To maintain the initialization state of the timestamp facility, thesq
pointer to the CBMEM section containing the timestamp table should be
kept in the .data section (so that it is maintained across u-boot
relocation).
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
This change turns on the code which allows u-boot to add
timestamps to the timestamp table created by coreboot.
Since u-boot does not use the tsc_t like structure to represent
HW counter readings, this structure is being replaced by 64 bit
integer.
The timestamp_init() function is now initializing the base timer
value used by u-boot to calculate the HW counter increments.
Timestamp facility is initialized as soon as the timestamp table
pointer is found in the coreboot table. The u-boot generated
timer events' ID will start at 1000 to clearly separate u-boot
events from coreboot events in the timer trace.
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Signed-off-by: Stefan Reinauer <reinauer@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
Add support for decoding tags for GPIOs, compile/build info, cbmem and
other features.
Signed-off-by: Stefan Reinauer <reinauer@chromium.org>
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
This change also forces the lib_sysinfo structure to be in the .data
section. Otherwise it ends up in the .bss section. U-boot assumes that it
doesn't need to copy it over during relocation, and instead fills that
whole section with zeroes. If we really were booting from ROM that would be
appropriate, but we need some information from the coreboot tables (memory
size) before then and have to fill that structure before relocation. We
skirt u-boot's assumption by putting this in .data where it assumes there
is still read only but non-zero data.
Signed-off-by: Gabe Black <gabeblack@chromium.org>