// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2000 * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it * * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH * Marius Groeger * * (C) Copyright 2003 Pengutronix e.K. * Robert Schwebel * * (C) Copyright 2011 Marvell Inc. * Lei Wen * * Back ported to the 8xx platform (from the 8260 platform) by * Murray.Jensen@cmst.csiro.au, 27-Jan-01. */ #include #include #include #include #include "mv_i2c.h" /* All transfers are described by this data structure */ struct mv_i2c_msg { u8 condition; u8 acknack; u8 direction; u8 data; }; #ifdef CONFIG_ARMADA_3700 /* Armada 3700 has no padding between the registers */ struct mv_i2c { u32 ibmr; u32 idbr; u32 icr; u32 isr; u32 isar; }; #else struct mv_i2c { u32 ibmr; u32 pad0; u32 idbr; u32 pad1; u32 icr; u32 pad2; u32 isr; u32 pad3; u32 isar; }; #endif /* * Dummy implementation that can be overwritten by a board * specific function */ __weak void i2c_clk_enable(void) { } /* * i2c_reset: - reset the host controller * */ static void i2c_reset(struct mv_i2c *base) { u32 icr_mode; /* Save bus mode (standard or fast speed) for later use */ icr_mode = readl(&base->icr) & ICR_MODE_MASK; writel(readl(&base->icr) & ~ICR_IUE, &base->icr); /* disable unit */ writel(readl(&base->icr) | ICR_UR, &base->icr); /* reset the unit */ udelay(100); writel(readl(&base->icr) & ~ICR_IUE, &base->icr); /* disable unit */ i2c_clk_enable(); writel(CONFIG_SYS_I2C_SLAVE, &base->isar); /* set our slave address */ /* set control reg values */ writel(I2C_ICR_INIT | icr_mode, &base->icr); writel(I2C_ISR_INIT, &base->isr); /* set clear interrupt bits */ writel(readl(&base->icr) | ICR_IUE, &base->icr); /* enable unit */ udelay(100); } /* * i2c_isr_set_cleared: - wait until certain bits of the I2C status register * are set and cleared * * @return: 1 in case of success, 0 means timeout (no match within 10 ms). */ static int i2c_isr_set_cleared(struct mv_i2c *base, unsigned long set_mask, unsigned long cleared_mask) { int timeout = 1000, isr; do { isr = readl(&base->isr); udelay(10); if (timeout-- < 0) return 0; } while (((isr & set_mask) != set_mask) || ((isr & cleared_mask) != 0)); return 1; } /* * i2c_transfer: - Transfer one byte over the i2c bus * * This function can tranfer a byte over the i2c bus in both directions. * It is used by the public API functions. * * @return: 0: transfer successful * -1: message is empty * -2: transmit timeout * -3: ACK missing * -4: receive timeout * -5: illegal parameters * -6: bus is busy and couldn't be aquired */ static int i2c_transfer(struct mv_i2c *base, struct mv_i2c_msg *msg) { int ret; if (!msg) goto transfer_error_msg_empty; switch (msg->direction) { case I2C_WRITE: /* check if bus is not busy */ if (!i2c_isr_set_cleared(base, 0, ISR_IBB)) goto transfer_error_bus_busy; /* start transmission */ writel(readl(&base->icr) & ~ICR_START, &base->icr); writel(readl(&base->icr) & ~ICR_STOP, &base->icr); writel(msg->data, &base->idbr); if (msg->condition == I2C_COND_START) writel(readl(&base->icr) | ICR_START, &base->icr); if (msg->condition == I2C_COND_STOP) writel(readl(&base->icr) | ICR_STOP, &base->icr); if (msg->acknack == I2C_ACKNAK_SENDNAK) writel(readl(&base->icr) | ICR_ACKNAK, &base->icr); if (msg->acknack == I2C_ACKNAK_SENDACK) writel(readl(&base->icr) & ~ICR_ACKNAK, &base->icr); writel(readl(&base->icr) & ~ICR_ALDIE, &base->icr); writel(readl(&base->icr) | ICR_TB, &base->icr); /* transmit register empty? */ if (!i2c_isr_set_cleared(base, ISR_ITE, 0)) goto transfer_error_transmit_timeout; /* clear 'transmit empty' state */ writel(readl(&base->isr) | ISR_ITE, &base->isr); /* wait for ACK from slave */ if (msg->acknack == I2C_ACKNAK_WAITACK) if (!i2c_isr_set_cleared(base, 0, ISR_ACKNAK)) goto transfer_error_ack_missing; break; case I2C_READ: /* check if bus is not busy */ if (!i2c_isr_set_cleared(base, 0, ISR_IBB)) goto transfer_error_bus_busy; /* start receive */ writel(readl(&base->icr) & ~ICR_START, &base->icr); writel(readl(&base->icr) & ~ICR_STOP, &base->icr); if (msg->condition == I2C_COND_START) writel(readl(&base->icr) | ICR_START, &base->icr); if (msg->condition == I2C_COND_STOP) writel(readl(&base->icr) | ICR_STOP, &base->icr); if (msg->acknack == I2C_ACKNAK_SENDNAK) writel(readl(&base->icr) | ICR_ACKNAK, &base->icr); if (msg->acknack == I2C_ACKNAK_SENDACK) writel(readl(&base->icr) & ~ICR_ACKNAK, &base->icr); writel(readl(&base->icr) & ~ICR_ALDIE, &base->icr); writel(readl(&base->icr) | ICR_TB, &base->icr); /* receive register full? */ if (!i2c_isr_set_cleared(base, ISR_IRF, 0)) goto transfer_error_receive_timeout; msg->data = readl(&base->idbr); /* clear 'receive empty' state */ writel(readl(&base->isr) | ISR_IRF, &base->isr); break; default: goto transfer_error_illegal_param; } return 0; transfer_error_msg_empty: debug("i2c_transfer: error: 'msg' is empty\n"); ret = -1; goto i2c_transfer_finish; transfer_error_transmit_timeout: debug("i2c_transfer: error: transmit timeout\n"); ret = -2; goto i2c_transfer_finish; transfer_error_ack_missing: debug("i2c_transfer: error: ACK missing\n"); ret = -3; goto i2c_transfer_finish; transfer_error_receive_timeout: debug("i2c_transfer: error: receive timeout\n"); ret = -4; goto i2c_transfer_finish; transfer_error_illegal_param: debug("i2c_transfer: error: illegal parameters\n"); ret = -5; goto i2c_transfer_finish; transfer_error_bus_busy: debug("i2c_transfer: error: bus is busy\n"); ret = -6; goto i2c_transfer_finish; i2c_transfer_finish: debug("i2c_transfer: ISR: 0x%04x\n", readl(&base->isr)); i2c_reset(base); return ret; } static int __i2c_read(struct mv_i2c *base, uchar chip, u8 *addr, int alen, uchar *buffer, int len) { struct mv_i2c_msg msg; debug("i2c_read(chip=0x%02x, addr=0x%02x, alen=0x%02x, " "len=0x%02x)\n", chip, *addr, alen, len); if (len == 0) { printf("reading zero byte is invalid\n"); return -EINVAL; } i2c_reset(base); /* dummy chip address write */ debug("i2c_read: dummy chip address write\n"); msg.condition = I2C_COND_START; msg.acknack = I2C_ACKNAK_WAITACK; msg.direction = I2C_WRITE; msg.data = (chip << 1); msg.data &= 0xFE; if (i2c_transfer(base, &msg)) return -1; /* * send memory address bytes; * alen defines how much bytes we have to send. */ while (--alen >= 0) { debug("i2c_read: send address byte %02x (alen=%d)\n", *addr, alen); msg.condition = I2C_COND_NORMAL; msg.acknack = I2C_ACKNAK_WAITACK; msg.direction = I2C_WRITE; msg.data = addr[alen]; if (i2c_transfer(base, &msg)) return -1; } /* start read sequence */ debug("i2c_read: start read sequence\n"); msg.condition = I2C_COND_START; msg.acknack = I2C_ACKNAK_WAITACK; msg.direction = I2C_WRITE; msg.data = (chip << 1); msg.data |= 0x01; if (i2c_transfer(base, &msg)) return -1; /* read bytes; send NACK at last byte */ while (len--) { if (len == 0) { msg.condition = I2C_COND_STOP; msg.acknack = I2C_ACKNAK_SENDNAK; } else { msg.condition = I2C_COND_NORMAL; msg.acknack = I2C_ACKNAK_SENDACK; } msg.direction = I2C_READ; msg.data = 0x00; if (i2c_transfer(base, &msg)) return -1; *buffer = msg.data; debug("i2c_read: reading byte (%p)=0x%02x\n", buffer, *buffer); buffer++; } i2c_reset(base); return 0; } static int __i2c_write(struct mv_i2c *base, uchar chip, u8 *addr, int alen, uchar *buffer, int len) { struct mv_i2c_msg msg; debug("i2c_write(chip=0x%02x, addr=0x%02x, alen=0x%02x, " "len=0x%02x)\n", chip, *addr, alen, len); i2c_reset(base); /* chip address write */ debug("i2c_write: chip address write\n"); msg.condition = I2C_COND_START; msg.acknack = I2C_ACKNAK_WAITACK; msg.direction = I2C_WRITE; msg.data = (chip << 1); msg.data &= 0xFE; if (i2c_transfer(base, &msg)) return -1; /* * send memory address bytes; * alen defines how much bytes we have to send. */ while (--alen >= 0) { debug("i2c_read: send address byte %02x (alen=%d)\n", *addr, alen); msg.condition = I2C_COND_NORMAL; msg.acknack = I2C_ACKNAK_WAITACK; msg.direction = I2C_WRITE; msg.data = addr[alen]; if (i2c_transfer(base, &msg)) return -1; } /* write bytes; send NACK at last byte */ while (len--) { debug("i2c_write: writing byte (%p)=0x%02x\n", buffer, *buffer); if (len == 0) msg.condition = I2C_COND_STOP; else msg.condition = I2C_COND_NORMAL; msg.acknack = I2C_ACKNAK_WAITACK; msg.direction = I2C_WRITE; msg.data = *(buffer++); if (i2c_transfer(base, &msg)) return -1; } i2c_reset(base); return 0; } #ifndef CONFIG_DM_I2C static struct mv_i2c *base_glob; static void i2c_board_init(struct mv_i2c *base) { #ifdef CONFIG_SYS_I2C_INIT_BOARD u32 icr; /* * call board specific i2c bus reset routine before accessing the * environment, which might be in a chip on that bus. For details * about this problem see doc/I2C_Edge_Conditions. * * disable I2C controller first, otherwhise it thinks we want to * talk to the slave port... */ icr = readl(&base->icr); writel(readl(&base->icr) & ~(ICR_SCLE | ICR_IUE), &base->icr); i2c_init_board(); writel(icr, &base->icr); #endif } #ifdef CONFIG_I2C_MULTI_BUS static unsigned long i2c_regs[CONFIG_MV_I2C_NUM] = CONFIG_MV_I2C_REG; static unsigned int bus_initialized[CONFIG_MV_I2C_NUM]; static unsigned int current_bus; int i2c_set_bus_num(unsigned int bus) { if ((bus < 0) || (bus >= CONFIG_MV_I2C_NUM)) { printf("Bad bus: %d\n", bus); return -1; } base_glob = (struct mv_i2c *)i2c_regs[bus]; current_bus = bus; if (!bus_initialized[current_bus]) { i2c_board_init(base_glob); bus_initialized[current_bus] = 1; } return 0; } unsigned int i2c_get_bus_num(void) { return current_bus; } #endif /* API Functions */ void i2c_init(int speed, int slaveaddr) { u32 val; #ifdef CONFIG_I2C_MULTI_BUS current_bus = 0; base_glob = (struct mv_i2c *)i2c_regs[current_bus]; #else base_glob = (struct mv_i2c *)CONFIG_MV_I2C_REG; #endif if (speed > 100000) val = ICR_FM; else val = ICR_SM; clrsetbits_le32(&base_glob->icr, ICR_MODE_MASK, val); i2c_board_init(base_glob); } static int __i2c_probe_chip(struct mv_i2c *base, uchar chip) { struct mv_i2c_msg msg; i2c_reset(base); msg.condition = I2C_COND_START; msg.acknack = I2C_ACKNAK_WAITACK; msg.direction = I2C_WRITE; msg.data = (chip << 1) + 1; if (i2c_transfer(base, &msg)) return -1; msg.condition = I2C_COND_STOP; msg.acknack = I2C_ACKNAK_SENDNAK; msg.direction = I2C_READ; msg.data = 0x00; if (i2c_transfer(base, &msg)) return -1; return 0; } /* * i2c_probe: - Test if a chip answers for a given i2c address * * @chip: address of the chip which is searched for * @return: 0 if a chip was found, -1 otherwhise */ int i2c_probe(uchar chip) { return __i2c_probe_chip(base_glob, chip); } /* * i2c_read: - Read multiple bytes from an i2c device * * The higher level routines take into account that this function is only * called with len < page length of the device (see configuration file) * * @chip: address of the chip which is to be read * @addr: i2c data address within the chip * @alen: length of the i2c data address (1..2 bytes) * @buffer: where to write the data * @len: how much byte do we want to read * @return: 0 in case of success */ int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len) { u8 addr_bytes[4]; addr_bytes[0] = (addr >> 0) & 0xFF; addr_bytes[1] = (addr >> 8) & 0xFF; addr_bytes[2] = (addr >> 16) & 0xFF; addr_bytes[3] = (addr >> 24) & 0xFF; return __i2c_read(base_glob, chip, addr_bytes, alen, buffer, len); } /* * i2c_write: - Write multiple bytes to an i2c device * * The higher level routines take into account that this function is only * called with len < page length of the device (see configuration file) * * @chip: address of the chip which is to be written * @addr: i2c data address within the chip * @alen: length of the i2c data address (1..2 bytes) * @buffer: where to find the data to be written * @len: how much byte do we want to read * @return: 0 in case of success */ int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len) { u8 addr_bytes[4]; addr_bytes[0] = (addr >> 0) & 0xFF; addr_bytes[1] = (addr >> 8) & 0xFF; addr_bytes[2] = (addr >> 16) & 0xFF; addr_bytes[3] = (addr >> 24) & 0xFF; return __i2c_write(base_glob, chip, addr_bytes, alen, buffer, len); } #else /* CONFIG_DM_I2C */ struct mv_i2c_priv { struct mv_i2c *base; }; static int mv_i2c_xfer(struct udevice *bus, struct i2c_msg *msg, int nmsgs) { struct mv_i2c_priv *i2c = dev_get_priv(bus); struct i2c_msg *dmsg, *omsg, dummy; memset(&dummy, 0, sizeof(struct i2c_msg)); /* * We expect either two messages (one with an offset and one with the * actual data) or one message (just data or offset/data combined) */ if (nmsgs > 2 || nmsgs == 0) { debug("%s: Only one or two messages are supported.", __func__); return -1; } omsg = nmsgs == 1 ? &dummy : msg; dmsg = nmsgs == 1 ? msg : msg + 1; if (dmsg->flags & I2C_M_RD) return __i2c_read(i2c->base, dmsg->addr, omsg->buf, omsg->len, dmsg->buf, dmsg->len); else return __i2c_write(i2c->base, dmsg->addr, omsg->buf, omsg->len, dmsg->buf, dmsg->len); } static int mv_i2c_set_bus_speed(struct udevice *bus, unsigned int speed) { struct mv_i2c_priv *priv = dev_get_priv(bus); u32 val; if (speed > 100000) val = ICR_FM; else val = ICR_SM; clrsetbits_le32(&priv->base->icr, ICR_MODE_MASK, val); return 0; } static int mv_i2c_probe(struct udevice *bus) { struct mv_i2c_priv *priv = dev_get_priv(bus); priv->base = (void *)devfdt_get_addr_ptr(bus); return 0; } static const struct dm_i2c_ops mv_i2c_ops = { .xfer = mv_i2c_xfer, .set_bus_speed = mv_i2c_set_bus_speed, }; static const struct udevice_id mv_i2c_ids[] = { { .compatible = "marvell,armada-3700-i2c" }, { } }; U_BOOT_DRIVER(i2c_mv) = { .name = "i2c_mv", .id = UCLASS_I2C, .of_match = mv_i2c_ids, .probe = mv_i2c_probe, .priv_auto_alloc_size = sizeof(struct mv_i2c_priv), .ops = &mv_i2c_ops, }; #endif /* CONFIG_DM_I2C */