/* Core.h - Basic core logic functions and definitions */ /* Copyright Galileo Technology. */ /* DESCRIPTION This header file contains simple read/write macros for addressing the SDRAM, devices, GT`s internal registers and PCI (using the PCI`s address space). The macros take care of Big/Little endian conversions. */ #ifndef __INCcoreh #define __INCcoreh #include "mv_gen_reg.h" extern unsigned int INTERNAL_REG_BASE_ADDR; /****************************************/ /* GENERAL Definitions */ /****************************************/ #define NO_BIT 0x00000000 #define BIT0 0x00000001 #define BIT1 0x00000002 #define BIT2 0x00000004 #define BIT3 0x00000008 #define BIT4 0x00000010 #define BIT5 0x00000020 #define BIT6 0x00000040 #define BIT7 0x00000080 #define BIT8 0x00000100 #define BIT9 0x00000200 #define BIT10 0x00000400 #define BIT11 0x00000800 #define BIT12 0x00001000 #define BIT13 0x00002000 #define BIT14 0x00004000 #define BIT15 0x00008000 #define BIT16 0x00010000 #define BIT17 0x00020000 #define BIT18 0x00040000 #define BIT19 0x00080000 #define BIT20 0x00100000 #define BIT21 0x00200000 #define BIT22 0x00400000 #define BIT23 0x00800000 #define BIT24 0x01000000 #define BIT25 0x02000000 #define BIT26 0x04000000 #define BIT27 0x08000000 #define BIT28 0x10000000 #define BIT29 0x20000000 #define BIT30 0x40000000 #define BIT31 0x80000000 #define _1K 0x00000400 #define _2K 0x00000800 #define _4K 0x00001000 #define _8K 0x00002000 #define _16K 0x00004000 #define _32K 0x00008000 #define _64K 0x00010000 #define _128K 0x00020000 #define _256K 0x00040000 #define _512K 0x00080000 #define _1M 0x00100000 #define _2M 0x00200000 #define _3M 0x00300000 #define _4M 0x00400000 #define _5M 0x00500000 #define _6M 0x00600000 #define _7M 0x00700000 #define _8M 0x00800000 #define _9M 0x00900000 #define _10M 0x00a00000 #define _11M 0x00b00000 #define _12M 0x00c00000 #define _13M 0x00d00000 #define _14M 0x00e00000 #define _15M 0x00f00000 #define _16M 0x01000000 #define _32M 0x02000000 #define _64M 0x04000000 #define _128M 0x08000000 #define _256M 0x10000000 #define _512M 0x20000000 #define _1G 0x40000000 #define _2G 0x80000000 /* Little to Big endian conversion macros */ #ifdef LE /* Little Endian */ #define SHORT_SWAP(X) (X) #define WORD_SWAP(X) (X) #define LONG_SWAP(X) ((l64)(X)) #else /* Big Endian */ #define SHORT_SWAP(X) ((X <<8 ) | (X >> 8)) #define WORD_SWAP(X) (((X)&0xff)<<24)+ \ (((X)&0xff00)<<8)+ \ (((X)&0xff0000)>>8)+ \ (((X)&0xff000000)>>24) #define LONG_SWAP(X) ( (l64) (((X)&0xffULL)<<56)+ \ (((X)&0xff00ULL)<<40)+ \ (((X)&0xff0000ULL)<<24)+ \ (((X)&0xff000000ULL)<<8)+ \ (((X)&0xff00000000ULL)>>8)+ \ (((X)&0xff0000000000ULL)>>24)+ \ (((X)&0xff000000000000ULL)>>40)+ \ (((X)&0xff00000000000000ULL)>>56)) #endif #ifndef NULL #define NULL 0 #endif /* Those two definitions were defined to be compatible with MIPS */ #define NONE_CACHEABLE 0x00000000 #define CACHEABLE 0x00000000 /* 750 cache line */ #define CACHE_LINE_SIZE 32 #define CACHELINE_MASK_BITS (CACHE_LINE_SIZE - 1) #define CACHELINE_ROUNDUP(A) (((A)+CACHELINE_MASK_BITS) & ~CACHELINE_MASK_BITS) /* Read/Write to/from GT`s internal registers */ #define GT_REG_READ(offset, pData) \ *pData = ( *((volatile unsigned int *)(NONE_CACHEABLE | \ INTERNAL_REG_BASE_ADDR | (offset))) ) ; \ *pData = WORD_SWAP(*pData) #define GTREGREAD(offset) \ (WORD_SWAP( *((volatile unsigned int *)(NONE_CACHEABLE | \ INTERNAL_REG_BASE_ADDR | (offset))) )) #define GT_REG_WRITE(offset, data) \ *((unsigned int *)( INTERNAL_REG_BASE_ADDR | (offset))) = \ WORD_SWAP(data) /* Write 32/16/8 bit */ #define WRITE_CHAR(address, data) \ *((unsigned char *)(address)) = data #define WRITE_SHORT(address, data) \ *((unsigned short *)(address)) = data #define WRITE_WORD(address, data) \ *((unsigned int *)(address)) = data #define GT_WRITE_CHAR(address, data) WRITE_CHAR(address, data) /* Write 32/16/8 bit NonCacheable */ /* #define GT_WRITE_CHAR(address, data) \ (*((unsigned char *)NONE_CACHEABLE(address))) = data #define GT_WRITE_SHORT(address, data) \ (*((unsigned short *)NONE_CACHEABLE(address))) = data #define GT_WRITE_WORD(address, data) \ (*((unsigned int *)NONE_CACHEABLE(address))) = data */ /*#define GT_WRITE_CHAR(address, data) ((*((volatile unsigned char *)NONE_CACHEABLE((address)))) = ((unsigned char)(data)))1 */ /*#define GT_WRITE_SHORT(address, data) ((*((volatile unsigned short *)NONE_CACHEABLE((address)))) = ((unsigned short)(data)))1 */ /*#define GT_WRITE_WORD(address, data) ((*((volatile unsigned int *)NONE_CACHEABLE((address)))) = ((unsigned int)(data)))1 */ /* Read 32/16/8 bits - returns data in variable. */ #define READ_CHAR(address, pData) \ *pData = *((volatile unsigned char *)(address)) #define READ_SHORT(address, pData) \ *pData = *((volatile unsigned short *)(address)) #define READ_WORD(address, pData) \ *pData = *((volatile unsigned int *)(address)) /* Read 32/16/8 bit - returns data direct. */ #define READCHAR(address) \ *((volatile unsigned char *)((address) | NONE_CACHEABLE)) #define READSHORT(address) \ *((volatile unsigned short *)((address) | NONE_CACHEABLE)) #define READWORD(address) \ *((volatile unsigned int *)((address) | NONE_CACHEABLE)) /* Those two Macros were defined to be compatible with MIPS */ #define VIRTUAL_TO_PHY(x) (((unsigned int)x) & 0xffffffff) #define PHY_TO_VIRTUAL(x) (((unsigned int)x) | NONE_CACHEABLE) /* SET_REG_BITS(regOffset,bits) - gets register offset and bits: a 32bit value. It set to logic '1' in the internal register the bits which given as an input example: SET_REG_BITS(0x840,BIT3 | BIT24 | BIT30) - set bits: 3,24 and 30 to logic '1' in register 0x840 while the other bits stays as is. */ #define SET_REG_BITS(regOffset,bits) \ *(unsigned int*)(NONE_CACHEABLE | INTERNAL_REG_BASE_ADDR | \ regOffset) |= (unsigned int)WORD_SWAP(bits) /* RESET_REG_BITS(regOffset,bits) - gets register offset and bits: a 32bit value. It set to logic '0' in the internal register the bits which given as an input example: RESET_REG_BITS(0x840,BIT3 | BIT24 | BIT30) - set bits: 3,24 and 30 to logic '0' in register 0x840 while the other bits stays as is. */ #define RESET_REG_BITS(regOffset,bits) \ *(unsigned int*)(NONE_CACHEABLE | INTERNAL_REG_BASE_ADDR \ | regOffset) &= ~( (unsigned int)WORD_SWAP(bits) ) /* gets register offset and bits: a 32bit value. It set to logic '1' in the internal register the bits which given as an input example: GT_SET_REG_BITS(0x840,BIT3 | BIT24 | BIT30) - set bits: 3,24 and 30 to logic '1' in register 0x840 while the other bits stays as is. */ /*#define GT_SET_REG_BITS(regOffset,bits) ((*((volatile unsigned int*)(NONE_CACHEABLE(INTERNAL_REG_BASE_ADDR) | (regOffset)))) |= ((unsigned int)WORD_SWAP(bits)))1 */ /*#define GT_SET_REG_BITS(regOffset,bits) RESET_REG_BITS(regOffset,bits)1 */ #define GT_SET_REG_BITS(regOffset,bits) SET_REG_BITS(regOffset,bits) /* gets register offset and bits: a 32bit value. It set to logic '0' in the internal register the bits which given as an input example: GT_RESET_REG_BITS(0x840,BIT3 | BIT24 | BIT30) - set bits: 3,24 and 30 to logic '0' in register 0x840 while the other bits stays as is. */ /*#define GT_RESET_REG_BITS(regOffset,bits) ((*((volatile unsigned int*)(NONE_CACHEABLE(INTERNAL_REG_BASE_ADDR) | (regOffset)))) &= ~((unsigned int)WORD_SWAP(bits)))1 */ #define GT_RESET_REG_BITS(regOffset,bits) RESET_REG_BITS(regOffset,bits) #define DEBUG_LED0_ON() WRITE_CHAR(memoryGetDeviceBaseAddress(DEVICE1) | 0x8000,0) #define DEBUG_LED1_ON() WRITE_CHAR(memoryGetDeviceBaseAddress(DEVICE1) | 0xc000,0) #define DEBUG_LED2_ON() WRITE_CHAR(memoryGetDeviceBaseAddress(DEVICE1) | 0x10000,0) #define DEBUG_LED0_OFF() WRITE_CHAR(memoryGetDeviceBaseAddress(DEVICE1) | 0x14000,0) #define DEBUG_LED1_OFF() WRITE_CHAR(memoryGetDeviceBaseAddress(DEVICE1) | 0x18000,0) #define DEBUG_LED2_OFF() WRITE_CHAR(memoryGetDeviceBaseAddress(DEVICE1) | 0x1c000,0) #endif /* __INCcoreh */