/* * EFI application boot time services * * Copyright (c) 2016 Alexander Graf * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; /* Task priority level */ static UINTN efi_tpl = TPL_APPLICATION; /* This list contains all the EFI objects our payload has access to */ LIST_HEAD(efi_obj_list); /* * If we're running on nasty systems (32bit ARM booting into non-EFI Linux) * we need to do trickery with caches. Since we don't want to break the EFI * aware boot path, only apply hacks when loading exiting directly (breaking * direct Linux EFI booting along the way - oh well). */ static bool efi_is_direct_boot = true; /* * EFI can pass arbitrary additional "tables" containing vendor specific * information to the payload. One such table is the FDT table which contains * a pointer to a flattened device tree blob. * * In most cases we want to pass an FDT to the payload, so reserve one slot of * config table space for it. The pointer gets populated by do_bootefi_exec(). */ static struct efi_configuration_table __efi_runtime_data efi_conf_table[2]; #ifdef CONFIG_ARM /* * The "gd" pointer lives in a register on ARM and AArch64 that we declare * fixed when compiling U-Boot. However, the payload does not know about that * restriction so we need to manually swap its and our view of that register on * EFI callback entry/exit. */ static volatile void *efi_gd, *app_gd; #endif static int entry_count; static int nesting_level; /* Called on every callback entry */ int __efi_entry_check(void) { int ret = entry_count++ == 0; #ifdef CONFIG_ARM assert(efi_gd); app_gd = gd; gd = efi_gd; #endif return ret; } /* Called on every callback exit */ int __efi_exit_check(void) { int ret = --entry_count == 0; #ifdef CONFIG_ARM gd = app_gd; #endif return ret; } /* Called from do_bootefi_exec() */ void efi_save_gd(void) { #ifdef CONFIG_ARM efi_gd = gd; #endif } /* * Special case handler for error/abort that just forces things back * to u-boot world so we can dump out an abort msg, without any care * about returning back to UEFI world. */ void efi_restore_gd(void) { #ifdef CONFIG_ARM /* Only restore if we're already in EFI context */ if (!efi_gd) return; gd = efi_gd; #endif } /* * Two spaces per indent level, maxing out at 10.. which ought to be * enough for anyone ;-) */ static const char *indent_string(int level) { const char *indent = " "; const int max = strlen(indent); level = min(max, level * 2); return &indent[max - level]; } const char *__efi_nesting(void) { return indent_string(nesting_level); } const char *__efi_nesting_inc(void) { return indent_string(nesting_level++); } const char *__efi_nesting_dec(void) { return indent_string(--nesting_level); } /* Low 32 bit */ #define EFI_LOW32(a) (a & 0xFFFFFFFFULL) /* High 32 bit */ #define EFI_HIGH32(a) (a >> 32) /* * 64bit division by 10 implemented as multiplication by 1 / 10 * * Decimals of one tenth: 0x1 / 0xA = 0x0.19999... */ #define EFI_TENTH 0x199999999999999A static u64 efi_div10(u64 a) { u64 prod; u64 rem; u64 ret; ret = EFI_HIGH32(a) * EFI_HIGH32(EFI_TENTH); prod = EFI_HIGH32(a) * EFI_LOW32(EFI_TENTH); rem = EFI_LOW32(prod); ret += EFI_HIGH32(prod); prod = EFI_LOW32(a) * EFI_HIGH32(EFI_TENTH); rem += EFI_LOW32(prod); ret += EFI_HIGH32(prod); prod = EFI_LOW32(a) * EFI_LOW32(EFI_TENTH); rem += EFI_HIGH32(prod); ret += EFI_HIGH32(rem); /* Round to nearest integer */ if (rem >= (1 << 31)) ++ret; return ret; } void efi_signal_event(struct efi_event *event) { if (event->notify_function) { event->queued = 1; /* Check TPL */ if (efi_tpl >= event->notify_tpl) return; EFI_CALL_VOID(event->notify_function(event, event->notify_context)); } event->queued = 0; } static efi_status_t efi_unsupported(const char *funcname) { debug("EFI: App called into unimplemented function %s\n", funcname); return EFI_EXIT(EFI_UNSUPPORTED); } static unsigned long EFIAPI efi_raise_tpl(UINTN new_tpl) { UINTN old_tpl = efi_tpl; EFI_ENTRY("0x%zx", new_tpl); if (new_tpl < efi_tpl) debug("WARNING: new_tpl < current_tpl in %s\n", __func__); efi_tpl = new_tpl; if (efi_tpl > TPL_HIGH_LEVEL) efi_tpl = TPL_HIGH_LEVEL; EFI_EXIT(EFI_SUCCESS); return old_tpl; } static void EFIAPI efi_restore_tpl(UINTN old_tpl) { EFI_ENTRY("0x%zx", old_tpl); if (old_tpl > efi_tpl) debug("WARNING: old_tpl > current_tpl in %s\n", __func__); efi_tpl = old_tpl; if (efi_tpl > TPL_HIGH_LEVEL) efi_tpl = TPL_HIGH_LEVEL; EFI_EXIT(EFI_SUCCESS); } static efi_status_t EFIAPI efi_allocate_pages_ext(int type, int memory_type, unsigned long pages, uint64_t *memory) { efi_status_t r; EFI_ENTRY("%d, %d, 0x%lx, %p", type, memory_type, pages, memory); r = efi_allocate_pages(type, memory_type, pages, memory); return EFI_EXIT(r); } static efi_status_t EFIAPI efi_free_pages_ext(uint64_t memory, unsigned long pages) { efi_status_t r; EFI_ENTRY("%"PRIx64", 0x%lx", memory, pages); r = efi_free_pages(memory, pages); return EFI_EXIT(r); } static efi_status_t EFIAPI efi_get_memory_map_ext( unsigned long *memory_map_size, struct efi_mem_desc *memory_map, unsigned long *map_key, unsigned long *descriptor_size, uint32_t *descriptor_version) { efi_status_t r; EFI_ENTRY("%p, %p, %p, %p, %p", memory_map_size, memory_map, map_key, descriptor_size, descriptor_version); r = efi_get_memory_map(memory_map_size, memory_map, map_key, descriptor_size, descriptor_version); return EFI_EXIT(r); } static efi_status_t EFIAPI efi_allocate_pool_ext(int pool_type, unsigned long size, void **buffer) { efi_status_t r; EFI_ENTRY("%d, %ld, %p", pool_type, size, buffer); r = efi_allocate_pool(pool_type, size, buffer); return EFI_EXIT(r); } static efi_status_t EFIAPI efi_free_pool_ext(void *buffer) { efi_status_t r; EFI_ENTRY("%p", buffer); r = efi_free_pool(buffer); return EFI_EXIT(r); } /* * Our event capabilities are very limited. Only a small limited * number of events is allowed to coexist. */ static struct efi_event efi_events[16]; efi_status_t efi_create_event(uint32_t type, UINTN notify_tpl, void (EFIAPI *notify_function) ( struct efi_event *event, void *context), void *notify_context, struct efi_event **event) { int i; if (event == NULL) return EFI_INVALID_PARAMETER; if ((type & EVT_NOTIFY_SIGNAL) && (type & EVT_NOTIFY_WAIT)) return EFI_INVALID_PARAMETER; if ((type & (EVT_NOTIFY_SIGNAL|EVT_NOTIFY_WAIT)) && notify_function == NULL) return EFI_INVALID_PARAMETER; for (i = 0; i < ARRAY_SIZE(efi_events); ++i) { if (efi_events[i].type) continue; efi_events[i].type = type; efi_events[i].notify_tpl = notify_tpl; efi_events[i].notify_function = notify_function; efi_events[i].notify_context = notify_context; /* Disable timers on bootup */ efi_events[i].trigger_next = -1ULL; efi_events[i].queued = 0; efi_events[i].signaled = 0; *event = &efi_events[i]; return EFI_SUCCESS; } return EFI_OUT_OF_RESOURCES; } static efi_status_t EFIAPI efi_create_event_ext( uint32_t type, UINTN notify_tpl, void (EFIAPI *notify_function) ( struct efi_event *event, void *context), void *notify_context, struct efi_event **event) { EFI_ENTRY("%d, 0x%zx, %p, %p", type, notify_tpl, notify_function, notify_context); return EFI_EXIT(efi_create_event(type, notify_tpl, notify_function, notify_context, event)); } /* * Our timers have to work without interrupts, so we check whenever keyboard * input or disk accesses happen if enough time elapsed for it to fire. */ void efi_timer_check(void) { int i; u64 now = timer_get_us(); for (i = 0; i < ARRAY_SIZE(efi_events); ++i) { if (!efi_events[i].type) continue; if (efi_events[i].queued) efi_signal_event(&efi_events[i]); if (!(efi_events[i].type & EVT_TIMER) || now < efi_events[i].trigger_next) continue; switch (efi_events[i].trigger_type) { case EFI_TIMER_RELATIVE: efi_events[i].trigger_type = EFI_TIMER_STOP; break; case EFI_TIMER_PERIODIC: efi_events[i].trigger_next += efi_events[i].trigger_time; break; default: continue; } efi_events[i].signaled = 1; efi_signal_event(&efi_events[i]); } WATCHDOG_RESET(); } efi_status_t efi_set_timer(struct efi_event *event, enum efi_timer_delay type, uint64_t trigger_time) { int i; /* * The parameter defines a multiple of 100ns. * We use multiples of 1000ns. So divide by 10. */ trigger_time = efi_div10(trigger_time); for (i = 0; i < ARRAY_SIZE(efi_events); ++i) { if (event != &efi_events[i]) continue; if (!(event->type & EVT_TIMER)) break; switch (type) { case EFI_TIMER_STOP: event->trigger_next = -1ULL; break; case EFI_TIMER_PERIODIC: case EFI_TIMER_RELATIVE: event->trigger_next = timer_get_us() + trigger_time; break; default: return EFI_INVALID_PARAMETER; } event->trigger_type = type; event->trigger_time = trigger_time; event->signaled = 0; return EFI_SUCCESS; } return EFI_INVALID_PARAMETER; } static efi_status_t EFIAPI efi_set_timer_ext(struct efi_event *event, enum efi_timer_delay type, uint64_t trigger_time) { EFI_ENTRY("%p, %d, %"PRIx64, event, type, trigger_time); return EFI_EXIT(efi_set_timer(event, type, trigger_time)); } static efi_status_t EFIAPI efi_wait_for_event(unsigned long num_events, struct efi_event **event, unsigned long *index) { int i, j; EFI_ENTRY("%ld, %p, %p", num_events, event, index); /* Check parameters */ if (!num_events || !event) return EFI_EXIT(EFI_INVALID_PARAMETER); /* Check TPL */ if (efi_tpl != TPL_APPLICATION) return EFI_EXIT(EFI_UNSUPPORTED); for (i = 0; i < num_events; ++i) { for (j = 0; j < ARRAY_SIZE(efi_events); ++j) { if (event[i] == &efi_events[j]) goto known_event; } return EFI_EXIT(EFI_INVALID_PARAMETER); known_event: if (!event[i]->type || event[i]->type & EVT_NOTIFY_SIGNAL) return EFI_EXIT(EFI_INVALID_PARAMETER); if (!event[i]->signaled) efi_signal_event(event[i]); } /* Wait for signal */ for (;;) { for (i = 0; i < num_events; ++i) { if (event[i]->signaled) goto out; } /* Allow events to occur. */ efi_timer_check(); } out: /* * Reset the signal which is passed to the caller to allow periodic * events to occur. */ event[i]->signaled = 0; if (index) *index = i; return EFI_EXIT(EFI_SUCCESS); } static efi_status_t EFIAPI efi_signal_event_ext(struct efi_event *event) { int i; EFI_ENTRY("%p", event); for (i = 0; i < ARRAY_SIZE(efi_events); ++i) { if (event != &efi_events[i]) continue; if (event->signaled) break; event->signaled = 1; if (event->type & EVT_NOTIFY_SIGNAL) efi_signal_event(event); break; } return EFI_EXIT(EFI_SUCCESS); } static efi_status_t EFIAPI efi_close_event(struct efi_event *event) { int i; EFI_ENTRY("%p", event); for (i = 0; i < ARRAY_SIZE(efi_events); ++i) { if (event == &efi_events[i]) { event->type = 0; event->trigger_next = -1ULL; event->queued = 0; event->signaled = 0; return EFI_EXIT(EFI_SUCCESS); } } return EFI_EXIT(EFI_INVALID_PARAMETER); } static efi_status_t EFIAPI efi_check_event(struct efi_event *event) { int i; EFI_ENTRY("%p", event); efi_timer_check(); for (i = 0; i < ARRAY_SIZE(efi_events); ++i) { if (event != &efi_events[i]) continue; if (!event->type || event->type & EVT_NOTIFY_SIGNAL) break; if (!event->signaled) efi_signal_event(event); if (event->signaled) return EFI_EXIT(EFI_SUCCESS); return EFI_EXIT(EFI_NOT_READY); } return EFI_EXIT(EFI_INVALID_PARAMETER); } static efi_status_t EFIAPI efi_install_protocol_interface(void **handle, efi_guid_t *protocol, int protocol_interface_type, void *protocol_interface) { struct list_head *lhandle; int i; efi_status_t r; if (!handle || !protocol || protocol_interface_type != EFI_NATIVE_INTERFACE) { r = EFI_INVALID_PARAMETER; goto out; } /* Create new handle if requested. */ if (!*handle) { r = EFI_OUT_OF_RESOURCES; goto out; } /* Find object. */ list_for_each(lhandle, &efi_obj_list) { struct efi_object *efiobj; efiobj = list_entry(lhandle, struct efi_object, link); if (efiobj->handle != *handle) continue; /* Check if protocol is already installed on the handle. */ for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) { struct efi_handler *handler = &efiobj->protocols[i]; if (!handler->guid) continue; if (!guidcmp(handler->guid, protocol)) { r = EFI_INVALID_PARAMETER; goto out; } } /* Install protocol in first empty slot. */ for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) { struct efi_handler *handler = &efiobj->protocols[i]; if (handler->guid) continue; handler->guid = protocol; handler->protocol_interface = protocol_interface; r = EFI_SUCCESS; goto out; } r = EFI_OUT_OF_RESOURCES; goto out; } r = EFI_INVALID_PARAMETER; out: return r; } static efi_status_t EFIAPI efi_install_protocol_interface_ext(void **handle, efi_guid_t *protocol, int protocol_interface_type, void *protocol_interface) { EFI_ENTRY("%p, %pUl, %d, %p", handle, protocol, protocol_interface_type, protocol_interface); return EFI_EXIT(efi_install_protocol_interface(handle, protocol, protocol_interface_type, protocol_interface)); } static efi_status_t EFIAPI efi_reinstall_protocol_interface(void *handle, efi_guid_t *protocol, void *old_interface, void *new_interface) { EFI_ENTRY("%p, %pUl, %p, %p", handle, protocol, old_interface, new_interface); return EFI_EXIT(EFI_ACCESS_DENIED); } static efi_status_t EFIAPI efi_uninstall_protocol_interface(void *handle, efi_guid_t *protocol, void *protocol_interface) { struct list_head *lhandle; int i; efi_status_t r = EFI_NOT_FOUND; if (!handle || !protocol) { r = EFI_INVALID_PARAMETER; goto out; } list_for_each(lhandle, &efi_obj_list) { struct efi_object *efiobj; efiobj = list_entry(lhandle, struct efi_object, link); if (efiobj->handle != handle) continue; for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) { struct efi_handler *handler = &efiobj->protocols[i]; const efi_guid_t *hprotocol = handler->guid; if (!hprotocol) continue; if (!guidcmp(hprotocol, protocol)) { if (handler->protocol_interface) { r = EFI_ACCESS_DENIED; } else { handler->guid = 0; r = EFI_SUCCESS; } goto out; } } } out: return r; } static efi_status_t EFIAPI efi_uninstall_protocol_interface_ext(void *handle, efi_guid_t *protocol, void *protocol_interface) { EFI_ENTRY("%p, %pUl, %p", handle, protocol, protocol_interface); return EFI_EXIT(efi_uninstall_protocol_interface(handle, protocol, protocol_interface)); } static efi_status_t EFIAPI efi_register_protocol_notify(efi_guid_t *protocol, struct efi_event *event, void **registration) { EFI_ENTRY("%pUl, %p, %p", protocol, event, registration); return EFI_EXIT(EFI_OUT_OF_RESOURCES); } static int efi_search(enum efi_locate_search_type search_type, efi_guid_t *protocol, void *search_key, struct efi_object *efiobj) { int i; switch (search_type) { case all_handles: return 0; case by_register_notify: return -1; case by_protocol: for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) { const efi_guid_t *guid = efiobj->protocols[i].guid; if (guid && !guidcmp(guid, protocol)) return 0; } return -1; } return -1; } static efi_status_t efi_locate_handle( enum efi_locate_search_type search_type, efi_guid_t *protocol, void *search_key, unsigned long *buffer_size, efi_handle_t *buffer) { struct list_head *lhandle; unsigned long size = 0; /* Count how much space we need */ list_for_each(lhandle, &efi_obj_list) { struct efi_object *efiobj; efiobj = list_entry(lhandle, struct efi_object, link); if (!efi_search(search_type, protocol, search_key, efiobj)) { size += sizeof(void*); } } if (*buffer_size < size) { *buffer_size = size; return EFI_BUFFER_TOO_SMALL; } *buffer_size = size; if (size == 0) return EFI_NOT_FOUND; /* Then fill the array */ list_for_each(lhandle, &efi_obj_list) { struct efi_object *efiobj; efiobj = list_entry(lhandle, struct efi_object, link); if (!efi_search(search_type, protocol, search_key, efiobj)) { *(buffer++) = efiobj->handle; } } return EFI_SUCCESS; } static efi_status_t EFIAPI efi_locate_handle_ext( enum efi_locate_search_type search_type, efi_guid_t *protocol, void *search_key, unsigned long *buffer_size, efi_handle_t *buffer) { EFI_ENTRY("%d, %pUl, %p, %p, %p", search_type, protocol, search_key, buffer_size, buffer); return EFI_EXIT(efi_locate_handle(search_type, protocol, search_key, buffer_size, buffer)); } static efi_status_t EFIAPI efi_locate_device_path(efi_guid_t *protocol, struct efi_device_path **device_path, efi_handle_t *device) { struct efi_object *efiobj; EFI_ENTRY("%pUl, %p, %p", protocol, device_path, device); efiobj = efi_dp_find_obj(*device_path, device_path); if (!efiobj) return EFI_EXIT(EFI_NOT_FOUND); *device = efiobj->handle; return EFI_EXIT(EFI_SUCCESS); } /* Collapses configuration table entries, removing index i */ static void efi_remove_configuration_table(int i) { struct efi_configuration_table *this = &efi_conf_table[i]; struct efi_configuration_table *next = &efi_conf_table[i+1]; struct efi_configuration_table *end = &efi_conf_table[systab.nr_tables]; memmove(this, next, (ulong)end - (ulong)next); systab.nr_tables--; } efi_status_t efi_install_configuration_table(const efi_guid_t *guid, void *table) { int i; /* Check for guid override */ for (i = 0; i < systab.nr_tables; i++) { if (!guidcmp(guid, &efi_conf_table[i].guid)) { if (table) efi_conf_table[i].table = table; else efi_remove_configuration_table(i); return EFI_SUCCESS; } } if (!table) return EFI_NOT_FOUND; /* No override, check for overflow */ if (i >= ARRAY_SIZE(efi_conf_table)) return EFI_OUT_OF_RESOURCES; /* Add a new entry */ memcpy(&efi_conf_table[i].guid, guid, sizeof(*guid)); efi_conf_table[i].table = table; systab.nr_tables = i + 1; return EFI_SUCCESS; } static efi_status_t EFIAPI efi_install_configuration_table_ext(efi_guid_t *guid, void *table) { EFI_ENTRY("%pUl, %p", guid, table); return EFI_EXIT(efi_install_configuration_table(guid, table)); } /* Initialize a loaded_image_info + loaded_image_info object with correct * protocols, boot-device, etc. */ void efi_setup_loaded_image(struct efi_loaded_image *info, struct efi_object *obj, struct efi_device_path *device_path, struct efi_device_path *file_path) { obj->handle = info; /* * When asking for the device path interface, return * bootefi_device_path */ obj->protocols[0].guid = &efi_guid_device_path; obj->protocols[0].protocol_interface = device_path; /* * When asking for the loaded_image interface, just * return handle which points to loaded_image_info */ obj->protocols[1].guid = &efi_guid_loaded_image; obj->protocols[1].protocol_interface = info; obj->protocols[2].guid = &efi_guid_console_control; obj->protocols[2].protocol_interface = (void *)&efi_console_control; obj->protocols[3].guid = &efi_guid_device_path_to_text_protocol; obj->protocols[3].protocol_interface = (void *)&efi_device_path_to_text; info->file_path = file_path; info->device_handle = efi_dp_find_obj(device_path, NULL); list_add_tail(&obj->link, &efi_obj_list); } efi_status_t efi_load_image_from_path(struct efi_device_path *file_path, void **buffer) { struct efi_file_info *info = NULL; struct efi_file_handle *f; static efi_status_t ret; uint64_t bs; f = efi_file_from_path(file_path); if (!f) return EFI_DEVICE_ERROR; bs = 0; EFI_CALL(ret = f->getinfo(f, (efi_guid_t *)&efi_file_info_guid, &bs, info)); if (ret == EFI_BUFFER_TOO_SMALL) { info = malloc(bs); EFI_CALL(ret = f->getinfo(f, (efi_guid_t *)&efi_file_info_guid, &bs, info)); } if (ret != EFI_SUCCESS) goto error; ret = efi_allocate_pool(EFI_LOADER_DATA, info->file_size, buffer); if (ret) goto error; EFI_CALL(ret = f->read(f, &info->file_size, *buffer)); error: free(info); EFI_CALL(f->close(f)); if (ret != EFI_SUCCESS) { efi_free_pool(*buffer); *buffer = NULL; } return ret; } static efi_status_t EFIAPI efi_load_image(bool boot_policy, efi_handle_t parent_image, struct efi_device_path *file_path, void *source_buffer, unsigned long source_size, efi_handle_t *image_handle) { struct efi_loaded_image *info; struct efi_object *obj; EFI_ENTRY("%d, %p, %p, %p, %ld, %p", boot_policy, parent_image, file_path, source_buffer, source_size, image_handle); info = calloc(1, sizeof(*info)); obj = calloc(1, sizeof(*obj)); if (!source_buffer) { struct efi_device_path *dp, *fp; efi_status_t ret; ret = efi_load_image_from_path(file_path, &source_buffer); if (ret != EFI_SUCCESS) { free(info); free(obj); return EFI_EXIT(ret); } /* * split file_path which contains both the device and * file parts: */ efi_dp_split_file_path(file_path, &dp, &fp); efi_setup_loaded_image(info, obj, dp, fp); } else { /* In this case, file_path is the "device" path, ie. * something like a HARDWARE_DEVICE:MEMORY_MAPPED */ efi_setup_loaded_image(info, obj, file_path, NULL); } info->reserved = efi_load_pe(source_buffer, info); if (!info->reserved) { free(info); free(obj); return EFI_EXIT(EFI_UNSUPPORTED); } *image_handle = info; return EFI_EXIT(EFI_SUCCESS); } static efi_status_t EFIAPI efi_start_image(efi_handle_t image_handle, unsigned long *exit_data_size, s16 **exit_data) { ulong (*entry)(void *image_handle, struct efi_system_table *st); struct efi_loaded_image *info = image_handle; EFI_ENTRY("%p, %p, %p", image_handle, exit_data_size, exit_data); entry = info->reserved; efi_is_direct_boot = false; /* call the image! */ if (setjmp(&info->exit_jmp)) { /* We returned from the child image */ return EFI_EXIT(info->exit_status); } __efi_nesting_dec(); __efi_exit_check(); entry(image_handle, &systab); __efi_entry_check(); __efi_nesting_inc(); /* Should usually never get here */ return EFI_EXIT(EFI_SUCCESS); } static efi_status_t EFIAPI efi_exit(efi_handle_t image_handle, efi_status_t exit_status, unsigned long exit_data_size, int16_t *exit_data) { struct efi_loaded_image *loaded_image_info = (void*)image_handle; EFI_ENTRY("%p, %ld, %ld, %p", image_handle, exit_status, exit_data_size, exit_data); /* Make sure entry/exit counts for EFI world cross-overs match */ __efi_exit_check(); /* * But longjmp out with the U-Boot gd, not the application's, as * the other end is a setjmp call inside EFI context. */ efi_restore_gd(); loaded_image_info->exit_status = exit_status; longjmp(&loaded_image_info->exit_jmp, 1); panic("EFI application exited"); } static struct efi_object *efi_search_obj(void *handle) { struct list_head *lhandle; list_for_each(lhandle, &efi_obj_list) { struct efi_object *efiobj; efiobj = list_entry(lhandle, struct efi_object, link); if (efiobj->handle == handle) return efiobj; } return NULL; } static efi_status_t EFIAPI efi_unload_image(void *image_handle) { struct efi_object *efiobj; EFI_ENTRY("%p", image_handle); efiobj = efi_search_obj(image_handle); if (efiobj) list_del(&efiobj->link); return EFI_EXIT(EFI_SUCCESS); } static void efi_exit_caches(void) { #if defined(CONFIG_ARM) && !defined(CONFIG_ARM64) /* * Grub on 32bit ARM needs to have caches disabled before jumping into * a zImage, but does not know of all cache layers. Give it a hand. */ if (efi_is_direct_boot) cleanup_before_linux(); #endif } static efi_status_t EFIAPI efi_exit_boot_services(void *image_handle, unsigned long map_key) { int i; EFI_ENTRY("%p, %ld", image_handle, map_key); /* Notify that ExitBootServices is invoked. */ for (i = 0; i < ARRAY_SIZE(efi_events); ++i) { if (efi_events[i].type != EVT_SIGNAL_EXIT_BOOT_SERVICES) continue; efi_signal_event(&efi_events[i]); } /* Make sure that notification functions are not called anymore */ efi_tpl = TPL_HIGH_LEVEL; #if defined(CONFIG_CMD_SAVEENV) && !defined(CONFIG_ENV_IS_NOWHERE) /* save any EFI variables that have been written: */ env_save(); #endif board_quiesce_devices(); /* Fix up caches for EFI payloads if necessary */ efi_exit_caches(); /* This stops all lingering devices */ bootm_disable_interrupts(); /* Give the payload some time to boot */ WATCHDOG_RESET(); return EFI_EXIT(EFI_SUCCESS); } static efi_status_t EFIAPI efi_get_next_monotonic_count(uint64_t *count) { static uint64_t mono = 0; EFI_ENTRY("%p", count); *count = mono++; return EFI_EXIT(EFI_SUCCESS); } static efi_status_t EFIAPI efi_stall(unsigned long microseconds) { EFI_ENTRY("%ld", microseconds); udelay(microseconds); return EFI_EXIT(EFI_SUCCESS); } static efi_status_t EFIAPI efi_set_watchdog_timer(unsigned long timeout, uint64_t watchdog_code, unsigned long data_size, uint16_t *watchdog_data) { EFI_ENTRY("%ld, 0x%"PRIx64", %ld, %p", timeout, watchdog_code, data_size, watchdog_data); return efi_unsupported(__func__); } static efi_status_t EFIAPI efi_connect_controller( efi_handle_t controller_handle, efi_handle_t *driver_image_handle, struct efi_device_path *remain_device_path, bool recursive) { EFI_ENTRY("%p, %p, %p, %d", controller_handle, driver_image_handle, remain_device_path, recursive); return EFI_EXIT(EFI_NOT_FOUND); } static efi_status_t EFIAPI efi_disconnect_controller(void *controller_handle, void *driver_image_handle, void *child_handle) { EFI_ENTRY("%p, %p, %p", controller_handle, driver_image_handle, child_handle); return EFI_EXIT(EFI_INVALID_PARAMETER); } static efi_status_t EFIAPI efi_close_protocol(void *handle, efi_guid_t *protocol, void *agent_handle, void *controller_handle) { EFI_ENTRY("%p, %pUl, %p, %p", handle, protocol, agent_handle, controller_handle); return EFI_EXIT(EFI_NOT_FOUND); } static efi_status_t EFIAPI efi_open_protocol_information(efi_handle_t handle, efi_guid_t *protocol, struct efi_open_protocol_info_entry **entry_buffer, unsigned long *entry_count) { EFI_ENTRY("%p, %pUl, %p, %p", handle, protocol, entry_buffer, entry_count); return EFI_EXIT(EFI_NOT_FOUND); } static efi_status_t EFIAPI efi_protocols_per_handle(void *handle, efi_guid_t ***protocol_buffer, unsigned long *protocol_buffer_count) { unsigned long buffer_size; struct efi_object *efiobj; unsigned long i, j; struct list_head *lhandle; efi_status_t r; EFI_ENTRY("%p, %p, %p", handle, protocol_buffer, protocol_buffer_count); if (!handle || !protocol_buffer || !protocol_buffer_count) return EFI_EXIT(EFI_INVALID_PARAMETER); *protocol_buffer = NULL; *protocol_buffer_count = 0; list_for_each(lhandle, &efi_obj_list) { efiobj = list_entry(lhandle, struct efi_object, link); if (efiobj->handle != handle) continue; /* Count protocols */ for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) { if (efiobj->protocols[i].guid) ++*protocol_buffer_count; } /* Copy guids */ if (*protocol_buffer_count) { buffer_size = sizeof(efi_guid_t *) * *protocol_buffer_count; r = efi_allocate_pool(EFI_ALLOCATE_ANY_PAGES, buffer_size, (void **)protocol_buffer); if (r != EFI_SUCCESS) return EFI_EXIT(r); j = 0; for (i = 0; i < ARRAY_SIZE(efiobj->protocols); ++i) { if (efiobj->protocols[i].guid) { (*protocol_buffer)[j] = (void *) efiobj->protocols[i].guid; ++j; } } } break; } return EFI_EXIT(EFI_SUCCESS); } static efi_status_t EFIAPI efi_locate_handle_buffer( enum efi_locate_search_type search_type, efi_guid_t *protocol, void *search_key, unsigned long *no_handles, efi_handle_t **buffer) { efi_status_t r; unsigned long buffer_size = 0; EFI_ENTRY("%d, %pUl, %p, %p, %p", search_type, protocol, search_key, no_handles, buffer); if (!no_handles || !buffer) { r = EFI_INVALID_PARAMETER; goto out; } *no_handles = 0; *buffer = NULL; r = efi_locate_handle(search_type, protocol, search_key, &buffer_size, *buffer); if (r != EFI_BUFFER_TOO_SMALL) goto out; r = efi_allocate_pool(EFI_ALLOCATE_ANY_PAGES, buffer_size, (void **)buffer); if (r != EFI_SUCCESS) goto out; r = efi_locate_handle(search_type, protocol, search_key, &buffer_size, *buffer); if (r == EFI_SUCCESS) *no_handles = buffer_size / sizeof(void *); out: return EFI_EXIT(r); } static efi_status_t EFIAPI efi_locate_protocol(efi_guid_t *protocol, void *registration, void **protocol_interface) { struct list_head *lhandle; int i; EFI_ENTRY("%pUl, %p, %p", protocol, registration, protocol_interface); if (!protocol || !protocol_interface) return EFI_EXIT(EFI_INVALID_PARAMETER); EFI_PRINT_GUID("protocol", protocol); list_for_each(lhandle, &efi_obj_list) { struct efi_object *efiobj; efiobj = list_entry(lhandle, struct efi_object, link); for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) { struct efi_handler *handler = &efiobj->protocols[i]; if (!handler->guid) continue; if (!guidcmp(handler->guid, protocol)) { *protocol_interface = handler->protocol_interface; return EFI_EXIT(EFI_SUCCESS); } } } *protocol_interface = NULL; return EFI_EXIT(EFI_NOT_FOUND); } static efi_status_t EFIAPI efi_install_multiple_protocol_interfaces( void **handle, ...) { EFI_ENTRY("%p", handle); va_list argptr; efi_guid_t *protocol; void *protocol_interface; efi_status_t r = EFI_SUCCESS; int i = 0; if (!handle) return EFI_EXIT(EFI_INVALID_PARAMETER); va_start(argptr, handle); for (;;) { protocol = va_arg(argptr, efi_guid_t*); if (!protocol) break; protocol_interface = va_arg(argptr, void*); r = efi_install_protocol_interface(handle, protocol, EFI_NATIVE_INTERFACE, protocol_interface); if (r != EFI_SUCCESS) break; i++; } va_end(argptr); if (r == EFI_SUCCESS) return EFI_EXIT(r); /* If an error occured undo all changes. */ va_start(argptr, handle); for (; i; --i) { protocol = va_arg(argptr, efi_guid_t*); protocol_interface = va_arg(argptr, void*); efi_uninstall_protocol_interface(handle, protocol, protocol_interface); } va_end(argptr); return EFI_EXIT(r); } static efi_status_t EFIAPI efi_uninstall_multiple_protocol_interfaces( void *handle, ...) { EFI_ENTRY("%p", handle); return EFI_EXIT(EFI_INVALID_PARAMETER); } static efi_status_t EFIAPI efi_calculate_crc32(void *data, unsigned long data_size, uint32_t *crc32_p) { EFI_ENTRY("%p, %ld", data, data_size); *crc32_p = crc32(0, data, data_size); return EFI_EXIT(EFI_SUCCESS); } static void EFIAPI efi_copy_mem(void *destination, void *source, unsigned long length) { EFI_ENTRY("%p, %p, %ld", destination, source, length); memcpy(destination, source, length); } static void EFIAPI efi_set_mem(void *buffer, unsigned long size, uint8_t value) { EFI_ENTRY("%p, %ld, 0x%x", buffer, size, value); memset(buffer, value, size); } static efi_status_t EFIAPI efi_open_protocol( void *handle, efi_guid_t *protocol, void **protocol_interface, void *agent_handle, void *controller_handle, uint32_t attributes) { struct list_head *lhandle; int i; efi_status_t r = EFI_INVALID_PARAMETER; EFI_ENTRY("%p, %pUl, %p, %p, %p, 0x%x", handle, protocol, protocol_interface, agent_handle, controller_handle, attributes); if (!handle || !protocol || (!protocol_interface && attributes != EFI_OPEN_PROTOCOL_TEST_PROTOCOL)) { goto out; } EFI_PRINT_GUID("protocol", protocol); switch (attributes) { case EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL: case EFI_OPEN_PROTOCOL_GET_PROTOCOL: case EFI_OPEN_PROTOCOL_TEST_PROTOCOL: break; case EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER: if (controller_handle == handle) goto out; case EFI_OPEN_PROTOCOL_BY_DRIVER: case EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE: if (controller_handle == NULL) goto out; case EFI_OPEN_PROTOCOL_EXCLUSIVE: if (agent_handle == NULL) goto out; break; default: goto out; } list_for_each(lhandle, &efi_obj_list) { struct efi_object *efiobj; efiobj = list_entry(lhandle, struct efi_object, link); if (efiobj->handle != handle) continue; for (i = 0; i < ARRAY_SIZE(efiobj->protocols); i++) { struct efi_handler *handler = &efiobj->protocols[i]; const efi_guid_t *hprotocol = handler->guid; if (!hprotocol) continue; if (!guidcmp(hprotocol, protocol)) { if (attributes != EFI_OPEN_PROTOCOL_TEST_PROTOCOL) { *protocol_interface = handler->protocol_interface; } r = EFI_SUCCESS; goto out; } } goto unsupported; } unsupported: r = EFI_UNSUPPORTED; out: return EFI_EXIT(r); } static efi_status_t EFIAPI efi_handle_protocol(void *handle, efi_guid_t *protocol, void **protocol_interface) { return efi_open_protocol(handle, protocol, protocol_interface, NULL, NULL, EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL); } static const struct efi_boot_services efi_boot_services = { .hdr = { .headersize = sizeof(struct efi_table_hdr), }, .raise_tpl = efi_raise_tpl, .restore_tpl = efi_restore_tpl, .allocate_pages = efi_allocate_pages_ext, .free_pages = efi_free_pages_ext, .get_memory_map = efi_get_memory_map_ext, .allocate_pool = efi_allocate_pool_ext, .free_pool = efi_free_pool_ext, .create_event = efi_create_event_ext, .set_timer = efi_set_timer_ext, .wait_for_event = efi_wait_for_event, .signal_event = efi_signal_event_ext, .close_event = efi_close_event, .check_event = efi_check_event, .install_protocol_interface = efi_install_protocol_interface_ext, .reinstall_protocol_interface = efi_reinstall_protocol_interface, .uninstall_protocol_interface = efi_uninstall_protocol_interface_ext, .handle_protocol = efi_handle_protocol, .reserved = NULL, .register_protocol_notify = efi_register_protocol_notify, .locate_handle = efi_locate_handle_ext, .locate_device_path = efi_locate_device_path, .install_configuration_table = efi_install_configuration_table_ext, .load_image = efi_load_image, .start_image = efi_start_image, .exit = efi_exit, .unload_image = efi_unload_image, .exit_boot_services = efi_exit_boot_services, .get_next_monotonic_count = efi_get_next_monotonic_count, .stall = efi_stall, .set_watchdog_timer = efi_set_watchdog_timer, .connect_controller = efi_connect_controller, .disconnect_controller = efi_disconnect_controller, .open_protocol = efi_open_protocol, .close_protocol = efi_close_protocol, .open_protocol_information = efi_open_protocol_information, .protocols_per_handle = efi_protocols_per_handle, .locate_handle_buffer = efi_locate_handle_buffer, .locate_protocol = efi_locate_protocol, .install_multiple_protocol_interfaces = efi_install_multiple_protocol_interfaces, .uninstall_multiple_protocol_interfaces = efi_uninstall_multiple_protocol_interfaces, .calculate_crc32 = efi_calculate_crc32, .copy_mem = efi_copy_mem, .set_mem = efi_set_mem, }; static uint16_t __efi_runtime_data firmware_vendor[] = { 'D','a','s',' ','U','-','b','o','o','t',0 }; struct efi_system_table __efi_runtime_data systab = { .hdr = { .signature = EFI_SYSTEM_TABLE_SIGNATURE, .revision = 0x20005, /* 2.5 */ .headersize = sizeof(struct efi_table_hdr), }, .fw_vendor = (long)firmware_vendor, .con_in = (void*)&efi_con_in, .con_out = (void*)&efi_con_out, .std_err = (void*)&efi_con_out, .runtime = (void*)&efi_runtime_services, .boottime = (void*)&efi_boot_services, .nr_tables = 0, .tables = (void*)efi_conf_table, };