upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/board/Marvell/common/memory.c

1374 lines
49 KiB

/*
* Copyright - Galileo technology.
*
* SPDX-License-Identifier: GPL-2.0+
*/
/*
*
* written or collected and sometimes rewritten by
* Ingo Assmus <ingo.assmus@keymile.com>
*
*/
#include <common.h>
#include "../include/core.h"
#include "../include/memory.h"
/*******************************************************************************
* memoryGetBankBaseAddress - Returns the base address of a memory bank.
* DESCRIPTION:
* This function returns the base address of one of the SDRAM's memory
* banks. There are 4 memory banks and each one represents one DIMM side.
* INPUT:
* MEMORY_BANK bank - Selects one of the four banks as defined in Memory.h.
* OUTPUT:
* None.
* RETURN:
* 32 bit Memory bank base address.
*******************************************************************************/
static unsigned long memoryGetBankRegOffset (MEMORY_BANK bank)
{
switch (bank) {
case BANK0:
return SCS_0_LOW_DECODE_ADDRESS;
case BANK1:
return SCS_1_LOW_DECODE_ADDRESS;
case BANK2:
return SCS_2_LOW_DECODE_ADDRESS;
case BANK3:
return SCS_3_LOW_DECODE_ADDRESS;
}
return SCS_0_LOW_DECODE_ADDRESS; /* default value */
}
unsigned int memoryGetBankBaseAddress (MEMORY_BANK bank)
{
unsigned int base;
unsigned int regOffset = memoryGetBankRegOffset (bank);
GT_REG_READ (regOffset, &base);
base = base << 16; /* MV6436x */
return base;
}
/*******************************************************************************
* memoryGetDeviceBaseAddress - Returns the base address of a device.
* DESCRIPTION:
* This function returns the base address of a device on the system. There
* are 5 possible devices (0 - 4 and one boot device) as defined in
* gtMemory.h. Each of the device parameters is maped to one of the CS
* (Devices chip selects) base address register.
* INPUT:
* device - Selects one of the five devices as defined in Memory.h.
* OUTPUT:
* None.
* RETURN:
* 32 bit Device base address.
*
*******************************************************************************/
static unsigned int memoryGetDeviceRegOffset (DEVICE device)
{
switch (device) {
case DEVICE0:
return CS_0_LOW_DECODE_ADDRESS;
case DEVICE1:
return CS_1_LOW_DECODE_ADDRESS;
case DEVICE2:
return CS_2_LOW_DECODE_ADDRESS;
case DEVICE3:
return CS_3_LOW_DECODE_ADDRESS;
case BOOT_DEVICE:
return BOOTCS_LOW_DECODE_ADDRESS;
}
return CS_0_LOW_DECODE_ADDRESS; /* default value */
}
unsigned int memoryGetDeviceBaseAddress (DEVICE device)
{
unsigned int regBase;
unsigned int regOffset = memoryGetDeviceRegOffset (device);
GT_REG_READ (regOffset, &regBase);
regBase = regBase << 16; /* MV6436x */
return regBase;
}
/*******************************************************************************
* MemoryGetPciBaseAddr - Returns the base address of a PCI window.
* DESCRIPTION:
* This function returns the base address of a PCI window. There are 5
* possible PCI windows (memory 0 - 3 and one for I/O) for each PCI
* interface as defined in gtMemory.h, used by the CPU's address decoding
* mechanism.
* New in MV6436x
* INPUT:
* pciWindow - Selects one of the PCI windows as defined in Memory.h.
* OUTPUT:
* None.
* RETURN:
* 32 bit PCI window base address.
*******************************************************************************/
unsigned int MemoryGetPciBaseAddr (PCI_MEM_WINDOW pciWindow)
{
unsigned int baseAddrReg, base;
switch (pciWindow) {
case PCI_0_IO:
baseAddrReg = PCI_0I_O_LOW_DECODE_ADDRESS; /*PCI_0_IO_BASE_ADDR; */
break;
case PCI_0_MEM0:
baseAddrReg = PCI_0MEMORY0_LOW_DECODE_ADDRESS; /*PCI_0_MEMORY0_BASE_ADDR; */
break;
case PCI_0_MEM1:
baseAddrReg = PCI_0MEMORY1_LOW_DECODE_ADDRESS; /*PCI_0_MEMORY1_BASE_ADDR; */
break;
case PCI_0_MEM2:
baseAddrReg = PCI_0MEMORY2_LOW_DECODE_ADDRESS; /*PCI_0_MEMORY2_BASE_ADDR; */
break;
case PCI_0_MEM3:
baseAddrReg = PCI_0MEMORY3_LOW_DECODE_ADDRESS; /*PCI_0_MEMORY3_BASE_ADDR; */
break;
#ifdef INCLUDE_PCI_1
case PCI_1_IO:
baseAddrReg = PCI_1I_O_LOW_DECODE_ADDRESS; /*PCI_1_IO_BASE_ADDR; */
break;
case PCI_1_MEM0:
baseAddrReg = PCI_1MEMORY0_LOW_DECODE_ADDRESS; /*PCI_1_MEMORY0_BASE_ADDR; */
break;
case PCI_1_MEM1:
baseAddrReg = PCI_1MEMORY1_LOW_DECODE_ADDRESS; /*PCI_1_MEMORY1_BASE_ADDR; */
break;
case PCI_1_MEM2:
baseAddrReg = PCI_1MEMORY2_LOW_DECODE_ADDRESS; /*PCI_1_MEMORY2_BASE_ADDR; */
break;
case PCI_1_MEM3:
baseAddrReg = PCI_1MEMORY3_LOW_DECODE_ADDRESS; /*PCI_1_MEMORY3_BASE_ADDR; */
break;
#endif /* INCLUDE_PCI_1 */
default:
return 0xffffffff;
}
GT_REG_READ (baseAddrReg, &base);
return (base << 16);
}
/*******************************************************************************
* memoryGetBankSize - Returns the size of a memory bank.
* DESCRIPTION:
* This function returns the size of memory bank as described in
* 'gtMemoryGetBankBaseAddress' function.
* INPUT:
* bank - Selects one of the four banks as defined in Memory.h.
* OUTPUT:
* None.
* RETURN:
* 32 bit size memory bank size or 0 for a closed or non populated bank.
*
*******************************************************************************/
unsigned int memoryGetBankSize (MEMORY_BANK bank)
{
unsigned int sizeReg, size;
MEMORY_WINDOW window;
switch (bank) {
case BANK0:
sizeReg = SCS_0_HIGH_DECODE_ADDRESS; /* CS_0_SIZE; */
window = CS_0_WINDOW;
break;
case BANK1:
sizeReg = SCS_1_HIGH_DECODE_ADDRESS; /* CS_1_SIZE; */
window = CS_1_WINDOW;
break;
case BANK2:
sizeReg = SCS_2_HIGH_DECODE_ADDRESS; /* CS_2_SIZE; */
window = CS_2_WINDOW;
break;
case BANK3:
sizeReg = SCS_3_HIGH_DECODE_ADDRESS; /* CS_3_SIZE; */
window = CS_3_WINDOW;
break;
default:
return 0;
break;
}
/* If the window is closed, a size of 0 is returned */
if (MemoryGetMemWindowStatus (window) != MEM_WINDOW_ENABLED)
return 0;
GT_REG_READ (sizeReg, &size);
size = ((size << 16) | 0xffff) + 1;
return size;
}
/*******************************************************************************
* memoryGetDeviceSize - Returns the size of a device memory space.
* DESCRIPTION:
* This function returns the memory space size of a given device.
* INPUT:
* device - Selects one of the five devices as defined in Memory.h.
* OUTPUT:
* None.
* RETURN:
* 32 bit size of a device memory space.
*******************************************************************************/
unsigned int memoryGetDeviceSize (DEVICE device)
{
unsigned int sizeReg, size;
MEMORY_WINDOW window;
switch (device) {
case DEVICE0:
sizeReg = CS_0_HIGH_DECODE_ADDRESS; /*DEV_CS0_SIZE; */
window = DEVCS_0_WINDOW;
break;
case DEVICE1:
sizeReg = CS_1_HIGH_DECODE_ADDRESS; /*DEV_CS1_SIZE; */
window = DEVCS_1_WINDOW;
break;
case DEVICE2:
sizeReg = CS_2_HIGH_DECODE_ADDRESS; /*DEV_CS2_SIZE; */
window = DEVCS_2_WINDOW;
break;
case DEVICE3:
sizeReg = CS_3_HIGH_DECODE_ADDRESS; /*DEV_CS3_SIZE; */
window = DEVCS_3_WINDOW;
break;
case BOOT_DEVICE:
sizeReg = BOOTCS_HIGH_DECODE_ADDRESS; /*BOOTCS_SIZE; */
window = BOOT_CS_WINDOW;
break;
default:
return 0;
break;
}
/* If the window is closed, a size of 0 is returned */
if (MemoryGetMemWindowStatus (window) != MEM_WINDOW_ENABLED)
return 0;
GT_REG_READ (sizeReg, &size);
size = ((size << 16) | 0xffff) + 1;
return size;
}
/*******************************************************************************
* MemoryGetPciWindowSize - Returns the size of a PCI memory window.
* DESCRIPTION:
* This function returns the size of a PCI window.
* INPUT:
* pciWindow - Selects one of the PCI memory windows as defined in
* Memory.h.
* OUTPUT:
* None.
* RETURN:
* 32 bit size of a PCI memory window.
*******************************************************************************/
unsigned int MemoryGetPciWindowSize (PCI_MEM_WINDOW pciWindow)
{
unsigned int sizeReg, size;
switch (pciWindow) {
case PCI_0_IO:
sizeReg = PCI_0I_O_HIGH_DECODE_ADDRESS; /*PCI_0_IO_SIZE; */
break;
case PCI_0_MEM0:
sizeReg = PCI_0MEMORY0_HIGH_DECODE_ADDRESS; /*PCI_0_MEMORY0_SIZE; */
break;
case PCI_0_MEM1:
sizeReg = PCI_0MEMORY1_HIGH_DECODE_ADDRESS; /*PCI_0_MEMORY1_SIZE; */
break;
case PCI_0_MEM2:
sizeReg = PCI_0MEMORY2_HIGH_DECODE_ADDRESS; /*PCI_0_MEMORY2_SIZE; */
break;
case PCI_0_MEM3:
sizeReg = PCI_0MEMORY3_HIGH_DECODE_ADDRESS; /*PCI_0_MEMORY3_SIZE; */
break;
#ifdef INCLUDE_PCI_1
case PCI_1_IO:
sizeReg = PCI_1I_O_HIGH_DECODE_ADDRESS; /*PCI_1_IO_SIZE; */
break;
case PCI_1_MEM0:
sizeReg = PCI_1MEMORY0_HIGH_DECODE_ADDRESS; /*PCI_1_MEMORY0_SIZE; */
break;
case PCI_1_MEM1:
sizeReg = PCI_1MEMORY1_HIGH_DECODE_ADDRESS; /*PCI_1_MEMORY1_SIZE; */
break;
case PCI_1_MEM2:
sizeReg = PCI_1MEMORY2_HIGH_DECODE_ADDRESS; /*PCI_1_MEMORY2_SIZE; */
break;
case PCI_1_MEM3:
sizeReg = PCI_1MEMORY3_HIGH_DECODE_ADDRESS; /*PCI_1_MEMORY3_SIZE; */
break;
#endif /* INCLUDE_PCI_1 */
default:
return 0x0;
}
/* If the memory window is disabled, retrun size = 0 */
if (MemoryGetMemWindowStatus (PCI_0_IO_WINDOW << pciWindow)
== MEM_WINDOW_DISABLED)
return 0;
GT_REG_READ (sizeReg, &size);
size = ((size << 16) | 0xffff) + 1;
return size;
}
/*******************************************************************************
* memoryGetDeviceWidth - Returns the width of a given device.
* DESCRIPTION:
* The MV's device interface supports up to 32 Bit wide devices. A device
* can have a 1, 2, 4 or 8 Bytes data width. This function returns the
* width of a device as defined by the user or the operating system.
* INPUT:
* device - Selects one of the five devices as defined in Memory.h.
* OUTPUT:
* None.
* RETURN:
* Device width in Bytes (1,2,4 or 8), 0 if error had occurred.
*******************************************************************************/
unsigned int memoryGetDeviceWidth (DEVICE device)
{
unsigned int width;
unsigned int regValue;
GT_REG_READ (DEVICE_BANK0PARAMETERS + device * 4, &regValue);
width = (regValue & (BIT20 | BIT21)) >> 20;
return (BIT0 << width);
}
/*******************************************************************************
* memoryMapBank - Set new base address and size for one of the memory
* banks.
*
* DESCRIPTION:
* The CPU interface address decoding map consists of 21 address windows
* for the different devices (e.g. CS[3:0] ,PCI0 Mem 0/1/2/3...). Each
* window can have a minimum of 1Mbytes of address space, and up to 4Gbyte
* space. Each address window is defined by two registers - base and size.
* The CPU address is compared with the values in the various CPU windows
* until a match is found and the address is than targeted to that window.
* This function sets new base and size for one the memory banks
* (CS0 - CS3). It is the programmer`s responsibility to make sure that
* there are no conflicts with other memory spaces. When two memory spaces
* overlap, the MV's behavior is not defined .If a bank needs to be closed,
* set the 'bankLength' parameter size to 0x0.
*
* INPUT:
* bank - One of the memory banks (CS0-CS3) as defined in gtMemory.h.
* bankBase - The memory bank base address.
* bankLength - The memory bank size. This function will decrement the
* 'bankLength' parameter by one and then check if the size is
* valid. A valid size must be programed from LSB to MSB as
* sequence of '1's followed by sequence of '0's.
* To close a memory window simply set the size to 0.
* NOTE!!!
* The size must be in 64Kbyte granularity.
* The base address must be aligned to the size.
* OUTPUT:
* None.
* RETURN:
* false for invalid size, true otherwise.
*
* CAUTION: PCI_functions must be implemented later To_do !!!!!!!!!!!!!!!!!
*
*******************************************************************************/
bool memoryMapBank (MEMORY_BANK bank, unsigned int bankBase,
unsigned int bankLength)
{
unsigned int newBase, newSize, baseReg, sizeReg, temp, rShift;
/* PCI_INTERNAL_BAR pciBAR; */
switch (bank) {
case BANK0:
baseReg = SCS_0_LOW_DECODE_ADDRESS; /*CS_0_BASE_ADDR; */
sizeReg = SCS_0_HIGH_DECODE_ADDRESS; /*CS_0_SIZE; */
/* pciBAR = PCI_CS0_BAR; */
break;
case BANK1:
baseReg = SCS_1_LOW_DECODE_ADDRESS; /*CS_1_BASE_ADDR; */
sizeReg = SCS_1_HIGH_DECODE_ADDRESS; /*CS_1_SIZE; */
/* pciBAR = SCS_0_HIGH_DECODE_ADDRESS; */ /*PCI_CS1_BAR; */
break;
case BANK2:
baseReg = SCS_2_LOW_DECODE_ADDRESS; /*CS_2_BASE_ADDR; */
sizeReg = SCS_2_HIGH_DECODE_ADDRESS; /*CS_2_SIZE; */
/* pciBAR = PCI_CS2_BAR;*/
break;
case BANK3:
baseReg = SCS_3_LOW_DECODE_ADDRESS; /*CS_3_BASE_ADDR; */
sizeReg = SCS_3_HIGH_DECODE_ADDRESS; /*CS_3_SIZE; */
/* pciBAR = PCI_CS3_BAR; */
break;
default:
return false;
}
/* If the size is 0, the window will be disabled */
if (bankLength == 0) {
MemoryDisableWindow (CS_0_WINDOW << bank);
/* Disable the BAR from the PCI slave side */
/* gtPci0DisableInternalBAR(pciBAR); */
/* gtPci1DisableInternalBAR(pciBAR); */
return true;
}
/* The base address must be aligned to the size */
if ((bankBase % bankLength) != 0) {
return false;
}
if (bankLength >= MINIMUM_MEM_BANK_SIZE) {
newBase = bankBase >> 16;
newSize = bankLength >> 16;
/* Checking that the size is a sequence of '1' followed by a
sequence of '0' starting from LSB to MSB. */
temp = newSize - 1;
for (rShift = 0; rShift < 16; rShift++) {
temp = temp >> rShift;
if ((temp & 0x1) == 0) { /* Either we got to the last '1' */
/* or the size is not valid */
if (temp > 0x0)
return false;
else
break;
}
}
#ifdef DEBUG
{
unsigned int oldBase, oldSize;
GT_REG_READ (baseReg, &oldBase);
GT_REG_READ (sizeReg + 8, &oldSize);
printf ("b%d Base:%x Size:%x -> Base:%x Size:%x\n",
bank, oldBase, oldSize, newBase, newSize);
}
#endif
/* writing the new values */
GT_REG_WRITE (baseReg, newBase);
GT_REG_WRITE (sizeReg, newSize - 1);
/* Enable back the window */
MemoryEnableWindow (CS_0_WINDOW << bank);
/* Enable the BAR from the PCI slave side */
/* gtPci0EnableInternalBAR(pciBAR); */
/* gtPci1EnableInternalBAR(pciBAR); */
return true;
}
return false;
}
/*******************************************************************************
* memoryMapDeviceSpace - Set new base address and size for one of the device
* windows.
*
* DESCRIPTION:
* The CPU interface address decoding map consists of 21 address windows
* for the different devices (e.g. CS[3:0] ,PCI0 Mem 0/1/2/3...). Each
* window can have a minimum of 1Mbytes of address space, and up to 4Gbyte
* space. Each address window is defined by two registers - base and size.
* The CPU address is compared with the values in the various CPU windows
* until a match is found and the address is than targeted to that window.
* This function sets new base and size for one the device windows
* (DEV_CS0 - DEV_CS3). It is the programmer`s responsibility to make sure
* that there are no conflicts with other memory spaces. When two memory
* spaces overlap, the MV's behavior is not defined .If a device window
* needs to be closed, set the 'deviceLength' parameter size to 0x0.
*
* INPUT:
* device - One of the device windows (DEV_CS0-DEV_CS3) as
* defined in gtMemory.h.
* deviceBase - The device window base address.
* deviceLength - The device window size. This function will decrement
* the 'deviceLength' parameter by one and then
* check if the size is valid. A valid size must be
* programed from LSB to MSB as sequence of '1's
* followed by sequence of '0's.
* To close a memory window simply set the size to 0.
*
* NOTE!!!
* The size must be in 64Kbyte granularity.
* The base address must be aligned to the size.
*
* OUTPUT:
* None.
*
* RETURN:
* false for invalid size, true otherwise.
*
* CAUTION: PCI_functions must be implemented later To_do !!!!!!!!!!!!!!!!!
*
*******************************************************************************/
bool memoryMapDeviceSpace (DEVICE device, unsigned int deviceBase,
unsigned int deviceLength)
{
unsigned int newBase, newSize, baseReg, sizeReg, temp, rShift;
/* PCI_INTERNAL_BAR pciBAR;*/
switch (device) {
case DEVICE0:
baseReg = CS_0_LOW_DECODE_ADDRESS; /*DEV_CS0_BASE_ADDR; */
sizeReg = CS_0_HIGH_DECODE_ADDRESS; /*DEV_CS0_SIZE; */
/* pciBAR = PCI_DEV_CS0_BAR; */
break;
case DEVICE1:
baseReg = CS_1_LOW_DECODE_ADDRESS; /*DEV_CS1_BASE_ADDR; */
sizeReg = CS_1_HIGH_DECODE_ADDRESS; /*DEV_CS1_SIZE; */
/* pciBAR = PCI_DEV_CS1_BAR; */
break;
case DEVICE2:
baseReg = CS_2_LOW_DECODE_ADDRESS; /*DEV_CS2_BASE_ADDR; */
sizeReg = CS_2_HIGH_DECODE_ADDRESS; /*DEV_CS2_SIZE; */
/* pciBAR = PCI_DEV_CS2_BAR; */
break;
case DEVICE3:
baseReg = CS_3_LOW_DECODE_ADDRESS; /*DEV_CS3_BASE_ADDR; */
sizeReg = CS_3_HIGH_DECODE_ADDRESS; /*DEV_CS3_SIZE; */
/* pciBAR = PCI_DEV_CS3_BAR; */
break;
case BOOT_DEVICE:
baseReg = BOOTCS_LOW_DECODE_ADDRESS; /*BOOTCS_BASE_ADDR; */
sizeReg = BOOTCS_HIGH_DECODE_ADDRESS; /*BOOTCS_SIZE; */
/* pciBAR = PCI_BOOT_CS_BAR; */
break;
default:
return false;
}
if (deviceLength == 0) {
MemoryDisableWindow (DEVCS_0_WINDOW << device);
/* Disable the BAR from the PCI slave side */
/* gtPci0DisableInternalBAR(pciBAR); */
/* gtPci1DisableInternalBAR(pciBAR); */
return true;
}
/* The base address must be aligned to the size */
if ((deviceBase % deviceLength) != 0) {
return false;
}
if (deviceLength >= MINIMUM_DEVICE_WINDOW_SIZE) {
newBase = deviceBase >> 16;
newSize = deviceLength >> 16;
/* Checking that the size is a sequence of '1' followed by a
sequence of '0' starting from LSB to MSB. */
temp = newSize - 1;
for (rShift = 0; rShift < 16; rShift++) {
temp = temp >> rShift;
if ((temp & 0x1) == 0) { /* Either we got to the last '1' */
/* or the size is not valid */
if (temp > 0x0)
return false;
else
break;
}
}
/* writing the new values */
GT_REG_WRITE (baseReg, newBase);
GT_REG_WRITE (sizeReg, newSize - 1);
MemoryEnableWindow (DEVCS_0_WINDOW << device);
/* Enable the BAR from the PCI slave side */
/* gtPci0EnableInternalBAR(pciBAR); */
/* gtPci1EnableInternalBAR(pciBAR); */
return true;
}
return false;
}
/*******************************************************************************
* MemorySetPciWindow - Set new base address and size for one of the PCI
* windows.
*
* DESCRIPTION:
* The CPU interface address decoding map consists of 21 address windows
* for the different devices (e.g. CS[3:0] ,PCI0 Mem 0/1/2/3...). Each
* window can have a minimum of 1Mbytes of address space, and up to 4Gbyte
* space. Each address window is defined by two registers - base and size.
* The CPU address is compared with the values in the various CPU windows
* until a match is found and the address is than targeted to that window.
* This function sets new base and size for one the PCI windows
* (PCI memory0/1/2..). It is the programmer`s responsibility to make sure
* that there are no conflicts with other memory spaces. When two memory
* spaces overlap, the MV's behavior is not defined. If a PCI window
* needs to be closed, set the 'pciWindowSize' parameter size to 0x0.
*
* INPUT:
* pciWindow - One of the PCI windows as defined in gtMemory.h.
* pciWindowBase - The PCI window base address.
* pciWindowSize - The PCI window size. This function will decrement the
* 'pciWindowSize' parameter by one and then check if the
* size is valid. A valid size must be programed from LSB
* to MSB as sequence of '1's followed by sequence of '0's.
* To close a memory window simply set the size to 0.
*
* NOTE!!!
* The size must be in 64Kbyte granularity.
* The base address must be aligned to the size.
*
* OUTPUT:
* None.
*
* RETURN:
* false for invalid size, true otherwise.
*
*******************************************************************************/
bool memorySetPciWindow (PCI_MEM_WINDOW pciWindow, unsigned int pciWindowBase,
unsigned int pciWindowSize)
{
unsigned int currentLow, baseAddrReg, sizeReg, temp, rShift;
switch (pciWindow) {
case PCI_0_IO:
baseAddrReg = PCI_1I_O_LOW_DECODE_ADDRESS; /*PCI_0_IO_BASE_ADDR; */
sizeReg = PCI_0I_O_HIGH_DECODE_ADDRESS; /*PCI_0_IO_SIZE; */
break;
case PCI_0_MEM0:
baseAddrReg = PCI_0MEMORY0_LOW_DECODE_ADDRESS; /*PCI_0_MEMORY0_BASE_ADDR; */
sizeReg = PCI_0MEMORY0_HIGH_DECODE_ADDRESS; /*PCI_0_MEMORY0_SIZE; */
break;
case PCI_0_MEM1:
baseAddrReg = PCI_0MEMORY1_LOW_DECODE_ADDRESS; /*PCI_0_MEMORY1_BASE_ADDR; */
sizeReg = PCI_0MEMORY1_HIGH_DECODE_ADDRESS; /*PCI_0_MEMORY1_SIZE; */
break;
case PCI_0_MEM2:
baseAddrReg = PCI_0MEMORY2_LOW_DECODE_ADDRESS; /*PCI_0_MEMORY2_BASE_ADDR; */
sizeReg = PCI_0MEMORY2_HIGH_DECODE_ADDRESS; /*PCI_0_MEMORY2_SIZE; */
break;
case PCI_0_MEM3:
baseAddrReg = PCI_0MEMORY3_LOW_DECODE_ADDRESS; /*PCI_0_MEMORY3_BASE_ADDR; */
sizeReg = PCI_0MEMORY3_HIGH_DECODE_ADDRESS; /*PCI_0_MEMORY3_SIZE; */
break;
#ifdef INCLUDE_PCI_1
case PCI_1_IO:
baseAddrReg = PCI_1I_O_LOW_DECODE_ADDRESS; /*PCI_1_IO_BASE_ADDR; */
sizeReg = PCI_1I_O_HIGH_DECODE_ADDRESS; /*PCI_1_IO_SIZE; */
break;
case PCI_1_MEM0:
baseAddrReg = PCI_1MEMORY0_LOW_DECODE_ADDRESS; /*PCI_1_MEMORY0_BASE_ADDR; */
sizeReg = PCI_1MEMORY0_HIGH_DECODE_ADDRESS; /*PCI_1_MEMORY0_SIZE; */
break;
case PCI_1_MEM1:
baseAddrReg = PCI_1MEMORY1_LOW_DECODE_ADDRESS; /*PCI_1_MEMORY1_BASE_ADDR; */
sizeReg = PCI_1MEMORY1_HIGH_DECODE_ADDRESS; /*PCI_1_MEMORY1_SIZE; */
break;
case PCI_1_MEM2:
baseAddrReg = PCI_1MEMORY2_LOW_DECODE_ADDRESS; /*PCI_1_MEMORY2_BASE_ADDR; */
sizeReg = PCI_1MEMORY2_HIGH_DECODE_ADDRESS; /*PCI_1_MEMORY2_SIZE; */
break;
case PCI_1_MEM3:
baseAddrReg = PCI_1MEMORY3_LOW_DECODE_ADDRESS; /*PCI_1_MEMORY3_BASE_ADDR; */
sizeReg = PCI_1MEMORY3_HIGH_DECODE_ADDRESS; /*PCI_1_MEMORY3_SIZE; */
break;
#endif /* INCLUDE_PCI_1 */
default:
return false;
}
if (pciWindowSize == 0) {
MemoryDisableWindow (PCI_0_IO_WINDOW << pciWindow);
return true;
}
/* The base address must be aligned to the size */
if ((pciWindowBase % pciWindowSize) != 0) {
return false;
}
if (pciWindowSize >= MINIMUM_PCI_WINDOW_SIZE) {
pciWindowBase >>= 16;
pciWindowSize >>= 16;
/* Checking that the size is a sequence of '1' followed by a
sequence of '0' starting from LSB to MSB. */
temp = pciWindowSize - 1;
for (rShift = 0; rShift < 16; rShift++) {
temp = temp >> rShift;
if ((temp & 0x1) == 0) { /* Either we got to the last '1' */
/* or the size is not valid */
if (temp > 0x0)
return false;
else
break;
}
}
GT_REG_WRITE (sizeReg, pciWindowSize - 1);
GT_REG_READ (baseAddrReg, &currentLow);
pciWindowBase =
(pciWindowBase & 0xfffff) | (currentLow & 0xfff00000);
GT_REG_WRITE (baseAddrReg, pciWindowBase);
MemoryEnableWindow (PCI_0_IO_WINDOW << pciWindow);
return true;
}
return false;
}
/*******************************************************************************
* memoryMapInternalRegistersSpace - Sets new base address for the internal
* registers memory space.
*
* DESCRIPTION:
* This function set new base address for the internal registers memory
* space (the size is fixed and cannot be modified). The function does not
* handle overlapping with other memory spaces, it is the programer's
* responsibility to ensure that overlapping does not occur.
* When two memory spaces overlap, the MV's behavior is not defined.
*
* INPUT:
* internalRegBase - new base address for the internal registers memory
* space.
*
* OUTPUT:
* None.
*
* RETURN:
* true on success, false on failure
*
*******************************************************************************/
/********************************************************************
* memoryMapInternalRegistersSpace - Sets new base address for the internals
* registers.
*
* INPUTS: unsigned int internalRegBase - The new base address.
* RETURNS: true on success, false on failure
*********************************************************************/
bool memoryMapInternalRegistersSpace (unsigned int internalRegBase)
{
unsigned int currentValue;
unsigned int internalValue = internalRegBase;
internalRegBase = (internalRegBase >> 16);
GT_REG_READ (INTERNAL_SPACE_DECODE, &currentValue);
internalRegBase = (currentValue & 0xff000000) | internalRegBase;
GT_REG_WRITE (INTERNAL_SPACE_DECODE, internalRegBase);
/* initializing also the global variable 'internalRegBaseAddr' */
/* gtInternalRegBaseAddr = internalValue; */
INTERNAL_REG_BASE_ADDR = internalValue;
return true;
}
/*******************************************************************************
* memoryGetInternalRegistersSpace - Returns the internal registers Base
* address.
*
* DESCRIPTION:
* This function returns the base address of the internal registers
* memory space .
*
* INPUT:
* None.
*
* OUTPUT:
* None.
*
* RETURN:
* 32 bit base address of the internal registers memory space.
*
*******************************************************************************/
unsigned int memoryGetInternalRegistersSpace (void)
{
unsigned int currentValue = 0;
GT_REG_READ (INTERNAL_SPACE_DECODE, &currentValue);
return ((currentValue & 0x000fffff) << 16);
}
/*******************************************************************************
* gtMemoryGetInternalSramBaseAddr - Returns the integrated SRAM base address.
*
* DESCRIPTION:
* The Atlantis incorporate integrated 2Mbit SRAM for general use. This
* funcnion return the SRAM's base address.
* INPUT:
* None.
* OUTPUT:
* None.
* RETURN:
* 32 bit SRAM's base address.
*
*******************************************************************************/
unsigned int memoryGetInternalSramBaseAddr (void)
{
return ((GTREGREAD (INTEGRATED_SRAM_BASE_ADDR) & 0xfffff) << 16);
}
/*******************************************************************************
* gtMemorySetInternalSramBaseAddr - Set the integrated SRAM base address.
*
* DESCRIPTION:
* The Atlantis incorporate integrated 2Mbit SRAM for general use. This
* function sets a new base address to the SRAM .
* INPUT:
* sramBaseAddress - The SRAM's base address.
* OUTPUT:
* None.
* RETURN:
* None.
*
*******************************************************************************/
void gtMemorySetInternalSramBaseAddr (unsigned int sramBaseAddress)
{
GT_REG_WRITE (INTEGRATED_SRAM_BASE_ADDR, sramBaseAddress >> 16);
}
/*******************************************************************************
* memorySetProtectRegion - Set protection mode for one of the 8 regions.
*
* DESCRIPTION:
* The CPU interface supports configurable access protection. This includes
* up to eight address ranges defined to a different protection type :
* whether the address range is cacheable or not, whether it is writable or
* not , and whether it is accessible or not. A Low and High registers
* define each window while the minimum address range of each window is
* 1Mbyte. An address driven by the CPU, in addition to the address
* decoding and remapping process, is compared against the eight Access
* Protection Low/High registers , if an address matches one of the windows
* , the MV device checks the transaction type against the protection bits
* defined in CPU Access Protection register, to determine if the access is
* allowed. This function set a protection mode to one of the 8 possible
* regions.
* NOTE:
* The CPU address windows are restricted to a size of 2 power n and the
* start address must be aligned to the window size. For example, if using
* a 16 MB window, the start address bits [23:0] must be 0.The MV's
* internal registers space is not protected, even if the access protection
* windows contain this space.
*
* INPUT:
* region - selects which region to be configured. The values defined in
* gtMemory.h:
*
* - MEM_REGION0
* - MEM_REGION1
* - etc.
*
* memAccess - Allows or forbids access (read or write ) to the region. The
* values defined in gtMemory.h:
*
* - MEM_ACCESS_ALLOWED
* - MEM_ACCESS_FORBIDEN
*
* memWrite - CPU write protection to the region. The values defined in
* gtMemory.h:
*
* - MEM_WRITE_ALLOWED
* - MEM_WRITE_FORBIDEN
*
* cacheProtection - Defines whether caching the region is allowed or not.
* The values defined in gtMemory.h:
*
* - MEM_CACHE_ALLOWED
* - MEM_CACHE_FORBIDEN
*
* baseAddress - the region's base Address.
* regionSize - The region's size. This function will decrement the
* 'regionSize' parameter by one and then check if the size
* is valid. A valid size must be programed from LSB to MSB
* as sequence of '1's followed by sequence of '0's.
* To close a memory window simply set the size to 0.
*
* NOTE!!!
* The size must be in 64Kbyte granularity.
* The base address must be aligned to the size.
*
* OUTPUT:
* None.
*
* RETURN:
* false for invalid size, true otherwise.
*
*******************************************************************************/
bool memorySetProtectRegion (MEMORY_PROTECT_WINDOW window,
MEMORY_ACCESS memAccess,
MEMORY_ACCESS_WRITE memWrite,
MEMORY_CACHE_PROTECT cacheProtection,
unsigned int baseAddress, unsigned int size)
{
unsigned int dataForReg, temp, rShift;
if (size == 0) {
GT_REG_WRITE ((CPU_PROTECT_WINDOW_0_SIZE + 0x10 * window),
0x0);
return true;
}
/* The base address must be aligned to the size. */
if (baseAddress % size != 0) {
return false;
}
if (size >= MINIMUM_ACCESS_WIN_SIZE) {
baseAddress = ((baseAddress >> 16) & 0xfffff);
dataForReg = baseAddress | ((memAccess << 20) & BIT20) |
((memWrite << 21) & BIT21) | ((cacheProtection << 22)
& BIT22) | BIT31;
GT_REG_WRITE (CPU_PROTECT_WINDOW_0_BASE_ADDR + 0x10 * window,
dataForReg);
size >>= 16;
/* Checking that the size is a sequence of '1' followed by a
sequence of '0' starting from LSB to MSB. */
temp = size - 1;
for (rShift = 0; rShift < 16; rShift++) {
temp = temp >> rShift;
if ((temp & 0x1) == 0) { /* Either we got to the last '1' */
/* or the size is not valid */
if (temp > 0x0)
return false;
else
break;
}
}
GT_REG_WRITE ((CPU_PROTECT_WINDOW_0_SIZE + 0x10 * window),
size - 1);
return true;
}
return false;
}
/*******************************************************************************
* gtMemoryDisableProtectRegion - Disable a protected window.
*
* DESCRIPTION:
* This function disable a protected window set by
* 'gtMemorySetProtectRegion' function.
*
* INPUT:
* window - one of the 4 windows ( defined in gtMemory.h ).
*
* OUTPUT:
* None.
*
* RETURN:
* None.
*
*******************************************************************************/
void memoryDisableProtectRegion (MEMORY_PROTECT_WINDOW window)
{
RESET_REG_BITS (((CPU_PROTECT_WINDOW_0_BASE_ADDR) + (0x10 * window)),
BIT31);
}
/*******************************************************************************
* memorySetPciRemapValue - Set a remap value to a PCI memory space target.
*
* DESCRIPTION:
* In addition to the address decoding mechanism, the CPU has an address
* remapping mechanism to be used by every PCI decoding window. Each PCI
* window can be remaped to a desired address target according to the remap
* value within the remap register. The address remapping is useful when a
* CPU address range must be reallocated to a different location on the
* PCI bus. Also, it enables CPU access to a PCI agent located above the
* 4Gbyte space. On system boot, each of the PCI memory spaces is maped to
* a defualt value (see CPU interface section in the MV spec for the
* default values). The remap mechanism does not always produce the desired
* address on the PCI bus because of the remap mechanism way of working
* (to fully understand why, please see the 'Address Remapping' section in
* the MV's spec). Therefor, this function sets a desired remap value to
* one of the PCI memory windows and return the effective address that
* should be used when exiting the PCI memory window. You should ALWAYS use
* the returned value by this function when remapping a PCI window and
* exiting it. If for example the base address of PCI0 memory 0 is
* 0x90000000, the size is 0x03ffffff and the remap value is 0x11000000,
* the function will return the value of 0x91000000 that MUST
* be used to exit this memory window in order to achive the deisred
* remapping.
*
* INPUT:
* memoryWindow - One of the PCI memory windows as defined in Memory.h
* remapValueLow - The low remap value.
* remapValueHigh - The high remap value.
* OUTPUT:
* None.
*
* RETURN:
* The effective base address to exit the PCI, or 0xffffffff if one of the
* parameters is erroneous or the effective base address is higher the top
* decode value.
*
*******************************************************************************/
unsigned int memorySetPciRemapValue (PCI_MEM_WINDOW memoryWindow,
unsigned int remapValueHigh,
unsigned int remapValueLow)
{
unsigned int pciMemWindowBaseAddrReg = 0, baseAddrValue = 0;
unsigned int pciMemWindowSizeReg = 0, windowSizeValue = 0;
unsigned int effectiveBaseAddress, remapRegLow, remapRegHigh;
/* Initializing the base and size variables of the PCI
memory windows */
switch (memoryWindow) {
case PCI_0_IO:
pciMemWindowBaseAddrReg = PCI_0_IO_BASE_ADDR;
pciMemWindowSizeReg = PCI_0_IO_SIZE;
remapRegLow = PCI_0_IO_ADDR_REMAP;
remapRegHigh = PCI_0_IO_ADDR_REMAP;
break;
case PCI_0_MEM0:
pciMemWindowBaseAddrReg = PCI_0_MEMORY0_BASE_ADDR;
pciMemWindowSizeReg = PCI_0_MEMORY0_SIZE;
remapRegLow = PCI_0_MEMORY0_LOW_ADDR_REMAP;
remapRegHigh = PCI_0_MEMORY0_HIGH_ADDR_REMAP;
break;
case PCI_0_MEM1:
pciMemWindowBaseAddrReg = PCI_0_MEMORY1_BASE_ADDR;
pciMemWindowSizeReg = PCI_0_MEMORY1_SIZE;
remapRegLow = PCI_0_MEMORY1_LOW_ADDR_REMAP;
remapRegHigh = PCI_0_MEMORY1_HIGH_ADDR_REMAP;
break;
case PCI_0_MEM2:
pciMemWindowBaseAddrReg = PCI_0_MEMORY2_BASE_ADDR;
pciMemWindowSizeReg = PCI_0_MEMORY2_SIZE;
remapRegLow = PCI_0_MEMORY2_LOW_ADDR_REMAP;
remapRegHigh = PCI_0_MEMORY2_HIGH_ADDR_REMAP;
break;
case PCI_0_MEM3:
pciMemWindowBaseAddrReg = PCI_0_MEMORY3_BASE_ADDR;
pciMemWindowSizeReg = PCI_0_MEMORY3_SIZE;
remapRegLow = PCI_0_MEMORY3_LOW_ADDR_REMAP;
remapRegHigh = PCI_0_MEMORY3_HIGH_ADDR_REMAP;
break;
#ifdef INCLUDE_PCI_1
case PCI_1_IO:
pciMemWindowBaseAddrReg = PCI_1_IO_BASE_ADDR;
pciMemWindowSizeReg = PCI_1_IO_SIZE;
remapRegLow = PCI_1_IO_ADDR_REMAP;
remapRegHigh = PCI_1_IO_ADDR_REMAP;
break;
case PCI_1_MEM0:
pciMemWindowBaseAddrReg = PCI_1_MEMORY0_BASE_ADDR;
pciMemWindowSizeReg = PCI_1_MEMORY0_SIZE;
remapRegLow = PCI_1_MEMORY0_LOW_ADDR_REMAP;
remapRegHigh = PCI_1_MEMORY0_HIGH_ADDR_REMAP;
break;
case PCI_1_MEM1:
pciMemWindowBaseAddrReg = PCI_1_MEMORY1_BASE_ADDR;
pciMemWindowSizeReg = PCI_1_MEMORY1_SIZE;
remapRegLow = PCI_1_MEMORY1_LOW_ADDR_REMAP;
remapRegHigh = PCI_1_MEMORY1_HIGH_ADDR_REMAP;
break;
case PCI_1_MEM2:
pciMemWindowBaseAddrReg = PCI_1_MEMORY1_BASE_ADDR;
pciMemWindowSizeReg = PCI_1_MEMORY1_SIZE;
remapRegLow = PCI_1_MEMORY1_LOW_ADDR_REMAP;
remapRegHigh = PCI_1_MEMORY1_HIGH_ADDR_REMAP;
break;
case PCI_1_MEM3:
pciMemWindowBaseAddrReg = PCI_1_MEMORY3_BASE_ADDR;
pciMemWindowSizeReg = PCI_1_MEMORY3_SIZE;
remapRegLow = PCI_1_MEMORY3_LOW_ADDR_REMAP;
remapRegHigh = PCI_1_MEMORY3_HIGH_ADDR_REMAP;
break;
#endif /* INCLUDE_PCI_1 */
default:
/* Retrun an invalid effective base address */
return 0xffffffff;
}
/* Writing the remap value to the remap regisers */
GT_REG_WRITE (remapRegHigh, remapValueHigh);
GT_REG_WRITE (remapRegLow, remapValueLow >> 16);
/* Reading the values from the base address and size registers */
baseAddrValue = GTREGREAD (pciMemWindowBaseAddrReg) & 0xfffff;
windowSizeValue = GTREGREAD (pciMemWindowSizeReg) & 0xffff;
/* Start calculating the effective Base Address */
effectiveBaseAddress = baseAddrValue << 16;
/* The effective base address will be combined from the chopped (if any)
remap value (according to the size value and remap mechanism) and the
window's base address */
effectiveBaseAddress |=
(((windowSizeValue << 16) | 0xffff) & remapValueLow);
/* If the effectiveBaseAddress exceed the window boundaries return an
invalid value. */
if (effectiveBaseAddress >
((baseAddrValue << 16) + ((windowSizeValue << 16) | 0xffff)))
return 0xffffffff;
return effectiveBaseAddress;
}
/********************************************************************
* memorySetRegionSnoopMode - This function modifys one of the 4 regions which
* supports Cache Coherency.
*
*
* Inputs: SNOOP_REGION region - One of the four regions.
* SNOOP_TYPE snoopType - There is four optional Types:
* 1. No Snoop.
* 2. Snoop to WT region.
* 3. Snoop to WB region.
* 4. Snoop & Invalidate to WB region.
* unsigned int baseAddress - Base Address of this region.
* unsigned int topAddress - Top Address of this region.
* Returns: false if one of the parameters is wrong and true else
*********************************************************************/
/* evb6260 code */
#if 0
bool memorySetRegionSnoopMode(MEMORY_SNOOP_REGION region,
MEMORY_SNOOP_TYPE snoopType,
unsigned int baseAddress,
unsigned int regionLength)
{
unsigned int snoopXbaseAddress;
unsigned int snoopXtopAddress;
unsigned int data;
unsigned int snoopHigh = baseAddress + regionLength;
if( (region > MEM_SNOOP_REGION3) || (snoopType > MEM_SNOOP_WB) )
return false;
snoopXbaseAddress = SNOOP_BASE_ADDRESS_0 + 0x10 * region;
snoopXtopAddress = SNOOP_TOP_ADDRESS_0 + 0x10 * region;
if(regionLength == 0) /* closing the region */
{
GT_REG_WRITE(snoopXbaseAddress,0x0000ffff);
GT_REG_WRITE(snoopXtopAddress,0);
return true;
}
baseAddress = baseAddress & 0xffff0000;
data = (baseAddress >> 16) | snoopType << 16;
GT_REG_WRITE(snoopXbaseAddress,data);
snoopHigh = (snoopHigh & 0xfff00000) >> 20;
GT_REG_WRITE(snoopXtopAddress,snoopHigh - 1);
return true;
}
#endif
/********************************************************************
* memoryRemapAddress - This fubction used for address remapping.
*
*
* Inputs: regOffset: remap register
* remapValue :
* Returns: false if one of the parameters is erroneous,true otherwise.
*
* Not needed function To_do !!!!
*********************************************************************/
bool memoryRemapAddress (unsigned int remapReg, unsigned int remapValue)
{
unsigned int valueForReg;
valueForReg = (remapValue & 0xfff00000) >> 20;
GT_REG_WRITE (remapReg, valueForReg);
return true;
}
/*******************************************************************************
* memoryGetDeviceParam - Extract the device parameters from the device bank
* parameters register.
*
* DESCRIPTION:
* To allow interfacing with very slow devices and fast synchronous SRAMs,
* each device can be programed to different timing parameters. Each bank
* has its own parameters register. Bank width can be programmed to 8, 16,
* or 32-bits. Bank timing parameters can be programmed to support
* different device types (e.g. Sync Burst SRAM, Flash , ROM, I/O
* Controllers). The MV allows you to set timing parameters and width for
* each device through parameters register .
* This function extracts the parameters described from the Device Bank
* parameters register and fills the given 'deviceParam' (defined in
* gtMemory.h) structure with the read data.
*
* INPUT:
* deviceParam - pointer to a structure DEVICE_PARAM (defined in
* Memory.h).For details about each structure field please
* see the device timing parameter section in the MV
* datasheet.
* deviceNum - Select on of the five device banks (defined in
* Memory.h) :
*
* - DEVICE0
* - DEVICE1
* - DEVICE2
* - etc.
*
* OUTPUT:
* None.
*
* RETURN:
* false if one of the parameters is erroneous,true otherwise.
*
*******************************************************************************/
/********************************************************************
* memoryGetDeviceParam - This function used for getting device parameters from
* DEVICE BANK PARAMETERS REGISTER
*
*
* Inputs: - deviceParam: STRUCT with paramiters for DEVICE BANK
* PARAMETERS REGISTER
* - deviceNum : number of device
* Returns: false if one of the parameters is erroneous,true otherwise.
*********************************************************************/
bool memoryGetDeviceParam (DEVICE_PARAM * deviceParam, DEVICE deviceNum)
{
unsigned int valueOfReg;
unsigned int calcData;
if (deviceNum > 4)
return false;
GT_REG_READ (DEVICE_BANK0PARAMETERS + 4 * deviceNum, &valueOfReg);
calcData = (0x7 & valueOfReg) + ((BIT22 & valueOfReg) >> 19);
deviceParam->turnOff = calcData; /* Turn Off */
calcData = ((0x78 & valueOfReg) >> 3) + ((BIT23 & valueOfReg) >> 19);
deviceParam->acc2First = calcData; /* Access To First */
calcData = ((0x780 & valueOfReg) >> 7) + ((BIT24 & valueOfReg) >> 20);
deviceParam->acc2Next = calcData; /* Access To Next */
calcData =
((0x3800 & valueOfReg) >> 11) + ((BIT25 & valueOfReg) >> 22);
deviceParam->ale2Wr = calcData; /* Ale To Write */
calcData = ((0x1c000 & valueOfReg) >> 14) +
((BIT26 & valueOfReg) >> 23);
deviceParam->wrLow = calcData; /* Write Active */
calcData = ((0xe0000 & valueOfReg) >> 17) +
((BIT27 & valueOfReg) >> 24);
deviceParam->wrHigh = calcData; /* Write High */
calcData = ((0x300000 & valueOfReg) >> 20);
deviceParam->deviceWidth = (BIT0 << calcData); /* In bytes */
calcData = ((0x30000000 & valueOfReg) >> 28);
deviceParam->badrSkew = calcData; /* Cycles gap between BAdr
toggle to read data sample. */
calcData = ((0x40000000 & valueOfReg) >> 30);
deviceParam->DPEn = calcData; /* Data Parity enable */
return true;
}
/*******************************************************************************
* memorySetDeviceParam - Set new parameters for a device.
*
*
* DESCRIPTION:
* To allow interfacing with very slow devices and fast synchronous SRAMs,
* each device can be programed to different timing parameters. Each bank
* has its own parameters register. Bank width can be programmed to 8, 16,
* or 32-bits. Bank timing parameters can be programmed to support
* different device types (e.g. Sync Burst SRAM, Flash , ROM, I/O
* Controllers). The MV allows you to set timing parameters and width for
* each device through parameters register. This function set new
* parameters to a device Bank from the delivered structure 'deviceParam'
* (defined in gtMemory.h). The structure must be initialized with data
* prior to the use of these function.
*
* INPUT:
* deviceParam - pointer to a structure DEVICE_PARAM (defined in
* Memory.h).For details about each structure field please
* see the device timing parameter section in the MV
* datasheet.
* deviceNum - Select on of the five device banks (defined in
* Memory.h) :
*
* - DEVICE0
* - DEVICE1
* - DEVICE2
* - etc.
*
* OUTPUT:
* None.
*
* RETURN:
* false if one of the parameters is erroneous,true otherwise.
*
*******************************************************************************/
/********************************************************************
* memorySetDeviceParam - This function used for setting device parameters to
* DEVICE BANK PARAMETERS REGISTER
*
*
* Inputs: - deviceParam: STRUCT for store paramiters from DEVICE BANK
* PARAMETERS REGISTER
* - deviceNum : number of device
* Returns: false if one of the parameters is erroneous,true otherwise.
*********************************************************************/
bool memorySetDeviceParam (DEVICE_PARAM * deviceParam, DEVICE deviceNum)
{
unsigned int valueForReg;
if ((deviceParam->turnOff > 0x7) || (deviceParam->acc2First > 0xf) ||
(deviceParam->acc2Next > 0xf) || (deviceParam->ale2Wr > 0x7) ||
(deviceParam->wrLow > 0x7) || (deviceParam->wrHigh > 0x7) ||
(deviceParam->badrSkew > 0x2) || (deviceParam->DPEn > 0x1)) {
return false;
}
valueForReg = (((deviceParam->turnOff) & 0x7) |
(((deviceParam->turnOff) & 0x8) << 19) |
(((deviceParam->acc2First) & 0xf) << 3) |
(((deviceParam->acc2First) & 0x10) << 19) |
(((deviceParam->acc2Next) & 0xf) << 7) |
(((deviceParam->acc2Next) & 0x10) << 20) |
(((deviceParam->ale2Wr) & 0x7) << 11) |
(((deviceParam->ale2Wr) & 0xf) << 22) |
(((deviceParam->wrLow) & 0x7) << 14) |
(((deviceParam->wrLow) & 0xf) << 23) |
(((deviceParam->wrHigh) & 0x7) << 17) |
(((deviceParam->wrHigh) & 0xf) << 24) |
(((deviceParam->badrSkew) & 0x3) << 28) |
(((deviceParam->DPEn) & 0x1) << 30));
/* insert the device width: */
switch (deviceParam->deviceWidth) {
case 1:
valueForReg = valueForReg | _8BIT;
break;
case 2:
valueForReg = valueForReg | _16BIT;
break;
case 4:
valueForReg = valueForReg | _32BIT;
break;
default:
valueForReg = valueForReg | _8BIT;
break;
}
GT_REG_WRITE (DEVICE_BANK0PARAMETERS + 4 * deviceNum, valueForReg);
return true;
}
/*******************************************************************************
* MemoryDisableWindow - Disable a memory space by the disable bit.
* DESCRIPTION:
* This function disables one of the 21 availiable windows dedicated for
* the CPU decoding mechanism. Its possible to combine several windows with
* the OR command.
* INPUT:
* window - One or more of the memory windows (defined in gtMemory.h).
* OUTPUT:
* None.
* RETURN:
* None.
*******************************************************************************/
void MemoryDisableWindow (MEMORY_WINDOW window)
{
SET_REG_BITS (BASE_ADDR_ENABLE, window);
}
/*******************************************************************************
* MemoryEnableWindow - Enable a memory space that was disabled by
* 'MemoryDisableWindow'.
* DESCRIPTION:
* This function enables one of the 21 availiable windows dedicated for the
* CPU decoding mechanism. Its possible to combine several windows with the
* OR command.
* INPUT:
* window - One or more of the memory windows (defined in gtMemory.h).
* OUTPUT:
* None.
* RETURN:
* None.
*******************************************************************************/
void MemoryEnableWindow (MEMORY_WINDOW window)
{
RESET_REG_BITS (BASE_ADDR_ENABLE, window);
}
/*******************************************************************************
* MemoryGetMemWindowStatus - This function check whether the memory window is
* disabled or not.
* DESCRIPTION:
* This function checks if the given memory window is closed .
* INPUT:
* window - One or more of the memory windows (defined in gtMemory.h).
* OUTPUT:
* None.
* RETURN:
* true for a closed window, false otherwise .
*******************************************************************************/
MEMORY_WINDOW_STATUS MemoryGetMemWindowStatus (MEMORY_WINDOW window)
{
if (GTREGREAD (BASE_ADDR_ENABLE) & window)
return MEM_WINDOW_DISABLED;
return MEM_WINDOW_ENABLED;
}