2 2 |
||||
#define NAND_JFFS2_OOB_ECCPOS3 3 |
||||
#define NAND_JFFS2_OOB_ECCPOS4 6 |
||||
#define NAND_JFFS2_OOB_ECCPOS5 7 |
||||
#define NAND_JFFS2_OOB_BADBPOS 5 |
||||
#define NAND_JFFS2_OOB_ECCVPOS 4 |
||||
|
||||
#define NAND_JFFS2_OOB8_FSDAPOS 6 |
||||
#define NAND_JFFS2_OOB16_FSDAPOS 8 |
||||
#define NAND_JFFS2_OOB8_FSDALEN 2 |
||||
#define NAND_JFFS2_OOB16_FSDALEN 8 |
||||
|
||||
unsigned long nand_probe(unsigned long physadr); |
||||
#endif /* __LINUX_MTD_NAND_LEGACY_H */ |
Loading…
Reference in new issue