// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2018 Synopsys, Inc. All rights reserved. * Author: Eugeniy Paltsev */ #include #include #include #include #include #include #include #include #include #include #include "clk-lib.h" #include "env-lib.h" DECLARE_GLOBAL_DATA_PTR; #define ALL_CPU_MASK GENMASK(NR_CPUS - 1, 0) #define MASTER_CPU_ID 0 #define APERTURE_SHIFT 28 #define NO_CCM 0x10 #define SLAVE_CPU_READY 0x12345678 #define BOOTSTAGE_1 1 /* after SP, FP setup, before HW init */ #define BOOTSTAGE_2 2 /* after HW init, before self halt */ #define BOOTSTAGE_3 3 /* after self halt */ #define BOOTSTAGE_4 4 /* before app launch */ #define BOOTSTAGE_5 5 /* after app launch, unreachable */ #define RESET_VECTOR_ADDR 0x0 #define CREG_BASE (ARC_PERIPHERAL_BASE + 0x1000) #define CREG_CPU_START (CREG_BASE + 0x400) #define CREG_CPU_START_MASK 0xF #define SDIO_BASE (ARC_PERIPHERAL_BASE + 0xA000) #define SDIO_UHS_REG_EXT (SDIO_BASE + 0x108) #define SDIO_UHS_REG_EXT_DIV_2 (2 << 30) /* Uncached access macros */ #define arc_read_uncached_32(ptr) \ ({ \ unsigned int __ret; \ __asm__ __volatile__( \ " ld.di %0, [%1] \n" \ : "=r"(__ret) \ : "r"(ptr)); \ __ret; \ }) #define arc_write_uncached_32(ptr, data)\ ({ \ __asm__ __volatile__( \ " st.di %0, [%1] \n" \ : \ : "r"(data), "r"(ptr)); \ }) struct hsdk_env_core_ctl { u32_env entry[NR_CPUS]; u32_env iccm[NR_CPUS]; u32_env dccm[NR_CPUS]; }; struct hsdk_env_common_ctl { bool halt_on_boot; u32_env core_mask; u32_env cpu_freq; u32_env axi_freq; u32_env tun_freq; u32_env nvlim; u32_env icache; u32_env dcache; }; /* * Uncached cross-cpu structure. All CPUs must access to this structure fields * only with arc_read_uncached_32() / arc_write_uncached_32() accessors (which * implement ld.di / st.di instructions). Simultaneous cached and uncached * access to this area will lead to data loss. * We flush all data caches in board_early_init_r() as we don't want to have * any dirty line in L1d$ or SL$ in this area. */ struct hsdk_cross_cpu { /* slave CPU ready flag */ u32 ready_flag; /* address of the area, which can be used for stack by slave CPU */ u32 stack_ptr; /* slave CPU status - bootstage number */ s32 status[NR_CPUS]; /* * Slave CPU data - it is copy of corresponding fields in * hsdk_env_core_ctl and hsdk_env_common_ctl structures which are * required for slave CPUs initialization. * This fields can be populated by copying from hsdk_env_core_ctl * and hsdk_env_common_ctl structures with sync_cross_cpu_data() * function. */ u32 entry[NR_CPUS]; u32 iccm[NR_CPUS]; u32 dccm[NR_CPUS]; u32 core_mask; u32 icache; u32 dcache; u8 cache_padding[ARCH_DMA_MINALIGN]; } __aligned(ARCH_DMA_MINALIGN); /* Place for slave CPUs temporary stack */ static u32 slave_stack[256 * NR_CPUS] __aligned(ARCH_DMA_MINALIGN); static struct hsdk_env_common_ctl env_common = {}; static struct hsdk_env_core_ctl env_core = {}; static struct hsdk_cross_cpu cross_cpu_data; static const struct env_map_common env_map_common[] = { { "core_mask", ENV_HEX, true, 0x1, 0xF, &env_common.core_mask }, { "non_volatile_limit", ENV_HEX, true, 0, 0xF, &env_common.nvlim }, { "icache_ena", ENV_HEX, true, 0, 1, &env_common.icache }, { "dcache_ena", ENV_HEX, true, 0, 1, &env_common.dcache }, {} }; static const struct env_map_common env_map_clock[] = { { "cpu_freq", ENV_DEC, false, 100, 1000, &env_common.cpu_freq }, { "axi_freq", ENV_DEC, false, 200, 800, &env_common.axi_freq }, { "tun_freq", ENV_DEC, false, 0, 150, &env_common.tun_freq }, {} }; static const struct env_map_percpu env_map_core[] = { { "core_iccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.iccm }, { "core_dccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.dccm }, {} }; static const struct env_map_common env_map_mask[] = { { "core_mask", ENV_HEX, false, 0x1, 0xF, &env_common.core_mask }, {} }; static const struct env_map_percpu env_map_go[] = { { "core_entry", ENV_HEX, true, {0, 0, 0, 0}, {U32_MAX, U32_MAX, U32_MAX, U32_MAX}, &env_core.entry }, {} }; static void sync_cross_cpu_data(void) { u32 value; for (u32 i = 0; i < NR_CPUS; i++) { value = env_core.entry[i].val; arc_write_uncached_32(&cross_cpu_data.entry[i], value); } for (u32 i = 0; i < NR_CPUS; i++) { value = env_core.iccm[i].val; arc_write_uncached_32(&cross_cpu_data.iccm[i], value); } for (u32 i = 0; i < NR_CPUS; i++) { value = env_core.dccm[i].val; arc_write_uncached_32(&cross_cpu_data.dccm[i], value); } value = env_common.core_mask.val; arc_write_uncached_32(&cross_cpu_data.core_mask, value); value = env_common.icache.val; arc_write_uncached_32(&cross_cpu_data.icache, value); value = env_common.dcache.val; arc_write_uncached_32(&cross_cpu_data.dcache, value); } /* Can be used only on master CPU */ static bool is_cpu_used(u32 cpu_id) { return !!(env_common.core_mask.val & BIT(cpu_id)); } /* TODO: add ICCM BCR and DCCM BCR runtime check */ static void init_slave_cpu_func(u32 core) { u32 val; /* Remap ICCM to another memory region if it exists */ val = arc_read_uncached_32(&cross_cpu_data.iccm[core]); if (val != NO_CCM) write_aux_reg(ARC_AUX_ICCM_BASE, val << APERTURE_SHIFT); /* Remap DCCM to another memory region if it exists */ val = arc_read_uncached_32(&cross_cpu_data.dccm[core]); if (val != NO_CCM) write_aux_reg(ARC_AUX_DCCM_BASE, val << APERTURE_SHIFT); if (arc_read_uncached_32(&cross_cpu_data.icache)) icache_enable(); else icache_disable(); if (arc_read_uncached_32(&cross_cpu_data.dcache)) dcache_enable(); else dcache_disable(); } static void init_cluster_nvlim(void) { u32 val = env_common.nvlim.val << APERTURE_SHIFT; flush_dcache_all(); write_aux_reg(ARC_AUX_NON_VOLATILE_LIMIT, val); write_aux_reg(AUX_AUX_CACHE_LIMIT, val); flush_n_invalidate_dcache_all(); } static void init_master_icache(void) { if (icache_status()) { /* I$ is enabled - we need to disable it */ if (!env_common.icache.val) icache_disable(); } else { /* I$ is disabled - we need to enable it */ if (env_common.icache.val) { icache_enable(); /* invalidate I$ right after enable */ invalidate_icache_all(); } } } static void init_master_dcache(void) { if (dcache_status()) { /* D$ is enabled - we need to disable it */ if (!env_common.dcache.val) dcache_disable(); } else { /* D$ is disabled - we need to enable it */ if (env_common.dcache.val) dcache_enable(); /* TODO: probably we need ti invalidate D$ right after enable */ } } static int cleanup_before_go(void) { disable_interrupts(); sync_n_cleanup_cache_all(); return 0; } void slave_cpu_set_boot_addr(u32 addr) { /* All cores have reset vector pointing to 0 */ writel(addr, (void __iomem *)RESET_VECTOR_ADDR); /* Make sure other cores see written value in memory */ sync_n_cleanup_cache_all(); } static inline void halt_this_cpu(void) { __builtin_arc_flag(1); } static void smp_kick_cpu_x(u32 cpu_id) { int cmd = readl((void __iomem *)CREG_CPU_START); if (cpu_id > NR_CPUS) return; cmd &= ~CREG_CPU_START_MASK; cmd |= (1 << cpu_id); writel(cmd, (void __iomem *)CREG_CPU_START); } static u32 prepare_cpu_ctart_reg(void) { int cmd = readl((void __iomem *)CREG_CPU_START); cmd &= ~CREG_CPU_START_MASK; return cmd | env_common.core_mask.val; } /* slave CPU entry for configuration */ __attribute__((naked, noreturn, flatten)) noinline void hsdk_core_init_f(void) { __asm__ __volatile__( "ld.di r8, [%0]\n" "mov %%sp, r8\n" "mov %%fp, %%sp\n" : /* no output */ : "r" (&cross_cpu_data.stack_ptr)); invalidate_icache_all(); arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_1); init_slave_cpu_func(CPU_ID_GET()); arc_write_uncached_32(&cross_cpu_data.ready_flag, SLAVE_CPU_READY); arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_2); /* Halt the processor until the master kick us again */ halt_this_cpu(); /* * 3 NOPs after FLAG 1 instruction are no longer required for ARCv2 * cores but we leave them for gebug purposes. */ __builtin_arc_nop(); __builtin_arc_nop(); __builtin_arc_nop(); arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_3); /* get the updated entry - invalidate i$ */ invalidate_icache_all(); arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_4); /* Run our program */ ((void (*)(void))(arc_read_uncached_32(&cross_cpu_data.entry[CPU_ID_GET()])))(); /* This bootstage is unreachable as we don't return from app we launch */ arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_5); /* Something went terribly wrong */ while (true) halt_this_cpu(); } static void clear_cross_cpu_data(void) { arc_write_uncached_32(&cross_cpu_data.ready_flag, 0); arc_write_uncached_32(&cross_cpu_data.stack_ptr, 0); for (u32 i = 0; i < NR_CPUS; i++) arc_write_uncached_32(&cross_cpu_data.status[i], 0); } static noinline void do_init_slave_cpu(u32 cpu_id) { /* attempts number for check clave CPU ready_flag */ u32 attempts = 100; u32 stack_ptr = (u32)(slave_stack + (64 * cpu_id)); if (cpu_id >= NR_CPUS) return; arc_write_uncached_32(&cross_cpu_data.ready_flag, 0); /* Use global unique place for each slave cpu stack */ arc_write_uncached_32(&cross_cpu_data.stack_ptr, stack_ptr); debug("CPU %u: stack pool base: %p\n", cpu_id, slave_stack); debug("CPU %u: current slave stack base: %x\n", cpu_id, stack_ptr); slave_cpu_set_boot_addr((u32)hsdk_core_init_f); smp_kick_cpu_x(cpu_id); debug("CPU %u: cross-cpu flag: %x [before timeout]\n", cpu_id, arc_read_uncached_32(&cross_cpu_data.ready_flag)); while (!arc_read_uncached_32(&cross_cpu_data.ready_flag) && attempts--) mdelay(10); /* Just to be sure that slave cpu is halted after it set ready_flag */ mdelay(20); /* * Only print error here if we reach timeout as there is no option to * halt slave cpu (or check that slave cpu is halted) */ if (!attempts) pr_err("CPU %u is not responding after init!\n", cpu_id); /* Check current stage of slave cpu */ if (arc_read_uncached_32(&cross_cpu_data.status[cpu_id]) != BOOTSTAGE_2) pr_err("CPU %u status is unexpected: %d\n", cpu_id, arc_read_uncached_32(&cross_cpu_data.status[cpu_id])); debug("CPU %u: cross-cpu flag: %x [after timeout]\n", cpu_id, arc_read_uncached_32(&cross_cpu_data.ready_flag)); debug("CPU %u: status: %d [after timeout]\n", cpu_id, arc_read_uncached_32(&cross_cpu_data.status[cpu_id])); } static void do_init_slave_cpus(void) { clear_cross_cpu_data(); sync_cross_cpu_data(); debug("cross_cpu_data location: %#x\n", (u32)&cross_cpu_data); for (u32 i = MASTER_CPU_ID + 1; i < NR_CPUS; i++) if (is_cpu_used(i)) do_init_slave_cpu(i); } static void do_init_master_cpu(void) { /* * Setup master caches even if master isn't used as we want to use * same cache configuration on all running CPUs */ init_master_icache(); init_master_dcache(); } enum hsdk_axi_masters { M_HS_CORE = 0, M_HS_RTT, M_AXI_TUN, M_HDMI_VIDEO, M_HDMI_AUDIO, M_USB_HOST, M_ETHERNET, M_SDIO, M_GPU, M_DMAC_0, M_DMAC_1, M_DVFS }; #define UPDATE_VAL 1 /* * m master AXI_M_m_SLV0 AXI_M_m_SLV1 AXI_M_m_OFFSET0 AXI_M_m_OFFSET1 * 0 HS (CBU) 0x11111111 0x63111111 0xFEDCBA98 0x0E543210 * 1 HS (RTT) 0x77777777 0x77777777 0xFEDCBA98 0x76543210 * 2 AXI Tunnel 0x88888888 0x88888888 0xFEDCBA98 0x76543210 * 3 HDMI-VIDEO 0x77777777 0x77777777 0xFEDCBA98 0x76543210 * 4 HDMI-ADUIO 0x77777777 0x77777777 0xFEDCBA98 0x76543210 * 5 USB-HOST 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98 * 6 ETHERNET 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98 * 7 SDIO 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98 * 8 GPU 0x77777777 0x77777777 0xFEDCBA98 0x76543210 * 9 DMAC (port #1) 0x77777777 0x77777777 0xFEDCBA98 0x76543210 * 10 DMAC (port #2) 0x77777777 0x77777777 0xFEDCBA98 0x76543210 * 11 DVFS 0x00000000 0x60000000 0x00000000 0x00000000 * * Please read ARC HS Development IC Specification, section 17.2 for more * information about apertures configuration. * NOTE: we intentionally modify default settings in U-boot. Default settings * are specified in "Table 111 CREG Address Decoder register reset values". */ #define CREG_AXI_M_SLV0(m) ((void __iomem *)(CREG_BASE + 0x020 * (m))) #define CREG_AXI_M_SLV1(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x004)) #define CREG_AXI_M_OFT0(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x008)) #define CREG_AXI_M_OFT1(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x00C)) #define CREG_AXI_M_UPDT(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x014)) #define CREG_AXI_M_HS_CORE_BOOT ((void __iomem *)(CREG_BASE + 0x010)) #define CREG_PAE ((void __iomem *)(CREG_BASE + 0x180)) #define CREG_PAE_UPDT ((void __iomem *)(CREG_BASE + 0x194)) void init_memory_bridge(void) { u32 reg; /* * M_HS_CORE has one unic register - BOOT. * We need to clean boot mirror (BOOT[1:0]) bits in them. */ reg = readl(CREG_AXI_M_HS_CORE_BOOT) & (~0x3); writel(reg, CREG_AXI_M_HS_CORE_BOOT); writel(0x11111111, CREG_AXI_M_SLV0(M_HS_CORE)); writel(0x63111111, CREG_AXI_M_SLV1(M_HS_CORE)); writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_CORE)); writel(0x0E543210, CREG_AXI_M_OFT1(M_HS_CORE)); writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_CORE)); writel(0x77777777, CREG_AXI_M_SLV0(M_HS_RTT)); writel(0x77777777, CREG_AXI_M_SLV1(M_HS_RTT)); writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_RTT)); writel(0x76543210, CREG_AXI_M_OFT1(M_HS_RTT)); writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_RTT)); writel(0x88888888, CREG_AXI_M_SLV0(M_AXI_TUN)); writel(0x88888888, CREG_AXI_M_SLV1(M_AXI_TUN)); writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_AXI_TUN)); writel(0x76543210, CREG_AXI_M_OFT1(M_AXI_TUN)); writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_AXI_TUN)); writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_VIDEO)); writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_VIDEO)); writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_VIDEO)); writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_VIDEO)); writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_VIDEO)); writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_AUDIO)); writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_AUDIO)); writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_AUDIO)); writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_AUDIO)); writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_AUDIO)); writel(0x77777777, CREG_AXI_M_SLV0(M_USB_HOST)); writel(0x77999999, CREG_AXI_M_SLV1(M_USB_HOST)); writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_USB_HOST)); writel(0x76DCBA98, CREG_AXI_M_OFT1(M_USB_HOST)); writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_USB_HOST)); writel(0x77777777, CREG_AXI_M_SLV0(M_ETHERNET)); writel(0x77999999, CREG_AXI_M_SLV1(M_ETHERNET)); writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_ETHERNET)); writel(0x76DCBA98, CREG_AXI_M_OFT1(M_ETHERNET)); writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_ETHERNET)); writel(0x77777777, CREG_AXI_M_SLV0(M_SDIO)); writel(0x77999999, CREG_AXI_M_SLV1(M_SDIO)); writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_SDIO)); writel(0x76DCBA98, CREG_AXI_M_OFT1(M_SDIO)); writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_SDIO)); writel(0x77777777, CREG_AXI_M_SLV0(M_GPU)); writel(0x77777777, CREG_AXI_M_SLV1(M_GPU)); writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_GPU)); writel(0x76543210, CREG_AXI_M_OFT1(M_GPU)); writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_GPU)); writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_0)); writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_0)); writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_0)); writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_0)); writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_0)); writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_1)); writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_1)); writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_1)); writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_1)); writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_1)); writel(0x00000000, CREG_AXI_M_SLV0(M_DVFS)); writel(0x60000000, CREG_AXI_M_SLV1(M_DVFS)); writel(0x00000000, CREG_AXI_M_OFT0(M_DVFS)); writel(0x00000000, CREG_AXI_M_OFT1(M_DVFS)); writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DVFS)); writel(0x00000000, CREG_PAE); writel(UPDATE_VAL, CREG_PAE_UPDT); } static void setup_clocks(void) { ulong rate; /* Setup CPU clock */ if (env_common.cpu_freq.set) { rate = env_common.cpu_freq.val; soc_clk_ctl("cpu-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ); } /* Setup TUN clock */ if (env_common.tun_freq.set) { rate = env_common.tun_freq.val; if (rate) soc_clk_ctl("tun-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ); else soc_clk_ctl("tun-clk", NULL, CLK_OFF); } if (env_common.axi_freq.set) { rate = env_common.axi_freq.val; soc_clk_ctl("axi-clk", &rate, CLK_SET | CLK_ON | CLK_MHZ); } } static void do_init_cluster(void) { /* * A multi-core ARC HS configuration always includes only one * ARC_AUX_NON_VOLATILE_LIMIT register, which is shared by all the * cores. */ init_cluster_nvlim(); } static int check_master_cpu_id(void) { if (CPU_ID_GET() == MASTER_CPU_ID) return 0; pr_err("u-boot runs on non-master cpu with id: %lu\n", CPU_ID_GET()); return -ENOENT; } static noinline int prepare_cpus(void) { int ret; ret = check_master_cpu_id(); if (ret) return ret; ret = envs_process_and_validate(env_map_common, env_map_core, is_cpu_used); if (ret) return ret; printf("CPU start mask is %#x\n", env_common.core_mask.val); do_init_slave_cpus(); do_init_master_cpu(); do_init_cluster(); return 0; } static int hsdk_go_run(u32 cpu_start_reg) { /* Cleanup caches, disable interrupts */ cleanup_before_go(); if (env_common.halt_on_boot) halt_this_cpu(); /* * 3 NOPs after FLAG 1 instruction are no longer required for ARCv2 * cores but we leave them for gebug purposes. */ __builtin_arc_nop(); __builtin_arc_nop(); __builtin_arc_nop(); /* Kick chosen slave CPUs */ writel(cpu_start_reg, (void __iomem *)CREG_CPU_START); if (is_cpu_used(MASTER_CPU_ID)) ((void (*)(void))(env_core.entry[MASTER_CPU_ID].val))(); else halt_this_cpu(); pr_err("u-boot still runs on cpu [%ld]\n", CPU_ID_GET()); /* * We will never return after executing our program if master cpu used * otherwise halt master cpu manually. */ while (true) halt_this_cpu(); return 0; } int board_prep_linux(bootm_headers_t *images) { int ret, ofst; char mask[15]; ret = envs_read_validate_common(env_map_mask); if (ret) return ret; /* Rollback to default values */ if (!env_common.core_mask.set) { env_common.core_mask.val = ALL_CPU_MASK; env_common.core_mask.set = true; } printf("CPU start mask is %#x\n", env_common.core_mask.val); if (!is_cpu_used(MASTER_CPU_ID)) pr_err("ERR: try to launch linux with CPU[0] disabled! It doesn't work for ARC.\n"); /* * If we want to launch linux on all CPUs we don't need to patch * linux DTB as it is default configuration */ if (env_common.core_mask.val == ALL_CPU_MASK) return 0; if (!IMAGE_ENABLE_OF_LIBFDT || !images->ft_len) { pr_err("WARN: core_mask setup will work properly only with external DTB!\n"); return 0; } /* patch '/possible-cpus' property according to cpu mask */ ofst = fdt_path_offset(images->ft_addr, "/"); sprintf(mask, "%s%s%s%s", is_cpu_used(0) ? "0," : "", is_cpu_used(1) ? "1," : "", is_cpu_used(2) ? "2," : "", is_cpu_used(3) ? "3," : ""); ret = fdt_setprop_string(images->ft_addr, ofst, "possible-cpus", mask); /* * If we failed to patch '/possible-cpus' property we don't need break * linux loading process: kernel will handle it but linux will print * warning like "Timeout: CPU1 FAILED to comeup !!!". * So warn here about error, but return 0 like no error had occurred. */ if (ret) pr_err("WARN: failed to patch '/possible-cpus' property, ret=%d\n", ret); return 0; } void board_jump_and_run(ulong entry, int zero, int arch, uint params) { void (*kernel_entry)(int zero, int arch, uint params); u32 cpu_start_reg; kernel_entry = (void (*)(int, int, uint))entry; /* Prepare CREG_CPU_START for kicking chosen CPUs */ cpu_start_reg = prepare_cpu_ctart_reg(); /* In case of run without hsdk_init */ slave_cpu_set_boot_addr(entry); /* In case of run with hsdk_init */ for (u32 i = 0; i < NR_CPUS; i++) { env_core.entry[i].val = entry; env_core.entry[i].set = true; } /* sync cross_cpu struct as we updated core-entry variables */ sync_cross_cpu_data(); /* Kick chosen slave CPUs */ writel(cpu_start_reg, (void __iomem *)CREG_CPU_START); if (is_cpu_used(0)) kernel_entry(zero, arch, params); } static int hsdk_go_prepare_and_run(void) { /* Prepare CREG_CPU_START for kicking chosen CPUs */ u32 reg = prepare_cpu_ctart_reg(); if (env_common.halt_on_boot) printf("CPU will halt before application start, start application with debugger.\n"); return hsdk_go_run(reg); } static int do_hsdk_go(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[]) { int ret; /* * Check for 'halt' parameter. 'halt' = enter halt-mode just before * starting the application; can be used for debug. */ if (argc > 1) { env_common.halt_on_boot = !strcmp(argv[1], "halt"); if (!env_common.halt_on_boot) { pr_err("Unrecognised parameter: \'%s\'\n", argv[1]); return CMD_RET_FAILURE; } } ret = check_master_cpu_id(); if (ret) return ret; ret = envs_process_and_validate(env_map_mask, env_map_go, is_cpu_used); if (ret) return ret; /* sync cross_cpu struct as we updated core-entry variables */ sync_cross_cpu_data(); ret = hsdk_go_prepare_and_run(); return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS; } U_BOOT_CMD( hsdk_go, 3, 0, do_hsdk_go, "Synopsys HSDK specific command", " - Boot stand-alone application on HSDK\n" "hsdk_go halt - Boot stand-alone application on HSDK, halt CPU just before application run\n" ); static int do_hsdk_init(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[]) { static bool done = false; int ret; /* hsdk_init can be run only once */ if (done) { printf("HSDK HW is already initialized! Please reset the board if you want to change the configuration.\n"); return CMD_RET_FAILURE; } ret = prepare_cpus(); if (!ret) done = true; return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS; } U_BOOT_CMD( hsdk_init, 1, 0, do_hsdk_init, "Synopsys HSDK specific command", "- Init HSDK HW\n" ); static int do_hsdk_clock_set(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[]) { int ret = 0; /* Strip off leading subcommand argument */ argc--; argv++; envs_cleanup_common(env_map_clock); if (!argc) { printf("Set clocks to values specified in environment\n"); ret = envs_read_common(env_map_clock); } else { printf("Set clocks to values specified in args\n"); ret = args_envs_enumerate(env_map_clock, 2, argc, argv); } if (ret) return CMD_RET_FAILURE; ret = envs_validate_common(env_map_clock); if (ret) return CMD_RET_FAILURE; /* Setup clock tree HW */ setup_clocks(); return CMD_RET_SUCCESS; } static int do_hsdk_clock_get(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[]) { ulong rate; if (soc_clk_ctl("cpu-clk", &rate, CLK_GET | CLK_MHZ)) return CMD_RET_FAILURE; if (env_set_ulong("cpu_freq", rate)) return CMD_RET_FAILURE; if (soc_clk_ctl("tun-clk", &rate, CLK_GET | CLK_MHZ)) return CMD_RET_FAILURE; if (env_set_ulong("tun_freq", rate)) return CMD_RET_FAILURE; if (soc_clk_ctl("axi-clk", &rate, CLK_GET | CLK_MHZ)) return CMD_RET_FAILURE; if (env_set_ulong("axi_freq", rate)) return CMD_RET_FAILURE; printf("Clock values are saved to environment\n"); return CMD_RET_SUCCESS; } static int do_hsdk_clock_print(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[]) { /* Main clocks */ soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ); return CMD_RET_SUCCESS; } static int do_hsdk_clock_print_all(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[]) { /* * NOTE: as of today we don't use some peripherals like HDMI / EBI * so we don't want to print their clocks ("hdmi-sys-clk", "hdmi-pll", * "hdmi-clk", "ebi-clk"). Nevertheless their clock subsystems is fully * functional and we can print their clocks if it is required */ /* CPU clock domain */ soc_clk_ctl("cpu-pll", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ); printf("\n"); /* SYS clock domain */ soc_clk_ctl("sys-pll", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("apb-clk", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("eth-clk", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("usb-clk", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("sdio-clk", NULL, CLK_PRINT | CLK_MHZ); /* soc_clk_ctl("hdmi-sys-clk", NULL, CLK_PRINT | CLK_MHZ); */ soc_clk_ctl("gfx-core-clk", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("gfx-dma-clk", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("gfx-cfg-clk", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("dmac-core-clk", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("dmac-cfg-clk", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("sdio-ref-clk", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("spi-clk", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("i2c-clk", NULL, CLK_PRINT | CLK_MHZ); /* soc_clk_ctl("ebi-clk", NULL, CLK_PRINT | CLK_MHZ); */ soc_clk_ctl("uart-clk", NULL, CLK_PRINT | CLK_MHZ); printf("\n"); /* DDR clock domain */ soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ); printf("\n"); /* HDMI clock domain */ /* soc_clk_ctl("hdmi-pll", NULL, CLK_PRINT | CLK_MHZ); */ /* soc_clk_ctl("hdmi-clk", NULL, CLK_PRINT | CLK_MHZ); */ /* printf("\n"); */ /* TUN clock domain */ soc_clk_ctl("tun-pll", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("rom-clk", NULL, CLK_PRINT | CLK_MHZ); soc_clk_ctl("pwm-clk", NULL, CLK_PRINT | CLK_MHZ); printf("\n"); return CMD_RET_SUCCESS; } cmd_tbl_t cmd_hsdk_clock[] = { U_BOOT_CMD_MKENT(set, 3, 0, do_hsdk_clock_set, "", ""), U_BOOT_CMD_MKENT(get, 3, 0, do_hsdk_clock_get, "", ""), U_BOOT_CMD_MKENT(print, 4, 0, do_hsdk_clock_print, "", ""), U_BOOT_CMD_MKENT(print_all, 4, 0, do_hsdk_clock_print_all, "", ""), }; static int do_hsdk_clock(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[]) { cmd_tbl_t *c; if (argc < 2) return CMD_RET_USAGE; /* Strip off leading 'hsdk_clock' command argument */ argc--; argv++; c = find_cmd_tbl(argv[0], cmd_hsdk_clock, ARRAY_SIZE(cmd_hsdk_clock)); if (!c) return CMD_RET_USAGE; return c->cmd(cmdtp, flag, argc, argv); } U_BOOT_CMD( hsdk_clock, CONFIG_SYS_MAXARGS, 0, do_hsdk_clock, "Synopsys HSDK specific clock command", "set - Set clock to values specified in environment / command line arguments\n" "hsdk_clock get - Save clock values to environment\n" "hsdk_clock print - Print main clock values to console\n" "hsdk_clock print_all - Print all clock values to console\n" ); /* init calls */ int board_early_init_f(void) { /* * Setup AXI apertures unconditionally as we want to have DDR * in 0x00000000 region when we are kicking slave cpus. */ init_memory_bridge(); return 0; } int board_early_init_r(void) { /* * TODO: Init USB here to be able read environment from USB MSD. * It can be done with usb_init() call. We can't do it right now * due to brocken USB IP SW reset and lack of USB IP HW reset in * linux kernel (if we init USB here we will break USB in linux) */ /* * Flush all d$ as we want to use uncached area with st.di / ld.di * instructions and we don't want to have any dirty line in L1d$ or SL$ * in this area. It is enough to flush all d$ once here as we access to * uncached area with regular st (non .di) instruction only when we copy * data during u-boot relocation. */ flush_dcache_all(); printf("Relocation Offset is: %08lx\n", gd->reloc_off); return 0; } int board_late_init(void) { /* * Populate environment with clock frequency values - * run hsdk_clock get callback without uboot command run. */ do_hsdk_clock_get(NULL, 0, 0, NULL); return 0; } int board_mmc_getcd(struct mmc *mmc) { struct dwmci_host *host = mmc->priv; return !(dwmci_readl(host, DWMCI_CDETECT) & 1); } int board_mmc_init(bd_t *bis) { struct dwmci_host *host = NULL; host = malloc(sizeof(struct dwmci_host)); if (!host) { printf("dwmci_host malloc fail!\n"); return 1; } /* * Switch SDIO external ciu clock divider from default div-by-8 to * minimum possible div-by-2. */ writel(SDIO_UHS_REG_EXT_DIV_2, (void __iomem *)SDIO_UHS_REG_EXT); memset(host, 0, sizeof(struct dwmci_host)); host->name = "Synopsys Mobile storage"; host->ioaddr = (void *)ARC_DWMMC_BASE; host->buswidth = 4; host->dev_index = 0; host->bus_hz = 50000000; add_dwmci(host, host->bus_hz / 2, 400000); return 0; } #ifdef CONFIG_DISPLAY_CPUINFO int print_cpuinfo(void) { printf("CPU: ARC HS38 v2.1c\n"); return 0; } #endif /* CONFIG_DISPLAY_CPUINFO */