// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2013, Google Inc. */ #include "mkimage.h" #include #include #include #include #include #include #include #include #include #include #include #if OPENSSL_VERSION_NUMBER >= 0x10000000L #define HAVE_ERR_REMOVE_THREAD_STATE #endif #if OPENSSL_VERSION_NUMBER < 0x10100000L || \ (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x02070000fL) static void RSA_get0_key(const RSA *r, const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) { if (n != NULL) *n = r->n; if (e != NULL) *e = r->e; if (d != NULL) *d = r->d; } #endif static int rsa_err(const char *msg) { unsigned long sslErr = ERR_get_error(); fprintf(stderr, "%s", msg); fprintf(stderr, ": %s\n", ERR_error_string(sslErr, 0)); return -1; } /** * rsa_pem_get_pub_key() - read a public key from a .crt file * * @keydir: Directory containins the key * @name Name of key file (will have a .crt extension) * @rsap Returns RSA object, or NULL on failure * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) */ static int rsa_pem_get_pub_key(const char *keydir, const char *name, RSA **rsap) { char path[1024]; EVP_PKEY *key; X509 *cert; RSA *rsa; FILE *f; int ret; *rsap = NULL; snprintf(path, sizeof(path), "%s/%s.crt", keydir, name); f = fopen(path, "r"); if (!f) { fprintf(stderr, "Couldn't open RSA certificate: '%s': %s\n", path, strerror(errno)); return -EACCES; } /* Read the certificate */ cert = NULL; if (!PEM_read_X509(f, &cert, NULL, NULL)) { rsa_err("Couldn't read certificate"); ret = -EINVAL; goto err_cert; } /* Get the public key from the certificate. */ key = X509_get_pubkey(cert); if (!key) { rsa_err("Couldn't read public key\n"); ret = -EINVAL; goto err_pubkey; } /* Convert to a RSA_style key. */ rsa = EVP_PKEY_get1_RSA(key); if (!rsa) { rsa_err("Couldn't convert to a RSA style key"); ret = -EINVAL; goto err_rsa; } fclose(f); EVP_PKEY_free(key); X509_free(cert); *rsap = rsa; return 0; err_rsa: EVP_PKEY_free(key); err_pubkey: X509_free(cert); err_cert: fclose(f); return ret; } /** * rsa_engine_get_pub_key() - read a public key from given engine * * @keydir: Key prefix * @name Name of key * @engine Engine to use * @rsap Returns RSA object, or NULL on failure * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) */ static int rsa_engine_get_pub_key(const char *keydir, const char *name, ENGINE *engine, RSA **rsap) { const char *engine_id; char key_id[1024]; EVP_PKEY *key; RSA *rsa; int ret; *rsap = NULL; engine_id = ENGINE_get_id(engine); if (engine_id && !strcmp(engine_id, "pkcs11")) { if (keydir) snprintf(key_id, sizeof(key_id), "pkcs11:%s;object=%s;type=public", keydir, name); else snprintf(key_id, sizeof(key_id), "pkcs11:object=%s;type=public", name); } else { fprintf(stderr, "Engine not supported\n"); return -ENOTSUP; } key = ENGINE_load_public_key(engine, key_id, NULL, NULL); if (!key) return rsa_err("Failure loading public key from engine"); /* Convert to a RSA_style key. */ rsa = EVP_PKEY_get1_RSA(key); if (!rsa) { rsa_err("Couldn't convert to a RSA style key"); ret = -EINVAL; goto err_rsa; } EVP_PKEY_free(key); *rsap = rsa; return 0; err_rsa: EVP_PKEY_free(key); return ret; } /** * rsa_get_pub_key() - read a public key * * @keydir: Directory containing the key (PEM file) or key prefix (engine) * @name Name of key file (will have a .crt extension) * @engine Engine to use * @rsap Returns RSA object, or NULL on failure * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) */ static int rsa_get_pub_key(const char *keydir, const char *name, ENGINE *engine, RSA **rsap) { if (engine) return rsa_engine_get_pub_key(keydir, name, engine, rsap); return rsa_pem_get_pub_key(keydir, name, rsap); } /** * rsa_pem_get_priv_key() - read a private key from a .key file * * @keydir: Directory containing the key * @name Name of key file (will have a .key extension) * @rsap Returns RSA object, or NULL on failure * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) */ static int rsa_pem_get_priv_key(const char *keydir, const char *name, RSA **rsap) { char path[1024]; RSA *rsa; FILE *f; *rsap = NULL; snprintf(path, sizeof(path), "%s/%s.key", keydir, name); f = fopen(path, "r"); if (!f) { fprintf(stderr, "Couldn't open RSA private key: '%s': %s\n", path, strerror(errno)); return -ENOENT; } rsa = PEM_read_RSAPrivateKey(f, 0, NULL, path); if (!rsa) { rsa_err("Failure reading private key"); fclose(f); return -EPROTO; } fclose(f); *rsap = rsa; return 0; } /** * rsa_engine_get_priv_key() - read a private key from given engine * * @keydir: Key prefix * @name Name of key * @engine Engine to use * @rsap Returns RSA object, or NULL on failure * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) */ static int rsa_engine_get_priv_key(const char *keydir, const char *name, ENGINE *engine, RSA **rsap) { const char *engine_id; char key_id[1024]; EVP_PKEY *key; RSA *rsa; int ret; *rsap = NULL; engine_id = ENGINE_get_id(engine); if (engine_id && !strcmp(engine_id, "pkcs11")) { if (keydir) snprintf(key_id, sizeof(key_id), "pkcs11:%s;object=%s;type=private", keydir, name); else snprintf(key_id, sizeof(key_id), "pkcs11:object=%s;type=private", name); } else { fprintf(stderr, "Engine not supported\n"); return -ENOTSUP; } key = ENGINE_load_private_key(engine, key_id, NULL, NULL); if (!key) return rsa_err("Failure loading private key from engine"); /* Convert to a RSA_style key. */ rsa = EVP_PKEY_get1_RSA(key); if (!rsa) { rsa_err("Couldn't convert to a RSA style key"); ret = -EINVAL; goto err_rsa; } EVP_PKEY_free(key); *rsap = rsa; return 0; err_rsa: EVP_PKEY_free(key); return ret; } /** * rsa_get_priv_key() - read a private key * * @keydir: Directory containing the key (PEM file) or key prefix (engine) * @name Name of key * @engine Engine to use for signing * @rsap Returns RSA object, or NULL on failure * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) */ static int rsa_get_priv_key(const char *keydir, const char *name, ENGINE *engine, RSA **rsap) { if (engine) return rsa_engine_get_priv_key(keydir, name, engine, rsap); return rsa_pem_get_priv_key(keydir, name, rsap); } static int rsa_init(void) { int ret; #if OPENSSL_VERSION_NUMBER < 0x10100000L || \ (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x02070000fL) ret = SSL_library_init(); #else ret = OPENSSL_init_ssl(0, NULL); #endif if (!ret) { fprintf(stderr, "Failure to init SSL library\n"); return -1; } #if OPENSSL_VERSION_NUMBER < 0x10100000L || \ (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x02070000fL) SSL_load_error_strings(); OpenSSL_add_all_algorithms(); OpenSSL_add_all_digests(); OpenSSL_add_all_ciphers(); #endif return 0; } static int rsa_engine_init(const char *engine_id, ENGINE **pe) { ENGINE *e; int ret; ENGINE_load_builtin_engines(); e = ENGINE_by_id(engine_id); if (!e) { fprintf(stderr, "Engine isn't available\n"); ret = -1; goto err_engine_by_id; } if (!ENGINE_init(e)) { fprintf(stderr, "Couldn't initialize engine\n"); ret = -1; goto err_engine_init; } if (!ENGINE_set_default_RSA(e)) { fprintf(stderr, "Couldn't set engine as default for RSA\n"); ret = -1; goto err_set_rsa; } *pe = e; return 0; err_set_rsa: ENGINE_finish(e); err_engine_init: ENGINE_free(e); err_engine_by_id: #if OPENSSL_VERSION_NUMBER < 0x10100000L || \ (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x02070000fL) ENGINE_cleanup(); #endif return ret; } static void rsa_remove(void) { #if OPENSSL_VERSION_NUMBER < 0x10100000L || \ (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x02070000fL) CRYPTO_cleanup_all_ex_data(); ERR_free_strings(); #ifdef HAVE_ERR_REMOVE_THREAD_STATE ERR_remove_thread_state(NULL); #else ERR_remove_state(0); #endif EVP_cleanup(); #endif } static void rsa_engine_remove(ENGINE *e) { if (e) { ENGINE_finish(e); ENGINE_free(e); } } static int rsa_sign_with_key(RSA *rsa, struct checksum_algo *checksum_algo, const struct image_region region[], int region_count, uint8_t **sigp, uint *sig_size) { EVP_PKEY *key; EVP_MD_CTX *context; int size, ret = 0; uint8_t *sig; int i; key = EVP_PKEY_new(); if (!key) return rsa_err("EVP_PKEY object creation failed"); if (!EVP_PKEY_set1_RSA(key, rsa)) { ret = rsa_err("EVP key setup failed"); goto err_set; } size = EVP_PKEY_size(key); sig = malloc(size); if (!sig) { fprintf(stderr, "Out of memory for signature (%d bytes)\n", size); ret = -ENOMEM; goto err_alloc; } context = EVP_MD_CTX_create(); if (!context) { ret = rsa_err("EVP context creation failed"); goto err_create; } EVP_MD_CTX_init(context); if (!EVP_SignInit(context, checksum_algo->calculate_sign())) { ret = rsa_err("Signer setup failed"); goto err_sign; } for (i = 0; i < region_count; i++) { if (!EVP_SignUpdate(context, region[i].data, region[i].size)) { ret = rsa_err("Signing data failed"); goto err_sign; } } if (!EVP_SignFinal(context, sig, sig_size, key)) { ret = rsa_err("Could not obtain signature"); goto err_sign; } #if OPENSSL_VERSION_NUMBER < 0x10100000L || \ (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x02070000fL) EVP_MD_CTX_cleanup(context); #else EVP_MD_CTX_reset(context); #endif EVP_MD_CTX_destroy(context); EVP_PKEY_free(key); debug("Got signature: %d bytes, expected %d\n", *sig_size, size); *sigp = sig; *sig_size = size; return 0; err_sign: EVP_MD_CTX_destroy(context); err_create: free(sig); err_alloc: err_set: EVP_PKEY_free(key); return ret; } int rsa_sign(struct image_sign_info *info, const struct image_region region[], int region_count, uint8_t **sigp, uint *sig_len) { RSA *rsa; ENGINE *e = NULL; int ret; ret = rsa_init(); if (ret) return ret; if (info->engine_id) { ret = rsa_engine_init(info->engine_id, &e); if (ret) goto err_engine; } ret = rsa_get_priv_key(info->keydir, info->keyname, e, &rsa); if (ret) goto err_priv; ret = rsa_sign_with_key(rsa, info->checksum, region, region_count, sigp, sig_len); if (ret) goto err_sign; RSA_free(rsa); if (info->engine_id) rsa_engine_remove(e); rsa_remove(); return ret; err_sign: RSA_free(rsa); err_priv: if (info->engine_id) rsa_engine_remove(e); err_engine: rsa_remove(); return ret; } /* * rsa_get_exponent(): - Get the public exponent from an RSA key */ static int rsa_get_exponent(RSA *key, uint64_t *e) { int ret; BIGNUM *bn_te; const BIGNUM *key_e; uint64_t te; ret = -EINVAL; bn_te = NULL; if (!e) goto cleanup; RSA_get0_key(key, NULL, &key_e, NULL); if (BN_num_bits(key_e) > 64) goto cleanup; *e = BN_get_word(key_e); if (BN_num_bits(key_e) < 33) { ret = 0; goto cleanup; } bn_te = BN_dup(key_e); if (!bn_te) goto cleanup; if (!BN_rshift(bn_te, bn_te, 32)) goto cleanup; if (!BN_mask_bits(bn_te, 32)) goto cleanup; te = BN_get_word(bn_te); te <<= 32; *e |= te; ret = 0; cleanup: if (bn_te) BN_free(bn_te); return ret; } /* * rsa_get_params(): - Get the important parameters of an RSA public key */ int rsa_get_params(RSA *key, uint64_t *exponent, uint32_t *n0_invp, BIGNUM **modulusp, BIGNUM **r_squaredp) { BIGNUM *big1, *big2, *big32, *big2_32; BIGNUM *n, *r, *r_squared, *tmp; const BIGNUM *key_n; BN_CTX *bn_ctx = BN_CTX_new(); int ret = 0; /* Initialize BIGNUMs */ big1 = BN_new(); big2 = BN_new(); big32 = BN_new(); r = BN_new(); r_squared = BN_new(); tmp = BN_new(); big2_32 = BN_new(); n = BN_new(); if (!big1 || !big2 || !big32 || !r || !r_squared || !tmp || !big2_32 || !n) { fprintf(stderr, "Out of memory (bignum)\n"); return -ENOMEM; } if (0 != rsa_get_exponent(key, exponent)) ret = -1; RSA_get0_key(key, &key_n, NULL, NULL); if (!BN_copy(n, key_n) || !BN_set_word(big1, 1L) || !BN_set_word(big2, 2L) || !BN_set_word(big32, 32L)) ret = -1; /* big2_32 = 2^32 */ if (!BN_exp(big2_32, big2, big32, bn_ctx)) ret = -1; /* Calculate n0_inv = -1 / n[0] mod 2^32 */ if (!BN_mod_inverse(tmp, n, big2_32, bn_ctx) || !BN_sub(tmp, big2_32, tmp)) ret = -1; *n0_invp = BN_get_word(tmp); /* Calculate R = 2^(# of key bits) */ if (!BN_set_word(tmp, BN_num_bits(n)) || !BN_exp(r, big2, tmp, bn_ctx)) ret = -1; /* Calculate r_squared = R^2 mod n */ if (!BN_copy(r_squared, r) || !BN_mul(tmp, r_squared, r, bn_ctx) || !BN_mod(r_squared, tmp, n, bn_ctx)) ret = -1; *modulusp = n; *r_squaredp = r_squared; BN_free(big1); BN_free(big2); BN_free(big32); BN_free(r); BN_free(tmp); BN_free(big2_32); if (ret) { fprintf(stderr, "Bignum operations failed\n"); return -ENOMEM; } return ret; } static int fdt_add_bignum(void *blob, int noffset, const char *prop_name, BIGNUM *num, int num_bits) { int nwords = num_bits / 32; int size; uint32_t *buf, *ptr; BIGNUM *tmp, *big2, *big32, *big2_32; BN_CTX *ctx; int ret; tmp = BN_new(); big2 = BN_new(); big32 = BN_new(); big2_32 = BN_new(); /* * Note: This code assumes that all of the above succeed, or all fail. * In practice memory allocations generally do not fail (unless the * process is killed), so it does not seem worth handling each of these * as a separate case. Technicaly this could leak memory on failure, * but a) it won't happen in practice, and b) it doesn't matter as we * will immediately exit with a failure code. */ if (!tmp || !big2 || !big32 || !big2_32) { fprintf(stderr, "Out of memory (bignum)\n"); return -ENOMEM; } ctx = BN_CTX_new(); if (!tmp) { fprintf(stderr, "Out of memory (bignum context)\n"); return -ENOMEM; } BN_set_word(big2, 2L); BN_set_word(big32, 32L); BN_exp(big2_32, big2, big32, ctx); /* B = 2^32 */ size = nwords * sizeof(uint32_t); buf = malloc(size); if (!buf) { fprintf(stderr, "Out of memory (%d bytes)\n", size); return -ENOMEM; } /* Write out modulus as big endian array of integers */ for (ptr = buf + nwords - 1; ptr >= buf; ptr--) { BN_mod(tmp, num, big2_32, ctx); /* n = N mod B */ *ptr = cpu_to_fdt32(BN_get_word(tmp)); BN_rshift(num, num, 32); /* N = N/B */ } /* * We try signing with successively increasing size values, so this * might fail several times */ ret = fdt_setprop(blob, noffset, prop_name, buf, size); free(buf); BN_free(tmp); BN_free(big2); BN_free(big32); BN_free(big2_32); return ret ? -FDT_ERR_NOSPACE : 0; } int rsa_add_verify_data(struct image_sign_info *info, void *keydest) { BIGNUM *modulus, *r_squared; uint64_t exponent; uint32_t n0_inv; int parent, node; char name[100]; int ret; int bits; RSA *rsa; ENGINE *e = NULL; debug("%s: Getting verification data\n", __func__); if (info->engine_id) { ret = rsa_engine_init(info->engine_id, &e); if (ret) return ret; } ret = rsa_get_pub_key(info->keydir, info->keyname, e, &rsa); if (ret) goto err_get_pub_key; ret = rsa_get_params(rsa, &exponent, &n0_inv, &modulus, &r_squared); if (ret) goto err_get_params; bits = BN_num_bits(modulus); parent = fdt_subnode_offset(keydest, 0, FIT_SIG_NODENAME); if (parent == -FDT_ERR_NOTFOUND) { parent = fdt_add_subnode(keydest, 0, FIT_SIG_NODENAME); if (parent < 0) { ret = parent; if (ret != -FDT_ERR_NOSPACE) { fprintf(stderr, "Couldn't create signature node: %s\n", fdt_strerror(parent)); } } } if (ret) goto done; /* Either create or overwrite the named key node */ snprintf(name, sizeof(name), "key-%s", info->keyname); node = fdt_subnode_offset(keydest, parent, name); if (node == -FDT_ERR_NOTFOUND) { node = fdt_add_subnode(keydest, parent, name); if (node < 0) { ret = node; if (ret != -FDT_ERR_NOSPACE) { fprintf(stderr, "Could not create key subnode: %s\n", fdt_strerror(node)); } } } else if (node < 0) { fprintf(stderr, "Cannot select keys parent: %s\n", fdt_strerror(node)); ret = node; } if (!ret) { ret = fdt_setprop_string(keydest, node, "key-name-hint", info->keyname); } if (!ret) ret = fdt_setprop_u32(keydest, node, "rsa,num-bits", bits); if (!ret) ret = fdt_setprop_u32(keydest, node, "rsa,n0-inverse", n0_inv); if (!ret) { ret = fdt_setprop_u64(keydest, node, "rsa,exponent", exponent); } if (!ret) { ret = fdt_add_bignum(keydest, node, "rsa,modulus", modulus, bits); } if (!ret) { ret = fdt_add_bignum(keydest, node, "rsa,r-squared", r_squared, bits); } if (!ret) { ret = fdt_setprop_string(keydest, node, FIT_ALGO_PROP, info->name); } if (!ret && info->require_keys) { ret = fdt_setprop_string(keydest, node, "required", info->require_keys); } done: BN_free(modulus); BN_free(r_squared); if (ret) ret = ret == -FDT_ERR_NOSPACE ? -ENOSPC : -EIO; err_get_params: RSA_free(rsa); err_get_pub_key: if (info->engine_id) rsa_engine_remove(e); return ret; }