upstream u-boot with additional patches for our devices/boards:
https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ;
Gbit ethernet patch for some LIME2 revisions ;
with SPI flash support
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
175 lines
4.1 KiB
175 lines
4.1 KiB
/*
|
|
* (C) Copyright 2006
|
|
* Heiko Schocher, DENX Software Engineering, hs@denx.de
|
|
*
|
|
* (C) Copyright 2006
|
|
* Stefan Roese, DENX Software Engineering, sr@denx.de.
|
|
*
|
|
* See file CREDITS for list of people who contributed to this
|
|
* project.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
* MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <common.h>
|
|
|
|
#if (CONFIG_COMMANDS & CFG_CMD_NAND)
|
|
|
|
#include <asm/processor.h>
|
|
#include <nand.h>
|
|
|
|
struct alpr_ndfc_regs {
|
|
u8 cmd[4];
|
|
u8 addr_wait;
|
|
u8 term;
|
|
u8 dummy;
|
|
u8 dummy2;
|
|
u8 data;
|
|
};
|
|
|
|
static u8 hwctl;
|
|
static struct alpr_ndfc_regs *alpr_ndfc = NULL;
|
|
|
|
#define readb(addr) (u8)(*(volatile u8 *)(addr))
|
|
#define writeb(d,addr) *(volatile u8 *)(addr) = ((u8)(d))
|
|
|
|
/*
|
|
* The ALPR has a NAND Flash Controller (NDFC) that handles all accesses to
|
|
* the NAND devices. The NDFC has command, address and data registers that
|
|
* when accessed will set up the NAND flash pins appropriately. We'll use the
|
|
* hwcontrol function to save the configuration in a global variable.
|
|
* We can then use this information in the read and write functions to
|
|
* determine which NDFC register to access.
|
|
*
|
|
* There are 2 NAND devices on the board, a Hynix HY27US08561A (1 GByte).
|
|
*/
|
|
static void alpr_nand_hwcontrol(struct mtd_info *mtd, int cmd)
|
|
{
|
|
switch (cmd) {
|
|
case NAND_CTL_SETCLE:
|
|
hwctl |= 0x1;
|
|
break;
|
|
case NAND_CTL_CLRCLE:
|
|
hwctl &= ~0x1;
|
|
break;
|
|
case NAND_CTL_SETALE:
|
|
hwctl |= 0x2;
|
|
break;
|
|
case NAND_CTL_CLRALE:
|
|
hwctl &= ~0x2;
|
|
break;
|
|
case NAND_CTL_SETNCE:
|
|
break;
|
|
case NAND_CTL_CLRNCE:
|
|
writeb(0x00, &(alpr_ndfc->term));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void alpr_nand_write_byte(struct mtd_info *mtd, u_char byte)
|
|
{
|
|
struct nand_chip *nand = mtd->priv;
|
|
|
|
if (hwctl & 0x1)
|
|
/*
|
|
* IO_ADDR_W used as CMD[i] reg to support multiple NAND
|
|
* chips.
|
|
*/
|
|
writeb(byte, nand->IO_ADDR_W);
|
|
else if (hwctl & 0x2) {
|
|
writeb(byte, &(alpr_ndfc->addr_wait));
|
|
} else
|
|
writeb(byte, &(alpr_ndfc->data));
|
|
}
|
|
|
|
static u_char alpr_nand_read_byte(struct mtd_info *mtd)
|
|
{
|
|
return readb(&(alpr_ndfc->data));
|
|
}
|
|
|
|
static void alpr_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
struct nand_chip *nand = mtd->priv;
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
if (hwctl & 0x1)
|
|
/*
|
|
* IO_ADDR_W used as CMD[i] reg to support multiple NAND
|
|
* chips.
|
|
*/
|
|
writeb(buf[i], nand->IO_ADDR_W);
|
|
else if (hwctl & 0x2)
|
|
writeb(buf[i], &(alpr_ndfc->addr_wait));
|
|
else
|
|
writeb(buf[i], &(alpr_ndfc->data));
|
|
}
|
|
}
|
|
|
|
static void alpr_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
buf[i] = readb(&(alpr_ndfc->data));
|
|
}
|
|
}
|
|
|
|
static int alpr_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
if (buf[i] != readb(&(alpr_ndfc->data)))
|
|
return i;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int alpr_nand_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
volatile u_char val;
|
|
|
|
/*
|
|
* Blocking read to wait for NAND to be ready
|
|
*/
|
|
val = readb(&(alpr_ndfc->addr_wait));
|
|
|
|
/*
|
|
* Return always true
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
int board_nand_init(struct nand_chip *nand)
|
|
{
|
|
alpr_ndfc = (struct alpr_ndfc_regs *)CFG_NAND_BASE;
|
|
|
|
nand->eccmode = NAND_ECC_SOFT;
|
|
|
|
/* Reference hardware control function */
|
|
nand->hwcontrol = alpr_nand_hwcontrol;
|
|
/* Set command delay time */
|
|
nand->write_byte = alpr_nand_write_byte;
|
|
nand->read_byte = alpr_nand_read_byte;
|
|
nand->write_buf = alpr_nand_write_buf;
|
|
nand->read_buf = alpr_nand_read_buf;
|
|
nand->verify_buf = alpr_nand_verify_buf;
|
|
nand->dev_ready = alpr_nand_dev_ready;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|