/* * Copyright 2009-2011 Freescale Semiconductor, Inc. * Dave Liu * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include "fm.h" #include "../../qe/qe.h" /* For struct qe_firmware */ #ifdef CONFIG_SYS_QE_FW_IN_NAND #include #elif defined(CONFIG_SYS_QE_FW_IN_SPIFLASH) #include #elif defined(CONFIG_SYS_QE_FW_IN_MMC) #include #endif struct fm_muram muram[CONFIG_SYS_NUM_FMAN]; u32 fm_muram_base(int fm_idx) { return muram[fm_idx].base; } u32 fm_muram_alloc(int fm_idx, u32 size, u32 align) { u32 ret; u32 align_mask, off; u32 save; align_mask = align - 1; save = muram[fm_idx].alloc; off = save & align_mask; if (off != 0) muram[fm_idx].alloc += (align - off); off = size & align_mask; if (off != 0) size += (align - off); if ((muram[fm_idx].alloc + size) >= muram[fm_idx].top) { muram[fm_idx].alloc = save; printf("%s: run out of ram.\n", __func__); } ret = muram[fm_idx].alloc; muram[fm_idx].alloc += size; memset((void *)ret, 0, size); return ret; } static void fm_init_muram(int fm_idx, void *reg) { u32 base = (u32)reg; muram[fm_idx].base = base; muram[fm_idx].size = CONFIG_SYS_FM_MURAM_SIZE; muram[fm_idx].alloc = base + FM_MURAM_RES_SIZE; muram[fm_idx].top = base + CONFIG_SYS_FM_MURAM_SIZE; } /* * fm_upload_ucode - Fman microcode upload worker function * * This function does the actual uploading of an Fman microcode * to an Fman. */ static void fm_upload_ucode(int fm_idx, struct fm_imem *imem, u32 *ucode, unsigned int size) { unsigned int i; unsigned int timeout = 1000000; /* enable address auto increase */ out_be32(&imem->iadd, IRAM_IADD_AIE); /* write microcode to IRAM */ for (i = 0; i < size / 4; i++) out_be32(&imem->idata, ucode[i]); /* verify if the writing is over */ out_be32(&imem->iadd, 0); while ((in_be32(&imem->idata) != ucode[0]) && --timeout) ; if (!timeout) printf("Fman%u: microcode upload timeout\n", fm_idx + 1); /* enable microcode from IRAM */ out_be32(&imem->iready, IRAM_READY); } /* * Upload an Fman firmware * * This function is similar to qe_upload_firmware(), exception that it uploads * a microcode to the Fman instead of the QE. * * Because the process for uploading a microcode to the Fman is similar for * that of the QE, the QE firmware binary format is used for Fman microcode. * It should be possible to unify these two functions, but for now we keep them * separate. */ static int fman_upload_firmware(int fm_idx, struct fm_imem *fm_imem, const struct qe_firmware *firmware) { unsigned int i; u32 crc; size_t calc_size = sizeof(struct qe_firmware); size_t length; const struct qe_header *hdr; if (!firmware) { printf("Fman%u: Invalid address for firmware\n", fm_idx + 1); return -EINVAL; } hdr = &firmware->header; length = be32_to_cpu(hdr->length); /* Check the magic */ if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') || (hdr->magic[2] != 'F')) { printf("Fman%u: Data at %p is not a firmware\n", fm_idx + 1, firmware); return -EPERM; } /* Check the version */ if (hdr->version != 1) { printf("Fman%u: Unsupported firmware version %u\n", fm_idx + 1, hdr->version); return -EPERM; } /* Validate some of the fields */ if ((firmware->count != 1)) { printf("Fman%u: Invalid data in firmware header\n", fm_idx + 1); return -EINVAL; } /* Validate the length and check if there's a CRC */ calc_size += (firmware->count - 1) * sizeof(struct qe_microcode); for (i = 0; i < firmware->count; i++) /* * For situations where the second RISC uses the same microcode * as the first, the 'code_offset' and 'count' fields will be * zero, so it's okay to add those. */ calc_size += sizeof(u32) * be32_to_cpu(firmware->microcode[i].count); /* Validate the length */ if (length != calc_size + sizeof(u32)) { printf("Fman%u: Invalid length in firmware header\n", fm_idx + 1); return -EPERM; } /* * Validate the CRC. We would normally call crc32_no_comp(), but that * function isn't available unless you turn on JFFS support. */ crc = be32_to_cpu(*(u32 *)((void *)firmware + calc_size)); if (crc != (crc32(-1, (const void *)firmware, calc_size) ^ -1)) { printf("Fman%u: Firmware CRC is invalid\n", fm_idx + 1); return -EIO; } /* Loop through each microcode. */ for (i = 0; i < firmware->count; i++) { const struct qe_microcode *ucode = &firmware->microcode[i]; /* Upload a microcode if it's present */ if (ucode->code_offset) { u32 ucode_size; u32 *code; printf("Fman%u: Uploading microcode version %u.%u.%u\n", fm_idx + 1, ucode->major, ucode->minor, ucode->revision); code = (void *)firmware + ucode->code_offset; ucode_size = sizeof(u32) * ucode->count; fm_upload_ucode(fm_idx, fm_imem, code, ucode_size); } } return 0; } static u32 fm_assign_risc(int port_id) { u32 risc_sel, val; risc_sel = (port_id & 0x1) ? FMFPPRC_RISC2 : FMFPPRC_RISC1; val = (port_id << FMFPPRC_PORTID_SHIFT) & FMFPPRC_PORTID_MASK; val |= ((risc_sel << FMFPPRC_ORA_SHIFT) | risc_sel); return val; } static void fm_init_fpm(struct fm_fpm *fpm) { int i, port_id; u32 val; setbits_be32(&fpm->fmfpee, FMFPEE_EHM | FMFPEE_UEC | FMFPEE_CER | FMFPEE_DER); /* IM mode, each even port ID to RISC#1, each odd port ID to RISC#2 */ /* offline/parser port */ for (i = 0; i < MAX_NUM_OH_PORT; i++) { port_id = OH_PORT_ID_BASE + i; val = fm_assign_risc(port_id); out_be32(&fpm->fpmprc, val); } /* Rx 1G port */ for (i = 0; i < MAX_NUM_RX_PORT_1G; i++) { port_id = RX_PORT_1G_BASE + i; val = fm_assign_risc(port_id); out_be32(&fpm->fpmprc, val); } /* Tx 1G port */ for (i = 0; i < MAX_NUM_TX_PORT_1G; i++) { port_id = TX_PORT_1G_BASE + i; val = fm_assign_risc(port_id); out_be32(&fpm->fpmprc, val); } /* Rx 10G port */ port_id = RX_PORT_10G_BASE; val = fm_assign_risc(port_id); out_be32(&fpm->fpmprc, val); /* Tx 10G port */ port_id = TX_PORT_10G_BASE; val = fm_assign_risc(port_id); out_be32(&fpm->fpmprc, val); /* disable the dispatch limit in IM case */ out_be32(&fpm->fpmflc, FMFP_FLC_DISP_LIM_NONE); /* clear events */ out_be32(&fpm->fmfpee, FMFPEE_CLEAR_EVENT); /* clear risc events */ for (i = 0; i < 4; i++) out_be32(&fpm->fpmcev[i], 0xffffffff); /* clear error */ out_be32(&fpm->fpmrcr, FMFP_RCR_MDEC | FMFP_RCR_IDEC); } static int fm_init_bmi(int fm_idx, struct fm_bmi_common *bmi) { int blk, i, port_id; u32 val, offset, base; /* alloc free buffer pool in MURAM */ base = fm_muram_alloc(fm_idx, FM_FREE_POOL_SIZE, FM_FREE_POOL_ALIGN); if (!base) { printf("%s: no muram for free buffer pool\n", __func__); return -ENOMEM; } offset = base - fm_muram_base(fm_idx); /* Need 128KB total free buffer pool size */ val = offset / 256; blk = FM_FREE_POOL_SIZE / 256; /* in IM, we must not begin from offset 0 in MURAM */ val |= ((blk - 1) << FMBM_CFG1_FBPS_SHIFT); out_be32(&bmi->fmbm_cfg1, val); /* disable all BMI interrupt */ out_be32(&bmi->fmbm_ier, FMBM_IER_DISABLE_ALL); /* clear all events */ out_be32(&bmi->fmbm_ievr, FMBM_IEVR_CLEAR_ALL); /* * set port parameters - FMBM_PP_x * max tasks 10G Rx/Tx=12, 1G Rx/Tx 4, others is 1 * max dma 10G Rx/Tx=3, others is 1 * set port FIFO size - FMBM_PFS_x * 4KB for all Rx and Tx ports */ /* offline/parser port */ for (i = 0; i < MAX_NUM_OH_PORT; i++) { port_id = OH_PORT_ID_BASE + i - 1; /* max tasks=1, max dma=1, no extra */ out_be32(&bmi->fmbm_pp[port_id], 0); /* port FIFO size - 256 bytes, no extra */ out_be32(&bmi->fmbm_pfs[port_id], 0); } /* Rx 1G port */ for (i = 0; i < MAX_NUM_RX_PORT_1G; i++) { port_id = RX_PORT_1G_BASE + i - 1; /* max tasks=4, max dma=1, no extra */ out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(4)); /* FIFO size - 4KB, no extra */ out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf)); } /* Tx 1G port FIFO size - 4KB, no extra */ for (i = 0; i < MAX_NUM_TX_PORT_1G; i++) { port_id = TX_PORT_1G_BASE + i - 1; /* max tasks=4, max dma=1, no extra */ out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(4)); /* FIFO size - 4KB, no extra */ out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf)); } /* Rx 10G port */ port_id = RX_PORT_10G_BASE - 1; /* max tasks=12, max dma=3, no extra */ out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(12) | FMBM_PP_MXD(3)); /* FIFO size - 4KB, no extra */ out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf)); /* Tx 10G port */ port_id = TX_PORT_10G_BASE - 1; /* max tasks=12, max dma=3, no extra */ out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(12) | FMBM_PP_MXD(3)); /* FIFO size - 4KB, no extra */ out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf)); /* initialize internal buffers data base (linked list) */ out_be32(&bmi->fmbm_init, FMBM_INIT_START); return 0; } static void fm_init_qmi(struct fm_qmi_common *qmi) { /* disable enqueue and dequeue of QMI */ clrbits_be32(&qmi->fmqm_gc, FMQM_GC_ENQ_EN | FMQM_GC_DEQ_EN); /* disable all error interrupts */ out_be32(&qmi->fmqm_eien, FMQM_EIEN_DISABLE_ALL); /* clear all error events */ out_be32(&qmi->fmqm_eie, FMQM_EIE_CLEAR_ALL); /* disable all interrupts */ out_be32(&qmi->fmqm_ien, FMQM_IEN_DISABLE_ALL); /* clear all interrupts */ out_be32(&qmi->fmqm_ie, FMQM_IE_CLEAR_ALL); } /* Init common part of FM, index is fm num# like fm as above */ int fm_init_common(int index, struct ccsr_fman *reg) { int rc; char env_addr[32]; #if defined(CONFIG_SYS_FMAN_FW_ADDR) void *addr = (void *)CONFIG_SYS_FMAN_FW_ADDR; #elif defined(CONFIG_SYS_QE_FW_IN_NAND) size_t fw_length = CONFIG_SYS_FMAN_FW_LENGTH; void *addr = malloc(CONFIG_SYS_FMAN_FW_LENGTH); rc = nand_read(&nand_info[0], (loff_t)CONFIG_SYS_QE_FW_IN_NAND, &fw_length, (u_char *)addr); if (rc == -EUCLEAN) { printf("NAND read of FMAN firmware at offset 0x%x failed %d\n", CONFIG_SYS_QE_FW_IN_NAND, rc); } #elif defined(CONFIG_SYS_QE_FW_IN_SPIFLASH) struct spi_flash *ucode_flash; void *addr = malloc(CONFIG_SYS_FMAN_FW_LENGTH); int ret = 0; ucode_flash = spi_flash_probe(CONFIG_ENV_SPI_BUS, CONFIG_ENV_SPI_CS, CONFIG_ENV_SPI_MAX_HZ, CONFIG_ENV_SPI_MODE); if (!ucode_flash) printf("SF: probe for ucode failed\n"); else { ret = spi_flash_read(ucode_flash, CONFIG_SYS_QE_FW_IN_SPIFLASH, CONFIG_SYS_FMAN_FW_LENGTH, addr); if (ret) printf("SF: read for ucode failed\n"); spi_flash_free(ucode_flash); } #elif defined(CONFIG_SYS_QE_FW_IN_MMC) int dev = CONFIG_SYS_MMC_ENV_DEV; void *addr = malloc(CONFIG_SYS_FMAN_FW_LENGTH); u32 cnt = CONFIG_SYS_FMAN_FW_LENGTH / 512; u32 blk = CONFIG_SYS_QE_FW_IN_MMC / 512; struct mmc *mmc = find_mmc_device(CONFIG_SYS_MMC_ENV_DEV); if (!mmc) printf("\nMMC cannot find device for ucode\n"); else { printf("\nMMC read: dev # %u, block # %u, count %u ...\n", dev, blk, cnt); mmc_init(mmc); (void)mmc->block_dev.block_read(dev, blk, cnt, addr); /* flush cache after read */ flush_cache((ulong)addr, cnt * 512); } #endif /* Upload the Fman microcode if it's present */ rc = fman_upload_firmware(index, ®->fm_imem, addr); if (rc) return rc; sprintf(env_addr, "0x%lx", (long unsigned int)addr); setenv("fman_ucode", env_addr); fm_init_muram(index, ®->muram); fm_init_qmi(®->fm_qmi_common); fm_init_fpm(®->fm_fpm); /* clear DMA status */ setbits_be32(®->fm_dma.fmdmsr, FMDMSR_CLEAR_ALL); /* set DMA mode */ setbits_be32(®->fm_dma.fmdmmr, FMDMMR_SBER); return fm_init_bmi(index, ®->fm_bmi_common); }