upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/drivers/spi/cadence_qspi.c

345 lines
8.9 KiB

/*
* Copyright (C) 2012
* Altera Corporation <www.altera.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <dm.h>
#include <fdtdec.h>
#include <malloc.h>
#include <spi.h>
#include <asm/errno.h>
#include "cadence_qspi.h"
#define CQSPI_STIG_READ 0
#define CQSPI_STIG_WRITE 1
#define CQSPI_INDIRECT_READ 2
#define CQSPI_INDIRECT_WRITE 3
DECLARE_GLOBAL_DATA_PTR;
static int cadence_spi_write_speed(struct udevice *bus, uint hz)
{
struct cadence_spi_platdata *plat = bus->platdata;
struct cadence_spi_priv *priv = dev_get_priv(bus);
cadence_qspi_apb_config_baudrate_div(priv->regbase,
CONFIG_CQSPI_REF_CLK, hz);
/* Reconfigure delay timing if speed is changed. */
cadence_qspi_apb_delay(priv->regbase, CONFIG_CQSPI_REF_CLK, hz,
plat->tshsl_ns, plat->tsd2d_ns,
plat->tchsh_ns, plat->tslch_ns);
return 0;
}
/* Calibration sequence to determine the read data capture delay register */
static int spi_calibration(struct udevice *bus)
{
struct cadence_spi_platdata *plat = bus->platdata;
struct cadence_spi_priv *priv = dev_get_priv(bus);
void *base = priv->regbase;
u8 opcode_rdid = 0x9F;
unsigned int idcode = 0, temp = 0;
int err = 0, i, range_lo = -1, range_hi = -1;
/* start with slowest clock (1 MHz) */
cadence_spi_write_speed(bus, 1000000);
/* configure the read data capture delay register to 0 */
cadence_qspi_apb_readdata_capture(base, 1, 0);
/* Enable QSPI */
cadence_qspi_apb_controller_enable(base);
/* read the ID which will be our golden value */
err = cadence_qspi_apb_command_read(base, 1, &opcode_rdid,
3, (u8 *)&idcode);
if (err) {
puts("SF: Calibration failed (read)\n");
return err;
}
/* use back the intended clock and find low range */
cadence_spi_write_speed(bus, plat->max_hz);
for (i = 0; i < CQSPI_READ_CAPTURE_MAX_DELAY; i++) {
/* Disable QSPI */
cadence_qspi_apb_controller_disable(base);
/* reconfigure the read data capture delay register */
cadence_qspi_apb_readdata_capture(base, 1, i);
/* Enable back QSPI */
cadence_qspi_apb_controller_enable(base);
/* issue a RDID to get the ID value */
err = cadence_qspi_apb_command_read(base, 1, &opcode_rdid,
3, (u8 *)&temp);
if (err) {
puts("SF: Calibration failed (read)\n");
return err;
}
/* search for range lo */
if (range_lo == -1 && temp == idcode) {
range_lo = i;
continue;
}
/* search for range hi */
if (range_lo != -1 && temp != idcode) {
range_hi = i - 1;
break;
}
range_hi = i;
}
if (range_lo == -1) {
puts("SF: Calibration failed (low range)\n");
return err;
}
/* Disable QSPI for subsequent initialization */
cadence_qspi_apb_controller_disable(base);
/* configure the final value for read data capture delay register */
cadence_qspi_apb_readdata_capture(base, 1, (range_hi + range_lo) / 2);
debug("SF: Read data capture delay calibrated to %i (%i - %i)\n",
(range_hi + range_lo) / 2, range_lo, range_hi);
/* just to ensure we do once only when speed or chip select change */
priv->qspi_calibrated_hz = plat->max_hz;
priv->qspi_calibrated_cs = spi_chip_select(bus);
return 0;
}
static int cadence_spi_set_speed(struct udevice *bus, uint hz)
{
struct cadence_spi_platdata *plat = bus->platdata;
struct cadence_spi_priv *priv = dev_get_priv(bus);
int err;
/* Disable QSPI */
cadence_qspi_apb_controller_disable(priv->regbase);
cadence_spi_write_speed(bus, hz);
/* Calibration required for different SCLK speed or chip select */
if (priv->qspi_calibrated_hz != plat->max_hz ||
priv->qspi_calibrated_cs != spi_chip_select(bus)) {
err = spi_calibration(bus);
if (err)
return err;
}
/* Enable QSPI */
cadence_qspi_apb_controller_enable(priv->regbase);
debug("%s: speed=%d\n", __func__, hz);
return 0;
}
static int cadence_spi_probe(struct udevice *bus)
{
struct cadence_spi_platdata *plat = bus->platdata;
struct cadence_spi_priv *priv = dev_get_priv(bus);
priv->regbase = plat->regbase;
priv->ahbbase = plat->ahbbase;
if (!priv->qspi_is_init) {
cadence_qspi_apb_controller_init(plat);
priv->qspi_is_init = 1;
}
return 0;
}
static int cadence_spi_set_mode(struct udevice *bus, uint mode)
{
struct cadence_spi_priv *priv = dev_get_priv(bus);
unsigned int clk_pol = (mode & SPI_CPOL) ? 1 : 0;
unsigned int clk_pha = (mode & SPI_CPHA) ? 1 : 0;
/* Disable QSPI */
cadence_qspi_apb_controller_disable(priv->regbase);
/* Set SPI mode */
cadence_qspi_apb_set_clk_mode(priv->regbase, clk_pol, clk_pha);
/* Enable QSPI */
cadence_qspi_apb_controller_enable(priv->regbase);
return 0;
}
static int cadence_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev->parent;
struct cadence_spi_platdata *plat = bus->platdata;
struct cadence_spi_priv *priv = dev_get_priv(bus);
void *base = priv->regbase;
u8 *cmd_buf = priv->cmd_buf;
size_t data_bytes;
int err = 0;
u32 mode = CQSPI_STIG_WRITE;
if (flags & SPI_XFER_BEGIN) {
/* copy command to local buffer */
priv->cmd_len = bitlen / 8;
memcpy(cmd_buf, dout, priv->cmd_len);
}
if (flags == (SPI_XFER_BEGIN | SPI_XFER_END)) {
/* if start and end bit are set, the data bytes is 0. */
data_bytes = 0;
} else {
data_bytes = bitlen / 8;
}
debug("%s: len=%d [bytes]\n", __func__, data_bytes);
/* Set Chip select */
cadence_qspi_apb_chipselect(base, spi_chip_select(dev),
CONFIG_CQSPI_DECODER);
if ((flags & SPI_XFER_END) || (flags == 0)) {
if (priv->cmd_len == 0) {
printf("QSPI: Error, command is empty.\n");
return -1;
}
if (din && data_bytes) {
/* read */
/* Use STIG if no address. */
if (!CQSPI_IS_ADDR(priv->cmd_len))
mode = CQSPI_STIG_READ;
else
mode = CQSPI_INDIRECT_READ;
} else if (dout && !(flags & SPI_XFER_BEGIN)) {
/* write */
if (!CQSPI_IS_ADDR(priv->cmd_len))
mode = CQSPI_STIG_WRITE;
else
mode = CQSPI_INDIRECT_WRITE;
}
switch (mode) {
case CQSPI_STIG_READ:
err = cadence_qspi_apb_command_read(
base, priv->cmd_len, cmd_buf,
data_bytes, din);
break;
case CQSPI_STIG_WRITE:
err = cadence_qspi_apb_command_write(base,
priv->cmd_len, cmd_buf,
data_bytes, dout);
break;
case CQSPI_INDIRECT_READ:
err = cadence_qspi_apb_indirect_read_setup(plat,
priv->cmd_len, cmd_buf);
if (!err) {
err = cadence_qspi_apb_indirect_read_execute
(plat, data_bytes, din);
}
break;
case CQSPI_INDIRECT_WRITE:
err = cadence_qspi_apb_indirect_write_setup
(plat, priv->cmd_len, cmd_buf);
if (!err) {
err = cadence_qspi_apb_indirect_write_execute
(plat, data_bytes, dout);
}
break;
default:
err = -1;
break;
}
if (flags & SPI_XFER_END) {
/* clear command buffer */
memset(cmd_buf, 0, sizeof(priv->cmd_buf));
priv->cmd_len = 0;
}
}
return err;
}
static int cadence_spi_ofdata_to_platdata(struct udevice *bus)
{
struct cadence_spi_platdata *plat = bus->platdata;
const void *blob = gd->fdt_blob;
int node = bus->of_offset;
int subnode;
u32 data[4];
int ret;
/* 2 base addresses are needed, lets get them from the DT */
ret = fdtdec_get_int_array(blob, node, "reg", data, ARRAY_SIZE(data));
if (ret) {
printf("Error: Can't get base addresses (ret=%d)!\n", ret);
return -ENODEV;
}
plat->regbase = (void *)data[0];
plat->ahbbase = (void *)data[2];
/* Use 500KHz as a suitable default */
plat->max_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
500000);
/* All other paramters are embedded in the child node */
subnode = fdt_first_subnode(blob, node);
if (subnode < 0) {
printf("Error: subnode with SPI flash config missing!\n");
return -ENODEV;
}
/* Read other parameters from DT */
plat->page_size = fdtdec_get_int(blob, subnode, "page-size", 256);
plat->block_size = fdtdec_get_int(blob, subnode, "block-size", 16);
plat->tshsl_ns = fdtdec_get_int(blob, subnode, "tshsl-ns", 200);
plat->tsd2d_ns = fdtdec_get_int(blob, subnode, "tsd2d-ns", 255);
plat->tchsh_ns = fdtdec_get_int(blob, subnode, "tchsh-ns", 20);
plat->tslch_ns = fdtdec_get_int(blob, subnode, "tslch-ns", 20);
debug("%s: regbase=%p ahbbase=%p max-frequency=%d page-size=%d\n",
__func__, plat->regbase, plat->ahbbase, plat->max_hz,
plat->page_size);
return 0;
}
static const struct dm_spi_ops cadence_spi_ops = {
.xfer = cadence_spi_xfer,
.set_speed = cadence_spi_set_speed,
.set_mode = cadence_spi_set_mode,
/*
* cs_info is not needed, since we require all chip selects to be
* in the device tree explicitly
*/
};
static const struct udevice_id cadence_spi_ids[] = {
{ .compatible = "cadence,qspi" },
{ }
};
U_BOOT_DRIVER(cadence_spi) = {
.name = "cadence_spi",
.id = UCLASS_SPI,
.of_match = cadence_spi_ids,
.ops = &cadence_spi_ops,
.ofdata_to_platdata = cadence_spi_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct cadence_spi_platdata),
.priv_auto_alloc_size = sizeof(struct cadence_spi_priv),
.per_child_auto_alloc_size = sizeof(struct spi_slave),
.probe = cadence_spi_probe,
};