/* * board.c * * (C) Copyright 2016 * Heiko Schocher, DENX Software Engineering, hs@denx.de. * * Based on: * Board functions for TI AM335X based boards * * Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/ * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmc.h" #include "board.h" DECLARE_GLOBAL_DATA_PTR; #if defined(CONFIG_SPL_BUILD) || \ (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_DM_ETH)) static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE; #endif static struct shc_eeprom __attribute__((section(".data"))) header; static int shc_eeprom_valid; /* * Read header information from EEPROM into global structure. */ static int read_eeprom(void) { /* Check if baseboard eeprom is available */ if (i2c_probe(CONFIG_SYS_I2C_EEPROM_ADDR)) { puts("Could not probe the EEPROM; something fundamentally wrong on the I2C bus.\n"); return -ENODEV; } /* read the eeprom using i2c */ if (i2c_read(CONFIG_SYS_I2C_EEPROM_ADDR, 0, 2, (uchar *)&header, sizeof(header))) { puts("Could not read the EEPROM; something fundamentally wrong on the I2C bus.\n"); return -EIO; } if (header.magic != HDR_MAGIC) { printf("Incorrect magic number (0x%x) in EEPROM\n", header.magic); return -EIO; } shc_eeprom_valid = 1; return 0; } static void shc_request_gpio(void) { gpio_request(LED_PWR_BL_GPIO, "LED PWR BL"); gpio_request(LED_PWR_RD_GPIO, "LED PWR RD"); gpio_request(RESET_GPIO, "reset"); gpio_request(WIFI_REGEN_GPIO, "WIFI REGEN"); gpio_request(WIFI_RST_GPIO, "WIFI rst"); gpio_request(ZIGBEE_RST_GPIO, "ZigBee rst"); gpio_request(BIDCOS_RST_GPIO, "BIDCOS rst"); gpio_request(ENOC_RST_GPIO, "ENOC rst"); #if defined CONFIG_B_SAMPLE gpio_request(LED_PWR_GN_GPIO, "LED PWR GN"); gpio_request(LED_CONN_BL_GPIO, "LED CONN BL"); gpio_request(LED_CONN_RD_GPIO, "LED CONN RD"); gpio_request(LED_CONN_GN_GPIO, "LED CONN GN"); #else gpio_request(LED_LAN_BL_GPIO, "LED LAN BL"); gpio_request(LED_LAN_RD_GPIO, "LED LAN RD"); gpio_request(LED_CLOUD_BL_GPIO, "LED CLOUD BL"); gpio_request(LED_CLOUD_RD_GPIO, "LED CLOUD RD"); gpio_request(LED_PWM_GPIO, "LED PWM"); gpio_request(Z_WAVE_RST_GPIO, "Z WAVE rst"); #endif gpio_request(BACK_BUTTON_GPIO, "Back button"); gpio_request(FRONT_BUTTON_GPIO, "Front button"); } /* * Function which forces all installed modules into running state for ICT * testing. Called by SPL. */ static void __maybe_unused force_modules_running(void) { /* Wi-Fi power regulator enable - high = enabled */ gpio_direction_output(WIFI_REGEN_GPIO, 1); /* * Wait for Wi-Fi power regulator to reach a stable voltage * (soft-start time, max. 350 µs) */ __udelay(350); /* Wi-Fi module reset - high = running */ gpio_direction_output(WIFI_RST_GPIO, 1); /* ZigBee reset - high = running */ gpio_direction_output(ZIGBEE_RST_GPIO, 1); /* BidCos reset - high = running */ gpio_direction_output(BIDCOS_RST_GPIO, 1); #if !defined(CONFIG_B_SAMPLE) /* Z-Wave reset - high = running */ gpio_direction_output(Z_WAVE_RST_GPIO, 1); #endif /* EnOcean reset - low = running */ gpio_direction_output(ENOC_RST_GPIO, 0); } /* * Function which forces all installed modules into reset - to be released by * the OS, called by SPL */ static void __maybe_unused force_modules_reset(void) { /* Wi-Fi module reset - low = reset */ gpio_direction_output(WIFI_RST_GPIO, 0); /* Wi-Fi power regulator enable - low = disabled */ gpio_direction_output(WIFI_REGEN_GPIO, 0); /* ZigBee reset - low = reset */ gpio_direction_output(ZIGBEE_RST_GPIO, 0); /* BidCos reset - low = reset */ /*gpio_direction_output(BIDCOS_RST_GPIO, 0);*/ #if !defined(CONFIG_B_SAMPLE) /* Z-Wave reset - low = reset */ gpio_direction_output(Z_WAVE_RST_GPIO, 0); #endif /* EnOcean reset - high = reset*/ gpio_direction_output(ENOC_RST_GPIO, 1); } /* * Function to set the LEDs in the state "Bootloader booting" */ static void __maybe_unused leds_set_booting(void) { #if defined(CONFIG_B_SAMPLE) /* Turn all red LEDs on */ gpio_direction_output(LED_PWR_RD_GPIO, 1); gpio_direction_output(LED_CONN_RD_GPIO, 1); #else /* All other SHCs starting with B2-Sample */ /* Set the PWM GPIO */ gpio_direction_output(LED_PWM_GPIO, 1); /* Turn all red LEDs on */ gpio_direction_output(LED_PWR_RD_GPIO, 1); gpio_direction_output(LED_LAN_RD_GPIO, 1); gpio_direction_output(LED_CLOUD_RD_GPIO, 1); #endif } /* * Function to set the LEDs in the state "Bootloader error" */ static void leds_set_failure(int state) { #if defined(CONFIG_B_SAMPLE) /* Turn all blue and green LEDs off */ gpio_set_value(LED_PWR_BL_GPIO, 0); gpio_set_value(LED_PWR_GN_GPIO, 0); gpio_set_value(LED_CONN_BL_GPIO, 0); gpio_set_value(LED_CONN_GN_GPIO, 0); /* Turn all red LEDs to 'state' */ gpio_set_value(LED_PWR_RD_GPIO, state); gpio_set_value(LED_CONN_RD_GPIO, state); #else /* All other SHCs starting with B2-Sample */ /* Set the PWM GPIO */ gpio_direction_output(LED_PWM_GPIO, 1); /* Turn all blue LEDs off */ gpio_set_value(LED_PWR_BL_GPIO, 0); gpio_set_value(LED_LAN_BL_GPIO, 0); gpio_set_value(LED_CLOUD_BL_GPIO, 0); /* Turn all red LEDs to 'state' */ gpio_set_value(LED_PWR_RD_GPIO, state); gpio_set_value(LED_LAN_RD_GPIO, state); gpio_set_value(LED_CLOUD_RD_GPIO, state); #endif } /* * Function to set the LEDs in the state "Bootloader finished" */ static void leds_set_finish(void) { #if defined(CONFIG_B_SAMPLE) /* Turn all LEDs off */ gpio_set_value(LED_PWR_BL_GPIO, 0); gpio_set_value(LED_PWR_RD_GPIO, 0); gpio_set_value(LED_PWR_GN_GPIO, 0); gpio_set_value(LED_CONN_BL_GPIO, 0); gpio_set_value(LED_CONN_RD_GPIO, 0); gpio_set_value(LED_CONN_GN_GPIO, 0); #else /* All other SHCs starting with B2-Sample */ /* Turn all LEDs off */ gpio_set_value(LED_PWR_BL_GPIO, 0); gpio_set_value(LED_PWR_RD_GPIO, 0); gpio_set_value(LED_LAN_BL_GPIO, 0); gpio_set_value(LED_LAN_RD_GPIO, 0); gpio_set_value(LED_CLOUD_BL_GPIO, 0); gpio_set_value(LED_CLOUD_RD_GPIO, 0); /* Turn off the PWM GPIO and mux it to EHRPWM */ gpio_set_value(LED_PWM_GPIO, 0); enable_shc_board_pwm_pin_mux(); #endif } static void check_button_status(void) { ulong value; gpio_direction_input(FRONT_BUTTON_GPIO); value = gpio_get_value(FRONT_BUTTON_GPIO); if (value == 0) { printf("front button activated !\n"); env_set("harakiri", "1"); } } #ifndef CONFIG_SKIP_LOWLEVEL_INIT #ifdef CONFIG_SPL_OS_BOOT int spl_start_uboot(void) { return 1; } #endif static void shc_board_early_init(void) { shc_request_gpio(); # ifdef CONFIG_SHC_ICT /* Force all modules into enabled state for ICT testing */ force_modules_running(); # else /* Force all modules to enter Reset state until released by the OS */ force_modules_reset(); # endif leds_set_booting(); } #define MPU_SPREADING_PERMILLE 18 /* Spread 1.8 percent */ #define OSC (V_OSCK/1000000) /* Bosch: Predivider must be fixed to 4, so N = 4-1 */ #define MPUPLL_N (4-1) /* Bosch: Fref = 24 MHz / (N+1) = 24 MHz / 4 = 6 MHz */ #define MPUPLL_FREF (OSC / (MPUPLL_N + 1)) const struct dpll_params dpll_ddr_shc = { 400, OSC-1, 1, -1, -1, -1, -1}; const struct dpll_params *get_dpll_ddr_params(void) { return &dpll_ddr_shc; } /* * As we enabled downspread SSC with 1.8%, the values needed to be corrected * such that the 20% overshoot will not lead to too high frequencies. * In all cases, this is achieved by subtracting one from M (6 MHz less). * Example: 600 MHz CPU * Step size: 24 MHz OSC, N = 4 (fix) --> Fref = 6 MHz * 600 MHz - 6 MHz (1x Fref) = 594 MHz * SSC: 594 MHz * 1.8% = 10.7 MHz SSC * Overshoot: 10.7 MHz * 20 % = 2.2 MHz * --> Fmax = 594 MHz + 2.2 MHz = 596.2 MHz, lower than 600 MHz --> OK! */ const struct dpll_params dpll_mpu_shc_opp100 = { 99, MPUPLL_N, 1, -1, -1, -1, -1}; void am33xx_spl_board_init(void) { int sil_rev; int mpu_vdd; puts(BOARD_ID_STR); /* * Set CORE Frequency to OPP100 * Hint: DCDC3 (CORE) defaults to 1.100V (for OPP100) */ do_setup_dpll(&dpll_core_regs, &dpll_core_opp100); sil_rev = readl(&cdev->deviceid) >> 28; if (sil_rev < 2) { puts("We do not support Silicon Revisions below 2.0!\n"); return; } dpll_mpu_opp100.m = am335x_get_efuse_mpu_max_freq(cdev); if (i2c_probe(TPS65217_CHIP_PM)) return; /* * Retrieve the CPU max frequency by reading the efuse * SHC-Default: 600 MHz */ switch (dpll_mpu_opp100.m) { case MPUPLL_M_1000: mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV; break; case MPUPLL_M_800: mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV; break; case MPUPLL_M_720: mpu_vdd = TPS65217_DCDC_VOLT_SEL_1200MV; break; case MPUPLL_M_600: mpu_vdd = TPS65217_DCDC_VOLT_SEL_1100MV; break; case MPUPLL_M_300: mpu_vdd = TPS65217_DCDC_VOLT_SEL_950MV; break; default: puts("Cannot determine the frequency, failing!\n"); return; } if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) { puts("tps65217_voltage_update failure\n"); return; } /* Set MPU Frequency to what we detected */ printf("MPU reference clock runs at %d MHz\n", MPUPLL_FREF); printf("Setting MPU clock to %d MHz\n", MPUPLL_FREF * dpll_mpu_shc_opp100.m); do_setup_dpll(&dpll_mpu_regs, &dpll_mpu_shc_opp100); /* Enable Spread Spectrum for this freq to be clean on EMI side */ set_mpu_spreadspectrum(MPU_SPREADING_PERMILLE); /* * Using the default voltages for the PMIC (TPS65217D) * LS1 = 1.8V (VDD_1V8) * LS2 = 3.3V (VDD_3V3A) * LDO1 = 1.8V (VIO and VRTC) * LDO2 = 3.3V (VDD_3V3AUX) */ shc_board_early_init(); } void set_uart_mux_conf(void) { enable_uart0_pin_mux(); } void set_mux_conf_regs(void) { enable_shc_board_pin_mux(); } const struct ctrl_ioregs ioregs_evmsk = { .cm0ioctl = MT41K256M16HA125E_IOCTRL_VALUE, .cm1ioctl = MT41K256M16HA125E_IOCTRL_VALUE, .cm2ioctl = MT41K256M16HA125E_IOCTRL_VALUE, .dt0ioctl = MT41K256M16HA125E_IOCTRL_VALUE, .dt1ioctl = MT41K256M16HA125E_IOCTRL_VALUE, }; static const struct ddr_data ddr3_shc_data = { .datardsratio0 = MT41K256M16HA125E_RD_DQS, .datawdsratio0 = MT41K256M16HA125E_WR_DQS, .datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE, .datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA, }; static const struct cmd_control ddr3_shc_cmd_ctrl_data = { .cmd0csratio = MT41K256M16HA125E_RATIO, .cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT, .cmd1csratio = MT41K256M16HA125E_RATIO, .cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT, .cmd2csratio = MT41K256M16HA125E_RATIO, .cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT, }; static struct emif_regs ddr3_shc_emif_reg_data = { .sdram_config = MT41K256M16HA125E_EMIF_SDCFG, .ref_ctrl = MT41K256M16HA125E_EMIF_SDREF, .sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1, .sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2, .sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3, .zq_config = MT41K256M16HA125E_ZQ_CFG, .emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY | PHY_EN_DYN_PWRDN, }; void sdram_init(void) { /* Configure the DDR3 RAM */ config_ddr(400, &ioregs_evmsk, &ddr3_shc_data, &ddr3_shc_cmd_ctrl_data, &ddr3_shc_emif_reg_data, 0); } #endif /* * Basic board specific setup. Pinmux has been handled already. */ int board_init(void) { #if defined(CONFIG_HW_WATCHDOG) hw_watchdog_init(); #endif i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE); if (read_eeprom() < 0) puts("EEPROM Content Invalid.\n"); gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100; #if defined(CONFIG_NOR) || defined(CONFIG_NAND) gpmc_init(); #endif shc_request_gpio(); return 0; } #ifdef CONFIG_BOARD_LATE_INIT int board_late_init(void) { check_button_status(); #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG if (shc_eeprom_valid) if (is_valid_ethaddr(header.mac_addr)) eth_setenv_enetaddr("ethaddr", header.mac_addr); #endif return 0; } #endif #ifndef CONFIG_DM_ETH #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \ (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD)) static void cpsw_control(int enabled) { /* VTP can be added here */ return; } static struct cpsw_slave_data cpsw_slaves[] = { { .slave_reg_ofs = 0x208, .sliver_reg_ofs = 0xd80, .phy_addr = 0, }, { .slave_reg_ofs = 0x308, .sliver_reg_ofs = 0xdc0, .phy_addr = 1, }, }; static struct cpsw_platform_data cpsw_data = { .mdio_base = CPSW_MDIO_BASE, .cpsw_base = CPSW_BASE, .mdio_div = 0xff, .channels = 8, .cpdma_reg_ofs = 0x800, .slaves = 1, .slave_data = cpsw_slaves, .ale_reg_ofs = 0xd00, .ale_entries = 1024, .host_port_reg_ofs = 0x108, .hw_stats_reg_ofs = 0x900, .bd_ram_ofs = 0x2000, .mac_control = (1 << 5), .control = cpsw_control, .host_port_num = 0, .version = CPSW_CTRL_VERSION_2, }; #endif /* * This function will: * Read the eFuse for MAC addresses, and set ethaddr/eth1addr/usbnet_devaddr * in the environment * Perform fixups to the PHY present on certain boards. We only need this * function in: * - SPL with either CPSW or USB ethernet support * - Full U-Boot, with either CPSW or USB ethernet * Build in only these cases to avoid warnings about unused variables * when we build an SPL that has neither option but full U-Boot will. */ #if ((defined(CONFIG_SPL_ETH_SUPPORT) || \ defined(CONFIG_SPL_USBETH_SUPPORT)) && \ defined(CONFIG_SPL_BUILD)) || \ ((defined(CONFIG_DRIVER_TI_CPSW) || \ defined(CONFIG_USB_ETHER) && defined(CONFIG_USB_MUSB_GADGET)) && \ !defined(CONFIG_SPL_BUILD)) int board_eth_init(bd_t *bis) { int rv, n = 0; uint8_t mac_addr[6]; uint32_t mac_hi, mac_lo; /* try reading mac address from efuse */ mac_lo = readl(&cdev->macid0l); mac_hi = readl(&cdev->macid0h); mac_addr[0] = mac_hi & 0xFF; mac_addr[1] = (mac_hi & 0xFF00) >> 8; mac_addr[2] = (mac_hi & 0xFF0000) >> 16; mac_addr[3] = (mac_hi & 0xFF000000) >> 24; mac_addr[4] = mac_lo & 0xFF; mac_addr[5] = (mac_lo & 0xFF00) >> 8; #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \ (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD)) if (!getenv("ethaddr")) { printf(" not set. Validating first E-fuse MAC\n"); if (is_valid_ethaddr(mac_addr)) eth_setenv_enetaddr("ethaddr", mac_addr); } writel(MII_MODE_ENABLE, &cdev->miisel); cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_MII; cpsw_slaves[1].phy_if = cpsw_slaves[0].phy_if; rv = cpsw_register(&cpsw_data); if (rv < 0) printf("Error %d registering CPSW switch\n", rv); else n += rv; #endif #if defined(CONFIG_USB_ETHER) && \ (!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USBETH_SUPPORT)) if (is_valid_ethaddr(mac_addr)) eth_setenv_enetaddr("usbnet_devaddr", mac_addr); rv = usb_eth_initialize(bis); if (rv < 0) printf("Error %d registering USB_ETHER\n", rv); else n += rv; #endif return n; } #endif #endif /* CONFIG_DM_ETH */ #ifdef CONFIG_SHOW_BOOT_PROGRESS static void bosch_check_reset_pin(void) { if (readl(GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0) & RESET_MASK) { printf("Resetting ...\n"); writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0); disable_interrupts(); reset_cpu(0); /*NOTREACHED*/ } } static void hang_bosch(const char *cause, int code) { int lv; gpio_direction_input(RESET_GPIO); /* Enable reset pin interrupt on falling edge */ writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0); writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_FALLINGDETECT); enable_interrupts(); puts(cause); for (;;) { for (lv = 0; lv < code; lv++) { bosch_check_reset_pin(); leds_set_failure(1); __udelay(150 * 1000); leds_set_failure(0); __udelay(150 * 1000); } #if defined(BLINK_CODE) __udelay(300 * 1000); #endif } } void show_boot_progress(int val) { switch (val) { case BOOTSTAGE_ID_NEED_RESET: hang_bosch("need reset", 4); break; } } #endif void arch_preboot_os(void) { leds_set_finish(); } #if defined(CONFIG_MMC) int board_mmc_init(bd_t *bis) { int ret; /* Bosch: Do not enable 52MHz for eMMC device to avoid EMI */ ret = omap_mmc_init(0, MMC_MODE_HS_52MHz, 26000000, -1, -1); if (ret) return ret; ret = omap_mmc_init(1, MMC_MODE_HS_52MHz, 26000000, -1, -1); return ret; } #endif