/* * Copyright 2017 General Electric Company * * Based on board/freescale/mx53loco/mx53loco.c: * * Copyright (C) 2011 Freescale Semiconductor, Inc. * Jason Liu * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ppd_gpio.h" #include #include "../../ge/common/ge_common.h" #include "../../ge/common/vpd_reader.h" #define MX53PPD_LCD_POWER IMX_GPIO_NR(3, 24) DECLARE_GLOBAL_DATA_PTR; /* Index of I2C1, SEGMENT 1 (see CONFIG_SYS_I2C_BUSES). */ #define VPD_EEPROM_BUS 2 /* Address of 24C08 EEPROM. */ #define VPD_EEPROM_ADDR 0x50 #define VPD_EEPROM_ADDR_LEN 1 static u32 mx53_dram_size[2]; phys_size_t get_effective_memsize(void) { /* * WARNING: We must override get_effective_memsize() function here * to report only the size of the first DRAM bank. This is to make * U-Boot relocator place U-Boot into valid memory, that is, at the * end of the first DRAM bank. If we did not override this function * like so, U-Boot would be placed at the address of the first DRAM * bank + total DRAM size - sizeof(uboot), which in the setup where * each DRAM bank contains 512MiB of DRAM would result in placing * U-Boot into invalid memory area close to the end of the first * DRAM bank. */ return mx53_dram_size[0]; } int dram_init(void) { mx53_dram_size[0] = get_ram_size((void *)PHYS_SDRAM_1, 1 << 30); mx53_dram_size[1] = get_ram_size((void *)PHYS_SDRAM_2, 1 << 30); gd->ram_size = mx53_dram_size[0] + mx53_dram_size[1]; return 0; } int dram_init_banksize(void) { gd->bd->bi_dram[0].start = PHYS_SDRAM_1; gd->bd->bi_dram[0].size = mx53_dram_size[0]; gd->bd->bi_dram[1].start = PHYS_SDRAM_2; gd->bd->bi_dram[1].size = mx53_dram_size[1]; return 0; } u32 get_board_rev(void) { return get_cpu_rev() & ~(0xF << 8); } #define UART_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_DSE_HIGH | \ PAD_CTL_PUS_100K_UP | PAD_CTL_ODE) #ifdef CONFIG_USB_EHCI_MX5 int board_ehci_hcd_init(int port) { /* request VBUS power enable pin, GPIO7_8 */ imx_iomux_v3_setup_pad(MX53_PAD_PATA_DA_2__GPIO7_8); gpio_direction_output(IMX_GPIO_NR(7, 8), 1); return 0; } #endif static void setup_iomux_fec(void) { static const iomux_v3_cfg_t fec_pads[] = { NEW_PAD_CTRL(MX53_PAD_FEC_MDIO__FEC_MDIO, PAD_CTL_HYS | PAD_CTL_DSE_HIGH | PAD_CTL_PUS_22K_UP | PAD_CTL_ODE), NEW_PAD_CTRL(MX53_PAD_FEC_MDC__FEC_MDC, PAD_CTL_DSE_HIGH), NEW_PAD_CTRL(MX53_PAD_FEC_RXD1__FEC_RDATA_1, PAD_CTL_HYS | PAD_CTL_PKE), NEW_PAD_CTRL(MX53_PAD_FEC_RXD0__FEC_RDATA_0, PAD_CTL_HYS | PAD_CTL_PKE), NEW_PAD_CTRL(MX53_PAD_FEC_TXD1__FEC_TDATA_1, PAD_CTL_DSE_HIGH), NEW_PAD_CTRL(MX53_PAD_FEC_TXD0__FEC_TDATA_0, PAD_CTL_DSE_HIGH), NEW_PAD_CTRL(MX53_PAD_FEC_TX_EN__FEC_TX_EN, PAD_CTL_DSE_HIGH), NEW_PAD_CTRL(MX53_PAD_FEC_REF_CLK__FEC_TX_CLK, PAD_CTL_HYS | PAD_CTL_PKE), NEW_PAD_CTRL(MX53_PAD_FEC_RX_ER__FEC_RX_ER, PAD_CTL_HYS | PAD_CTL_PKE), NEW_PAD_CTRL(MX53_PAD_FEC_CRS_DV__FEC_RX_DV, PAD_CTL_HYS | PAD_CTL_PKE), }; imx_iomux_v3_setup_multiple_pads(fec_pads, ARRAY_SIZE(fec_pads)); } #ifdef CONFIG_FSL_ESDHC struct fsl_esdhc_cfg esdhc_cfg[2] = { {MMC_SDHC3_BASE_ADDR}, {MMC_SDHC1_BASE_ADDR}, }; int board_mmc_getcd(struct mmc *mmc) { return 1; } #define SD_CMD_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_DSE_HIGH | \ PAD_CTL_PUS_100K_UP) #define SD_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_PUS_47K_UP | \ PAD_CTL_DSE_HIGH) int board_mmc_init(bd_t *bis) { static const iomux_v3_cfg_t sd1_pads[] = { NEW_PAD_CTRL(MX53_PAD_PATA_RESET_B__ESDHC3_CMD, SD_CMD_PAD_CTRL), NEW_PAD_CTRL(MX53_PAD_PATA_IORDY__ESDHC3_CLK, SD_PAD_CTRL), NEW_PAD_CTRL(MX53_PAD_PATA_DATA8__ESDHC3_DAT0, SD_PAD_CTRL), NEW_PAD_CTRL(MX53_PAD_PATA_DATA9__ESDHC3_DAT1, SD_PAD_CTRL), NEW_PAD_CTRL(MX53_PAD_PATA_DATA10__ESDHC3_DAT2, SD_PAD_CTRL), NEW_PAD_CTRL(MX53_PAD_PATA_DATA11__ESDHC3_DAT3, SD_PAD_CTRL), NEW_PAD_CTRL(MX53_PAD_PATA_DATA0__ESDHC3_DAT4, SD_PAD_CTRL), NEW_PAD_CTRL(MX53_PAD_PATA_DATA1__ESDHC3_DAT5, SD_PAD_CTRL), NEW_PAD_CTRL(MX53_PAD_PATA_DATA2__ESDHC3_DAT6, SD_PAD_CTRL), NEW_PAD_CTRL(MX53_PAD_PATA_DATA3__ESDHC3_DAT7, SD_PAD_CTRL), MX53_PAD_EIM_DA11__GPIO3_11, }; static const iomux_v3_cfg_t sd2_pads[] = { NEW_PAD_CTRL(MX53_PAD_SD1_CMD__ESDHC1_CMD, SD_CMD_PAD_CTRL), NEW_PAD_CTRL(MX53_PAD_SD1_CLK__ESDHC1_CLK, SD_PAD_CTRL), NEW_PAD_CTRL(MX53_PAD_SD1_DATA0__ESDHC1_DAT0, SD_PAD_CTRL), NEW_PAD_CTRL(MX53_PAD_SD1_DATA1__ESDHC1_DAT1, SD_PAD_CTRL), NEW_PAD_CTRL(MX53_PAD_SD1_DATA2__ESDHC1_DAT2, SD_PAD_CTRL), NEW_PAD_CTRL(MX53_PAD_SD1_DATA3__ESDHC1_DAT3, SD_PAD_CTRL), MX53_PAD_EIM_DA13__GPIO3_13, }; u32 index; int ret; esdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK); esdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK); for (index = 0; index < CONFIG_SYS_FSL_ESDHC_NUM; index++) { switch (index) { case 0: imx_iomux_v3_setup_multiple_pads(sd1_pads, ARRAY_SIZE(sd1_pads)); break; case 1: imx_iomux_v3_setup_multiple_pads(sd2_pads, ARRAY_SIZE(sd2_pads)); break; default: printf("Warning: you configured more ESDHC controller (%d) as supported by the board(2)\n", CONFIG_SYS_FSL_ESDHC_NUM); return -EINVAL; } ret = fsl_esdhc_initialize(bis, &esdhc_cfg[index]); if (ret) return ret; } return 0; } #endif #define I2C_PAD_CTRL (PAD_CTL_SRE_FAST | PAD_CTL_DSE_HIGH | \ PAD_CTL_PUS_100K_UP | PAD_CTL_ODE) static void setup_iomux_i2c(void) { static const iomux_v3_cfg_t i2c1_pads[] = { NEW_PAD_CTRL(MX53_PAD_CSI0_DAT8__I2C1_SDA, I2C_PAD_CTRL), NEW_PAD_CTRL(MX53_PAD_CSI0_DAT9__I2C1_SCL, I2C_PAD_CTRL), }; imx_iomux_v3_setup_multiple_pads(i2c1_pads, ARRAY_SIZE(i2c1_pads)); } #define I2C_PAD MUX_PAD_CTRL(I2C_PAD_CTRL) static struct i2c_pads_info i2c_pad_info1 = { .scl = { .i2c_mode = MX53_PAD_EIM_D21__I2C1_SCL | I2C_PAD, .gpio_mode = MX53_PAD_EIM_D28__GPIO3_28 | I2C_PAD, .gp = IMX_GPIO_NR(3, 28) }, .sda = { .i2c_mode = MX53_PAD_EIM_D28__I2C1_SDA | I2C_PAD, .gpio_mode = MX53_PAD_EIM_D21__GPIO3_21 | I2C_PAD, .gp = IMX_GPIO_NR(3, 21) } }; static int clock_1GHz(void) { int ret; u32 ref_clk = MXC_HCLK; /* * After increasing voltage to 1.25V, we can switch * CPU clock to 1GHz and DDR to 400MHz safely */ ret = mxc_set_clock(ref_clk, 1000, MXC_ARM_CLK); if (ret) { printf("CPU: Switch CPU clock to 1GHZ failed\n"); return -1; } ret = mxc_set_clock(ref_clk, 400, MXC_PERIPH_CLK); ret |= mxc_set_clock(ref_clk, 400, MXC_DDR_CLK); if (ret) { printf("CPU: Switch DDR clock to 400MHz failed\n"); return -1; } return 0; } void ppd_gpio_init(void) { int i; imx_iomux_v3_setup_multiple_pads(ppd_pads, ARRAY_SIZE(ppd_pads)); for (i = 0; i < ARRAY_SIZE(ppd_gpios); ++i) gpio_direction_output(ppd_gpios[i].gpio, ppd_gpios[i].value); } int board_early_init_f(void) { setup_iomux_fec(); setup_iomux_lcd(); ppd_gpio_init(); return 0; } /* * Do not overwrite the console * Use always serial for U-Boot console */ int overwrite_console(void) { return 1; } #define VPD_TYPE_INVALID 0x00 #define VPD_BLOCK_NETWORK 0x20 #define VPD_BLOCK_HWID 0x44 #define VPD_PRODUCT_PPD 4 #define VPD_HAS_MAC1 0x1 #define VPD_MAC_ADDRESS_LENGTH 6 struct vpd_cache { u8 product_id; u8 has; unsigned char mac1[VPD_MAC_ADDRESS_LENGTH]; }; /* * Extracts MAC and product information from the VPD. */ static int vpd_callback(void *userdata, u8 id, u8 version, u8 type, size_t size, u8 const *data) { struct vpd_cache *vpd = (struct vpd_cache *)userdata; if (id == VPD_BLOCK_HWID && version == 1 && type != VPD_TYPE_INVALID && size >= 1) { vpd->product_id = data[0]; } else if (id == VPD_BLOCK_NETWORK && version == 1 && type != VPD_TYPE_INVALID) { if (size >= 6) { vpd->has |= VPD_HAS_MAC1; memcpy(vpd->mac1, data, VPD_MAC_ADDRESS_LENGTH); } } return 0; } static void process_vpd(struct vpd_cache *vpd) { int fec_index = -1; if (vpd->product_id == VPD_PRODUCT_PPD) fec_index = 0; if (fec_index >= 0 && (vpd->has & VPD_HAS_MAC1)) eth_env_set_enetaddr("ethaddr", vpd->mac1); } static int read_vpd(uint eeprom_bus) { struct vpd_cache vpd; int res; int size = 1024; u8 *data; unsigned int current_i2c_bus = i2c_get_bus_num(); res = i2c_set_bus_num(eeprom_bus); if (res < 0) return res; data = malloc(size); if (!data) return -ENOMEM; res = i2c_read(VPD_EEPROM_ADDR, 0, VPD_EEPROM_ADDR_LEN, data, size); if (res == 0) { memset(&vpd, 0, sizeof(vpd)); vpd_reader(size, data, &vpd, vpd_callback); process_vpd(&vpd); } free(data); i2c_set_bus_num(current_i2c_bus); return res; } int board_init(void) { gd->bd->bi_boot_params = PHYS_SDRAM_1 + 0x100; mxc_set_sata_internal_clock(); setup_iomux_i2c(); setup_i2c(1, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info1); return 0; } int misc_init_r(void) { const char *cause; /* We care about WDOG only, treating everything else as * a power-on-reset. */ if (get_imx_reset_cause() & 0x0010) cause = "WDOG"; else cause = "POR"; env_set("bootcause", cause); return 0; } int board_late_init(void) { int res; read_vpd(VPD_EEPROM_BUS); res = clock_1GHz(); if (res != 0) return res; print_cpuinfo(); hw_watchdog_init(); check_time(); return 0; } int checkboard(void) { puts("Board: GE PPD\n"); return 0; }