// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2015 Moritz Fischer * IP from Cadence (ID T-CS-PE-0007-100, Version R1p10f2) * * This file is based on: drivers/i2c/zynq_i2c.c, * with added driver-model support and code cleanup. */ #include #include #include #include #include #include #include #include #include #include /* i2c register set */ struct cdns_i2c_regs { u32 control; u32 status; u32 address; u32 data; u32 interrupt_status; u32 transfer_size; u32 slave_mon_pause; u32 time_out; u32 interrupt_mask; u32 interrupt_enable; u32 interrupt_disable; }; /* Control register fields */ #define CDNS_I2C_CONTROL_RW 0x00000001 #define CDNS_I2C_CONTROL_MS 0x00000002 #define CDNS_I2C_CONTROL_NEA 0x00000004 #define CDNS_I2C_CONTROL_ACKEN 0x00000008 #define CDNS_I2C_CONTROL_HOLD 0x00000010 #define CDNS_I2C_CONTROL_SLVMON 0x00000020 #define CDNS_I2C_CONTROL_CLR_FIFO 0x00000040 #define CDNS_I2C_CONTROL_DIV_B_SHIFT 8 #define CDNS_I2C_CONTROL_DIV_B_MASK 0x00003F00 #define CDNS_I2C_CONTROL_DIV_A_SHIFT 14 #define CDNS_I2C_CONTROL_DIV_A_MASK 0x0000C000 /* Status register values */ #define CDNS_I2C_STATUS_RXDV 0x00000020 #define CDNS_I2C_STATUS_TXDV 0x00000040 #define CDNS_I2C_STATUS_RXOVF 0x00000080 #define CDNS_I2C_STATUS_BA 0x00000100 /* Interrupt register fields */ #define CDNS_I2C_INTERRUPT_COMP 0x00000001 #define CDNS_I2C_INTERRUPT_DATA 0x00000002 #define CDNS_I2C_INTERRUPT_NACK 0x00000004 #define CDNS_I2C_INTERRUPT_TO 0x00000008 #define CDNS_I2C_INTERRUPT_SLVRDY 0x00000010 #define CDNS_I2C_INTERRUPT_RXOVF 0x00000020 #define CDNS_I2C_INTERRUPT_TXOVF 0x00000040 #define CDNS_I2C_INTERRUPT_RXUNF 0x00000080 #define CDNS_I2C_INTERRUPT_ARBLOST 0x00000200 #define CDNS_I2C_FIFO_DEPTH 16 #define CDNS_I2C_TRANSFER_SIZE_MAX 255 /* Controller transfer limit */ #define CDNS_I2C_TRANSFER_SIZE (CDNS_I2C_TRANSFER_SIZE_MAX - 3) #define CDNS_I2C_BROKEN_HOLD_BIT BIT(0) #ifdef DEBUG static void cdns_i2c_debug_status(struct cdns_i2c_regs *cdns_i2c) { int int_status; int status; int_status = readl(&cdns_i2c->interrupt_status); status = readl(&cdns_i2c->status); if (int_status || status) { debug("Status: "); if (int_status & CDNS_I2C_INTERRUPT_COMP) debug("COMP "); if (int_status & CDNS_I2C_INTERRUPT_DATA) debug("DATA "); if (int_status & CDNS_I2C_INTERRUPT_NACK) debug("NACK "); if (int_status & CDNS_I2C_INTERRUPT_TO) debug("TO "); if (int_status & CDNS_I2C_INTERRUPT_SLVRDY) debug("SLVRDY "); if (int_status & CDNS_I2C_INTERRUPT_RXOVF) debug("RXOVF "); if (int_status & CDNS_I2C_INTERRUPT_TXOVF) debug("TXOVF "); if (int_status & CDNS_I2C_INTERRUPT_RXUNF) debug("RXUNF "); if (int_status & CDNS_I2C_INTERRUPT_ARBLOST) debug("ARBLOST "); if (status & CDNS_I2C_STATUS_RXDV) debug("RXDV "); if (status & CDNS_I2C_STATUS_TXDV) debug("TXDV "); if (status & CDNS_I2C_STATUS_RXOVF) debug("RXOVF "); if (status & CDNS_I2C_STATUS_BA) debug("BA "); debug("TS%d ", readl(&cdns_i2c->transfer_size)); debug("\n"); } } #endif struct i2c_cdns_bus { int id; unsigned int input_freq; struct cdns_i2c_regs __iomem *regs; /* register base */ int hold_flag; u32 quirks; }; struct cdns_i2c_platform_data { u32 quirks; }; /* Wait for an interrupt */ static u32 cdns_i2c_wait(struct cdns_i2c_regs *cdns_i2c, u32 mask) { int timeout, int_status; for (timeout = 0; timeout < 100; timeout++) { int_status = readl(&cdns_i2c->interrupt_status); if (int_status & mask) break; udelay(100); } /* Clear interrupt status flags */ writel(int_status & mask, &cdns_i2c->interrupt_status); return int_status & mask; } #define CDNS_I2C_DIVA_MAX 4 #define CDNS_I2C_DIVB_MAX 64 static int cdns_i2c_calc_divs(unsigned long *f, unsigned long input_clk, unsigned int *a, unsigned int *b) { unsigned long fscl = *f, best_fscl = *f, actual_fscl, temp; unsigned int div_a, div_b, calc_div_a = 0, calc_div_b = 0; unsigned int last_error, current_error; /* calculate (divisor_a+1) x (divisor_b+1) */ temp = input_clk / (22 * fscl); /* * If the calculated value is negative or 0CDNS_I2C_DIVA_MAX, * the fscl input is out of range. Return error. */ if (!temp || (temp > (CDNS_I2C_DIVA_MAX * CDNS_I2C_DIVB_MAX))) return -EINVAL; last_error = -1; for (div_a = 0; div_a < CDNS_I2C_DIVA_MAX; div_a++) { div_b = DIV_ROUND_UP(input_clk, 22 * fscl * (div_a + 1)); if ((div_b < 1) || (div_b > CDNS_I2C_DIVB_MAX)) continue; div_b--; actual_fscl = input_clk / (22 * (div_a + 1) * (div_b + 1)); if (actual_fscl > fscl) continue; current_error = ((actual_fscl > fscl) ? (actual_fscl - fscl) : (fscl - actual_fscl)); if (last_error > current_error) { calc_div_a = div_a; calc_div_b = div_b; best_fscl = actual_fscl; last_error = current_error; } } *a = calc_div_a; *b = calc_div_b; *f = best_fscl; return 0; } static int cdns_i2c_set_bus_speed(struct udevice *dev, unsigned int speed) { struct i2c_cdns_bus *bus = dev_get_priv(dev); u32 div_a = 0, div_b = 0; unsigned long speed_p = speed; int ret = 0; if (speed > 400000) { debug("%s, failed to set clock speed to %u\n", __func__, speed); return -EINVAL; } ret = cdns_i2c_calc_divs(&speed_p, bus->input_freq, &div_a, &div_b); if (ret) return ret; debug("%s: div_a: %d, div_b: %d, input freq: %d, speed: %d/%ld\n", __func__, div_a, div_b, bus->input_freq, speed, speed_p); writel((div_b << CDNS_I2C_CONTROL_DIV_B_SHIFT) | (div_a << CDNS_I2C_CONTROL_DIV_A_SHIFT), &bus->regs->control); /* Enable master mode, ack, and 7-bit addressing */ setbits_le32(&bus->regs->control, CDNS_I2C_CONTROL_MS | CDNS_I2C_CONTROL_ACKEN | CDNS_I2C_CONTROL_NEA); return 0; } static int cdns_i2c_write_data(struct i2c_cdns_bus *i2c_bus, u32 addr, u8 *data, u32 len) { u8 *cur_data = data; struct cdns_i2c_regs *regs = i2c_bus->regs; /* Set the controller in Master transmit mode and clear FIFO */ setbits_le32(®s->control, CDNS_I2C_CONTROL_CLR_FIFO); clrbits_le32(®s->control, CDNS_I2C_CONTROL_RW); /* Check message size against FIFO depth, and set hold bus bit * if it is greater than FIFO depth */ if (len > CDNS_I2C_FIFO_DEPTH) setbits_le32(®s->control, CDNS_I2C_CONTROL_HOLD); /* Clear the interrupts in status register */ writel(0xFF, ®s->interrupt_status); writel(addr, ®s->address); while (len--) { writel(*(cur_data++), ®s->data); if (readl(®s->transfer_size) == CDNS_I2C_FIFO_DEPTH) { if (!cdns_i2c_wait(regs, CDNS_I2C_INTERRUPT_COMP)) { /* Release the bus */ clrbits_le32(®s->control, CDNS_I2C_CONTROL_HOLD); return -ETIMEDOUT; } } } /* All done... release the bus */ if (!i2c_bus->hold_flag) clrbits_le32(®s->control, CDNS_I2C_CONTROL_HOLD); /* Wait for the address and data to be sent */ if (!cdns_i2c_wait(regs, CDNS_I2C_INTERRUPT_COMP)) return -ETIMEDOUT; return 0; } static inline bool cdns_is_hold_quirk(int hold_quirk, int curr_recv_count) { return hold_quirk && (curr_recv_count == CDNS_I2C_FIFO_DEPTH + 1); } static int cdns_i2c_read_data(struct i2c_cdns_bus *i2c_bus, u32 addr, u8 *data, u32 recv_count) { u8 *cur_data = data; struct cdns_i2c_regs *regs = i2c_bus->regs; int curr_recv_count; int updatetx, hold_quirk; /* Check the hardware can handle the requested bytes */ if ((recv_count < 0)) return -EINVAL; curr_recv_count = recv_count; /* Check for the message size against the FIFO depth */ if (recv_count > CDNS_I2C_FIFO_DEPTH) setbits_le32(®s->control, CDNS_I2C_CONTROL_HOLD); setbits_le32(®s->control, CDNS_I2C_CONTROL_CLR_FIFO | CDNS_I2C_CONTROL_RW); if (recv_count > CDNS_I2C_TRANSFER_SIZE) { curr_recv_count = CDNS_I2C_TRANSFER_SIZE; writel(curr_recv_count, ®s->transfer_size); } else { writel(recv_count, ®s->transfer_size); } /* Start reading data */ writel(addr, ®s->address); updatetx = recv_count > curr_recv_count; hold_quirk = (i2c_bus->quirks & CDNS_I2C_BROKEN_HOLD_BIT) && updatetx; while (recv_count) { while (readl(®s->status) & CDNS_I2C_STATUS_RXDV) { if (recv_count < CDNS_I2C_FIFO_DEPTH && !i2c_bus->hold_flag) { clrbits_le32(®s->control, CDNS_I2C_CONTROL_HOLD); } *(cur_data)++ = readl(®s->data); recv_count--; curr_recv_count--; if (cdns_is_hold_quirk(hold_quirk, curr_recv_count)) break; } if (cdns_is_hold_quirk(hold_quirk, curr_recv_count)) { /* wait while fifo is full */ while (readl(®s->transfer_size) != (curr_recv_count - CDNS_I2C_FIFO_DEPTH)) ; /* * Check number of bytes to be received against maximum * transfer size and update register accordingly. */ if ((recv_count - CDNS_I2C_FIFO_DEPTH) > CDNS_I2C_TRANSFER_SIZE) { writel(CDNS_I2C_TRANSFER_SIZE, ®s->transfer_size); curr_recv_count = CDNS_I2C_TRANSFER_SIZE + CDNS_I2C_FIFO_DEPTH; } else { writel(recv_count - CDNS_I2C_FIFO_DEPTH, ®s->transfer_size); curr_recv_count = recv_count; } } else if (recv_count && !hold_quirk && !curr_recv_count) { writel(addr, ®s->address); if (recv_count > CDNS_I2C_TRANSFER_SIZE) { writel(CDNS_I2C_TRANSFER_SIZE, ®s->transfer_size); curr_recv_count = CDNS_I2C_TRANSFER_SIZE; } else { writel(recv_count, ®s->transfer_size); curr_recv_count = recv_count; } } } /* Wait for the address and data to be sent */ if (!cdns_i2c_wait(regs, CDNS_I2C_INTERRUPT_COMP)) return -ETIMEDOUT; return 0; } static int cdns_i2c_xfer(struct udevice *dev, struct i2c_msg *msg, int nmsgs) { struct i2c_cdns_bus *i2c_bus = dev_get_priv(dev); int ret, count; bool hold_quirk; hold_quirk = !!(i2c_bus->quirks & CDNS_I2C_BROKEN_HOLD_BIT); if (nmsgs > 1) { /* * This controller does not give completion interrupt after a * master receive message if HOLD bit is set (repeated start), * resulting in SW timeout. Hence, if a receive message is * followed by any other message, an error is returned * indicating that this sequence is not supported. */ for (count = 0; (count < nmsgs - 1) && hold_quirk; count++) { if (msg[count].flags & I2C_M_RD) { printf("Can't do repeated start after a receive message\n"); return -EOPNOTSUPP; } } i2c_bus->hold_flag = 1; setbits_le32(&i2c_bus->regs->control, CDNS_I2C_CONTROL_HOLD); } else { i2c_bus->hold_flag = 0; } debug("i2c_xfer: %d messages\n", nmsgs); for (; nmsgs > 0; nmsgs--, msg++) { debug("i2c_xfer: chip=0x%x, len=0x%x\n", msg->addr, msg->len); if (msg->flags & I2C_M_RD) { ret = cdns_i2c_read_data(i2c_bus, msg->addr, msg->buf, msg->len); } else { ret = cdns_i2c_write_data(i2c_bus, msg->addr, msg->buf, msg->len); } if (ret) { debug("i2c_write: error sending\n"); return -EREMOTEIO; } } return 0; } static int cdns_i2c_ofdata_to_platdata(struct udevice *dev) { struct i2c_cdns_bus *i2c_bus = dev_get_priv(dev); struct cdns_i2c_platform_data *pdata = (struct cdns_i2c_platform_data *)dev_get_driver_data(dev); i2c_bus->regs = (struct cdns_i2c_regs *)devfdt_get_addr(dev); if (!i2c_bus->regs) return -ENOMEM; if (pdata) i2c_bus->quirks = pdata->quirks; i2c_bus->input_freq = 100000000; /* TODO hardcode input freq for now */ return 0; } static const struct dm_i2c_ops cdns_i2c_ops = { .xfer = cdns_i2c_xfer, .set_bus_speed = cdns_i2c_set_bus_speed, }; static const struct cdns_i2c_platform_data r1p10_i2c_def = { .quirks = CDNS_I2C_BROKEN_HOLD_BIT, }; static const struct udevice_id cdns_i2c_of_match[] = { { .compatible = "cdns,i2c-r1p10", .data = (ulong)&r1p10_i2c_def }, { .compatible = "cdns,i2c-r1p14" }, { /* end of table */ } }; U_BOOT_DRIVER(cdns_i2c) = { .name = "i2c-cdns", .id = UCLASS_I2C, .of_match = cdns_i2c_of_match, .ofdata_to_platdata = cdns_i2c_ofdata_to_platdata, .priv_auto_alloc_size = sizeof(struct i2c_cdns_bus), .ops = &cdns_i2c_ops, };