// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2018 Arm Ltd. * Author: Liviu Dudau * */ #include #include #include #include #include #include #include #define I2C_CONTROL_REG 0x00 #define I2C_SET_REG 0x00 #define I2C_CLEAR_REG 0x04 #define SCL BIT(0) #define SDA BIT(1) struct versatile_i2c_priv { phys_addr_t base; u32 delay; }; static inline void versatile_sda_set(struct versatile_i2c_priv *priv, u8 state) { writel(SDA, priv->base + (state ? I2C_SET_REG : I2C_CLEAR_REG)); udelay(priv->delay); } static inline int versatile_sda_get(struct versatile_i2c_priv *priv) { int v = !!(readl(priv->base + I2C_CONTROL_REG) & SDA); udelay(priv->delay); return v; } static inline void versatile_scl_set(struct versatile_i2c_priv *priv, u8 state) { writel(SCL, priv->base + (state ? I2C_SET_REG : I2C_CLEAR_REG)); udelay(priv->delay); } static inline int versatile_scl_get(struct versatile_i2c_priv *priv) { int v = !!(readl(priv->base + I2C_CONTROL_REG) & SCL); udelay(priv->delay); return v; } /* start: SDA goes from high to low while SCL is high */ static void versatile_i2c_start(struct versatile_i2c_priv *priv) { udelay(priv->delay); versatile_sda_set(priv, 1); versatile_scl_set(priv, 1); versatile_sda_set(priv, 0); } /* stop: SDA goes from low to high while SCL is high */ static void versatile_i2c_stop(struct versatile_i2c_priv *priv) { versatile_scl_set(priv, 0); versatile_sda_set(priv, 0); versatile_scl_set(priv, 1); versatile_sda_set(priv, 1); } /* read a bit from the SDA line (data or ACK/NACK) */ static u8 versatile_i2c_read_bit(struct versatile_i2c_priv *priv) { versatile_scl_set(priv, 0); versatile_sda_set(priv, 1); versatile_scl_set(priv, 1); udelay(priv->delay); return (u8)versatile_sda_get(priv); } /* write a bit on the SDA line */ static void versatile_i2c_write_bit(struct versatile_i2c_priv *priv, u8 bit) { versatile_scl_set(priv, 0); versatile_sda_set(priv, bit); versatile_scl_set(priv, 1); udelay(priv->delay); } /* send a reset sequence of 9 clocks with SDA high */ static void versatile_i2c_reset_bus(struct versatile_i2c_priv *priv) { int i; for (i = 0; i < 9; i++) versatile_i2c_write_bit(priv, 1); versatile_i2c_stop(priv); } /* write byte without start/stop sequence */ static int versatile_i2c_write_byte(struct versatile_i2c_priv *priv, u8 byte) { u8 nak, i; for (i = 0; i < 8; i++) { versatile_i2c_write_bit(priv, byte & 0x80); byte <<= 1; } /* read ACK */ nak = versatile_i2c_read_bit(priv); versatile_scl_set(priv, 0); return nak; /* not a nack is an ack */ } static int versatile_i2c_read_byte(struct versatile_i2c_priv *priv, u8 *byte, u8 ack) { u8 i; *byte = 0; for (i = 0; i < 8; i++) { *byte <<= 1; *byte |= versatile_i2c_read_bit(priv); } /* write the nack */ versatile_i2c_write_bit(priv, ack); return 0; } static int versatile_i2c_send_slave_addr(struct versatile_i2c_priv *priv, struct i2c_msg *msg) { u8 addr; int ret; if (msg->flags & I2C_M_TEN) { /* 10-bit address, send extended address code first */ addr = 0xf0 | ((msg->addr >> 7) & 0x06); ret = versatile_i2c_write_byte(priv, addr); if (ret) { versatile_i2c_stop(priv); return -EIO; } /* remaining bits */ ret = versatile_i2c_write_byte(priv, msg->addr & 0xff); if (ret) { versatile_i2c_stop(priv); return -EIO; } /* reads need to resend the addr */ if (msg->flags & I2C_M_RD) { versatile_i2c_start(priv); addr |= 1; ret = versatile_i2c_write_byte(priv, addr); if (ret) { versatile_i2c_stop(priv); return -EIO; } } } else { /* normal 7-bit address */ addr = msg->addr << 1; if (msg->flags & I2C_M_RD) addr |= 1; ret = versatile_i2c_write_byte(priv, addr); if (ret) { versatile_i2c_stop(priv); return -EIO; } } return 0; } static int versatile_i2c_message_xfer(struct versatile_i2c_priv *priv, struct i2c_msg *msg) { int i, ret; u8 ack; versatile_i2c_start(priv); if (versatile_i2c_send_slave_addr(priv, msg)) return -EIO; for (i = 0; i < msg->len; i++) { if (msg->flags & I2C_M_RD) { ack = (msg->len - i - 1) == 0 ? 1 : 0; ret = versatile_i2c_read_byte(priv, &msg->buf[i], ack); } else { ret = versatile_i2c_write_byte(priv, msg->buf[i]); } if (ret) break; } versatile_i2c_stop(priv); return ret; } static int versatile_i2c_xfer(struct udevice *bus, struct i2c_msg *msg, int nmsgs) { struct versatile_i2c_priv *priv = dev_get_priv(bus); int ret; for ( ; nmsgs > 0; nmsgs--, msg++) { ret = versatile_i2c_message_xfer(priv, msg); if (ret) return -EREMOTEIO; } return 0; } static int versatile_i2c_chip_probe(struct udevice *bus, uint chip, uint chip_flags) { /* probe the presence of a slave by writing a 0-size message */ struct i2c_msg msg = { .addr = chip, .flags = chip_flags, .len = 0, .buf = NULL }; struct versatile_i2c_priv *priv = dev_get_priv(bus); return versatile_i2c_message_xfer(priv, &msg); } static int versatile_i2c_set_bus_speed(struct udevice *bus, unsigned int speed) { struct versatile_i2c_priv *priv = dev_get_priv(bus); priv->delay = 1000000 / (speed << 2); versatile_i2c_reset_bus(priv); return 0; } static int versatile_i2c_probe(struct udevice *dev) { struct versatile_i2c_priv *priv = dev_get_priv(dev); priv->base = (phys_addr_t)dev_read_addr(dev); priv->delay = 25; /* 25us * 4 = 100kHz */ /* * U-Boot still doesn't assign automatically * sequence numbers to devices */ dev->req_seq = 1; return 0; } static const struct dm_i2c_ops versatile_i2c_ops = { .xfer = versatile_i2c_xfer, .probe_chip = versatile_i2c_chip_probe, .set_bus_speed = versatile_i2c_set_bus_speed, }; static const struct udevice_id versatile_i2c_of_match[] = { { .compatible = "arm,versatile-i2c" }, { } }; U_BOOT_DRIVER(versatile_i2c) = { .name = "i2c-bus-versatile", .id = UCLASS_I2C, .of_match = versatile_i2c_of_match, .probe = versatile_i2c_probe, .priv_auto_alloc_size = sizeof(struct versatile_i2c_priv), .ops = &versatile_i2c_ops, };