upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/drivers/net/smc91111.c

1620 lines
40 KiB

/*------------------------------------------------------------------------
. smc91111.c
. This is a driver for SMSC's 91C111 single-chip Ethernet device.
.
. (C) Copyright 2002
. Sysgo Real-Time Solutions, GmbH <www.elinos.com>
. Rolf Offermanns <rof@sysgo.de>
.
. Copyright (C) 2001 Standard Microsystems Corporation (SMSC)
. Developed by Simple Network Magic Corporation (SNMC)
. Copyright (C) 1996 by Erik Stahlman (ES)
.
. This program is free software; you can redistribute it and/or modify
. it under the terms of the GNU General Public License as published by
. the Free Software Foundation; either version 2 of the License, or
. (at your option) any later version.
.
. This program is distributed in the hope that it will be useful,
. but WITHOUT ANY WARRANTY; without even the implied warranty of
. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
. GNU General Public License for more details.
.
. You should have received a copy of the GNU General Public License
. along with this program; if not, write to the Free Software
. Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
.
. Information contained in this file was obtained from the LAN91C111
. manual from SMC. To get a copy, if you really want one, you can find
. information under www.smsc.com.
.
.
. "Features" of the SMC chip:
. Integrated PHY/MAC for 10/100BaseT Operation
. Supports internal and external MII
. Integrated 8K packet memory
. EEPROM interface for configuration
.
. Arguments:
. io = for the base address
. irq = for the IRQ
.
. author:
. Erik Stahlman ( erik@vt.edu )
. Daris A Nevil ( dnevil@snmc.com )
.
.
. Hardware multicast code from Peter Cammaert ( pc@denkart.be )
.
. Sources:
. o SMSC LAN91C111 databook (www.smsc.com)
. o smc9194.c by Erik Stahlman
. o skeleton.c by Donald Becker ( becker@cesdis.gsfc.nasa.gov )
.
. History:
. 06/19/03 Richard Woodruff Made u-boot environment aware and added mac addr checks.
. 10/17/01 Marco Hasewinkel Modify for DNP/1110
. 07/25/01 Woojung Huh Modify for ADS Bitsy
. 04/25/01 Daris A Nevil Initial public release through SMSC
. 03/16/01 Daris A Nevil Modified smc9194.c for use with LAN91C111
----------------------------------------------------------------------------*/
#include <common.h>
#include <command.h>
#include <config.h>
#include "smc91111.h"
#include <net.h>
/* Use power-down feature of the chip */
#define POWER_DOWN 0
#define NO_AUTOPROBE
#define SMC_DEBUG 0
#if SMC_DEBUG > 1
static const char version[] =
"smc91111.c:v1.0 04/25/01 by Daris A Nevil (dnevil@snmc.com)\n";
#endif
/* Autonegotiation timeout in seconds */
#ifndef CONFIG_SMC_AUTONEG_TIMEOUT
#define CONFIG_SMC_AUTONEG_TIMEOUT 10
#endif
/*------------------------------------------------------------------------
.
. Configuration options, for the experienced user to change.
.
-------------------------------------------------------------------------*/
/*
. Wait time for memory to be free. This probably shouldn't be
. tuned that much, as waiting for this means nothing else happens
. in the system
*/
#define MEMORY_WAIT_TIME 16
#if (SMC_DEBUG > 2 )
#define PRINTK3(args...) printf(args)
#else
#define PRINTK3(args...)
#endif
#if SMC_DEBUG > 1
#define PRINTK2(args...) printf(args)
#else
#define PRINTK2(args...)
#endif
#ifdef SMC_DEBUG
#define PRINTK(args...) printf(args)
#else
#define PRINTK(args...)
#endif
/*------------------------------------------------------------------------
.
. The internal workings of the driver. If you are changing anything
. here with the SMC stuff, you should have the datasheet and know
. what you are doing.
.
-------------------------------------------------------------------------*/
#define CARDNAME "LAN91C111"
/* Memory sizing constant */
#define LAN91C111_MEMORY_MULTIPLIER (1024*2)
#ifndef CONFIG_SMC91111_BASE
#define CONFIG_SMC91111_BASE 0x20000300
#endif
#define SMC_BASE_ADDRESS CONFIG_SMC91111_BASE
#define SMC_DEV_NAME "SMC91111"
#define SMC_PHY_ADDR 0x0000
#define SMC_ALLOC_MAX_TRY 5
#define SMC_TX_TIMEOUT 30
#define SMC_PHY_CLOCK_DELAY 1000
#define ETH_ZLEN 60
#ifdef CONFIG_SMC_USE_32_BIT
#define USE_32_BIT 1
#else
#undef USE_32_BIT
#endif
/*-----------------------------------------------------------------
.
. The driver can be entered at any of the following entry points.
.
.------------------------------------------------------------------ */
extern int eth_init(bd_t *bd);
extern void eth_halt(void);
extern int eth_rx(void);
extern int eth_send(volatile void *packet, int length);
#ifdef SHARED_RESOURCES
extern void swap_to(int device_id);
#endif
/*
. This is called by register_netdev(). It is responsible for
. checking the portlist for the SMC9000 series chipset. If it finds
. one, then it will initialize the device, find the hardware information,
. and sets up the appropriate device parameters.
. NOTE: Interrupts are *OFF* when this procedure is called.
.
. NB:This shouldn't be static since it is referred to externally.
*/
int smc_init(void);
/*
. This is called by unregister_netdev(). It is responsible for
. cleaning up before the driver is finally unregistered and discarded.
*/
void smc_destructor(void);
/*
. The kernel calls this function when someone wants to use the device,
. typically 'ifconfig ethX up'.
*/
static int smc_open(bd_t *bd);
/*
. This is called by the kernel in response to 'ifconfig ethX down'. It
. is responsible for cleaning up everything that the open routine
. does, and maybe putting the card into a powerdown state.
*/
static int smc_close(void);
/*
. Configures the PHY through the MII Management interface
*/
#ifndef CONFIG_SMC91111_EXT_PHY
static void smc_phy_configure(void);
#endif /* !CONFIG_SMC91111_EXT_PHY */
/*
. This is a separate procedure to handle the receipt of a packet, to
. leave the interrupt code looking slightly cleaner
*/
static int smc_rcv(void);
/* See if a MAC address is defined in the current environment. If so use it. If not
. print a warning and set the environment and other globals with the default.
. If an EEPROM is present it really should be consulted.
*/
int smc_get_ethaddr(bd_t *bd);
int get_rom_mac(uchar *v_rom_mac);
/*
------------------------------------------------------------
.
. Internal routines
.
------------------------------------------------------------
*/
#ifdef CONFIG_SMC_USE_IOFUNCS
/*
* input and output functions
*
* Implemented due to inx,outx macros accessing the device improperly
* and putting the device into an unkown state.
*
* For instance, on Sharp LPD7A400 SDK, affects were chip memory
* could not be free'd (hence the alloc failures), duplicate packets,
* packets being corrupt (shifted) on the wire, etc. Switching to the
* inx,outx functions fixed this problem.
*/
static inline word SMC_inw(dword offset);
static inline void SMC_outw(word value, dword offset);
static inline byte SMC_inb(dword offset);
static inline void SMC_outb(byte value, dword offset);
static inline void SMC_insw(dword offset, volatile uchar* buf, dword len);
static inline void SMC_outsw(dword offset, uchar* buf, dword len);
#define barrier() __asm__ __volatile__("": : :"memory")
static inline word SMC_inw(dword offset)
{
word v;
v = *((volatile word*)(SMC_BASE_ADDRESS+offset));
barrier(); *(volatile u32*)(0xc0000000);
return v;
}
static inline void SMC_outw(word value, dword offset)
{
*((volatile word*)(SMC_BASE_ADDRESS+offset)) = value;
barrier(); *(volatile u32*)(0xc0000000);
}
static inline byte SMC_inb(dword offset)
{
word _w;
_w = SMC_inw(offset & ~((dword)1));
return (offset & 1) ? (byte)(_w >> 8) : (byte)(_w);
}
static inline void SMC_outb(byte value, dword offset)
{
word _w;
_w = SMC_inw(offset & ~((dword)1));
if (offset & 1)
*((volatile word*)(SMC_BASE_ADDRESS+(offset & ~((dword)1)))) = (value<<8) | (_w & 0x00ff);
else
*((volatile word*)(SMC_BASE_ADDRESS+offset)) = value | (_w & 0xff00);
}
static inline void SMC_insw(dword offset, volatile uchar* buf, dword len)
{
volatile word *p = (volatile word *)buf;
while (len-- > 0) {
*p++ = SMC_inw(offset);
barrier();
*((volatile u32*)(0xc0000000));
}
}
static inline void SMC_outsw(dword offset, uchar* buf, dword len)
{
volatile word *p = (volatile word *)buf;
while (len-- > 0) {
SMC_outw(*p++, offset);
barrier();
*(volatile u32*)(0xc0000000);
}
}
#endif /* CONFIG_SMC_USE_IOFUNCS */
static char unsigned smc_mac_addr[6] = {0x02, 0x80, 0xad, 0x20, 0x31, 0xb8};
/*
* This function must be called before smc_open() if you want to override
* the default mac address.
*/
void smc_set_mac_addr(const unsigned char *addr) {
int i;
for (i=0; i < sizeof(smc_mac_addr); i++){
smc_mac_addr[i] = addr[i];
}
}
/*
* smc_get_macaddr is no longer used. If you want to override the default
* mac address, call smc_get_mac_addr as a part of the board initialization.
*/
#if 0
void smc_get_macaddr( byte *addr ) {
/* MAC ADDRESS AT FLASHBLOCK 1 / OFFSET 0x10 */
unsigned char *dnp1110_mac = (unsigned char *) (0xE8000000 + 0x20010);
int i;
for (i=0; i<6; i++) {
addr[0] = *(dnp1110_mac+0);
addr[1] = *(dnp1110_mac+1);
addr[2] = *(dnp1110_mac+2);
addr[3] = *(dnp1110_mac+3);
addr[4] = *(dnp1110_mac+4);
addr[5] = *(dnp1110_mac+5);
}
}
#endif /* 0 */
/***********************************************
* Show available memory *
***********************************************/
void dump_memory_info(void)
{
word mem_info;
word old_bank;
old_bank = SMC_inw(BANK_SELECT)&0xF;
SMC_SELECT_BANK(0);
mem_info = SMC_inw( MIR_REG );
PRINTK2("Memory: %4d available\n", (mem_info >> 8)*2048);
SMC_SELECT_BANK(old_bank);
}
/*
. A rather simple routine to print out a packet for debugging purposes.
*/
#if SMC_DEBUG > 2
static void print_packet( byte *, int );
#endif
#define tx_done(dev) 1
/* this does a soft reset on the device */
static void smc_reset( void );
/* Enable Interrupts, Receive, and Transmit */
static void smc_enable( void );
/* this puts the device in an inactive state */
static void smc_shutdown( void );
/* Routines to Read and Write the PHY Registers across the
MII Management Interface
*/
#ifndef CONFIG_SMC91111_EXT_PHY
static word smc_read_phy_register(byte phyreg);
static void smc_write_phy_register(byte phyreg, word phydata);
#endif /* !CONFIG_SMC91111_EXT_PHY */
static int poll4int (byte mask, int timeout)
{
int tmo = get_timer (0) + timeout * CFG_HZ;
int is_timeout = 0;
word old_bank = SMC_inw (BSR_REG);
PRINTK2 ("Polling...\n");
SMC_SELECT_BANK (2);
while ((SMC_inw (SMC91111_INT_REG) & mask) == 0) {
if (get_timer (0) >= tmo) {
is_timeout = 1;
break;
}
}
/* restore old bank selection */
SMC_SELECT_BANK (old_bank);
if (is_timeout)
return 1;
else
return 0;
}
/* Only one release command at a time, please */
static inline void smc_wait_mmu_release_complete (void)
{
int count = 0;
/* assume bank 2 selected */
while (SMC_inw (MMU_CMD_REG) & MC_BUSY) {
udelay (1); /* Wait until not busy */
if (++count > 200)
break;
}
}
/*
. Function: smc_reset( void )
. Purpose:
. This sets the SMC91111 chip to its normal state, hopefully from whatever
. mess that any other DOS driver has put it in.
.
. Maybe I should reset more registers to defaults in here? SOFTRST should
. do that for me.
.
. Method:
. 1. send a SOFT RESET
. 2. wait for it to finish
. 3. enable autorelease mode
. 4. reset the memory management unit
. 5. clear all interrupts
.
*/
static void smc_reset (void)
{
PRINTK2 ("%s: smc_reset\n", SMC_DEV_NAME);
/* This resets the registers mostly to defaults, but doesn't
affect EEPROM. That seems unnecessary */
SMC_SELECT_BANK (0);
SMC_outw (RCR_SOFTRST, RCR_REG);
/* Setup the Configuration Register */
/* This is necessary because the CONFIG_REG is not affected */
/* by a soft reset */
SMC_SELECT_BANK (1);
#if defined(CONFIG_SMC91111_EXT_PHY)
SMC_outw (CONFIG_DEFAULT | CONFIG_EXT_PHY, CONFIG_REG);
#else
SMC_outw (CONFIG_DEFAULT, CONFIG_REG);
#endif
/* Release from possible power-down state */
/* Configuration register is not affected by Soft Reset */
SMC_outw (SMC_inw (CONFIG_REG) | CONFIG_EPH_POWER_EN, CONFIG_REG);
SMC_SELECT_BANK (0);
/* this should pause enough for the chip to be happy */
udelay (10);
/* Disable transmit and receive functionality */
SMC_outw (RCR_CLEAR, RCR_REG);
SMC_outw (TCR_CLEAR, TCR_REG);
/* set the control register */
SMC_SELECT_BANK (1);
SMC_outw (CTL_DEFAULT, CTL_REG);
/* Reset the MMU */
SMC_SELECT_BANK (2);
smc_wait_mmu_release_complete ();
SMC_outw (MC_RESET, MMU_CMD_REG);
while (SMC_inw (MMU_CMD_REG) & MC_BUSY)
udelay (1); /* Wait until not busy */
/* Note: It doesn't seem that waiting for the MMU busy is needed here,
but this is a place where future chipsets _COULD_ break. Be wary
of issuing another MMU command right after this */
/* Disable all interrupts */
SMC_outb (0, IM_REG);
}
/*
. Function: smc_enable
. Purpose: let the chip talk to the outside work
. Method:
. 1. Enable the transmitter
. 2. Enable the receiver
. 3. Enable interrupts
*/
static void smc_enable()
{
PRINTK2("%s: smc_enable\n", SMC_DEV_NAME);
SMC_SELECT_BANK( 0 );
/* see the header file for options in TCR/RCR DEFAULT*/
SMC_outw( TCR_DEFAULT, TCR_REG );
SMC_outw( RCR_DEFAULT, RCR_REG );
/* clear MII_DIS */
/* smc_write_phy_register(PHY_CNTL_REG, 0x0000); */
}
/*
. Function: smc_shutdown
. Purpose: closes down the SMC91xxx chip.
. Method:
. 1. zero the interrupt mask
. 2. clear the enable receive flag
. 3. clear the enable xmit flags
.
. TODO:
. (1) maybe utilize power down mode.
. Why not yet? Because while the chip will go into power down mode,
. the manual says that it will wake up in response to any I/O requests
. in the register space. Empirical results do not show this working.
*/
static void smc_shutdown()
{
PRINTK2(CARDNAME ": smc_shutdown\n");
/* no more interrupts for me */
SMC_SELECT_BANK( 2 );
SMC_outb( 0, IM_REG );
/* and tell the card to stay away from that nasty outside world */
SMC_SELECT_BANK( 0 );
SMC_outb( RCR_CLEAR, RCR_REG );
SMC_outb( TCR_CLEAR, TCR_REG );
#ifdef SHARED_RESOURCES
swap_to(FLASH);
#endif
}
/*
. Function: smc_hardware_send_packet(struct net_device * )
. Purpose:
. This sends the actual packet to the SMC9xxx chip.
.
. Algorithm:
. First, see if a saved_skb is available.
. ( this should NOT be called if there is no 'saved_skb'
. Now, find the packet number that the chip allocated
. Point the data pointers at it in memory
. Set the length word in the chip's memory
. Dump the packet to chip memory
. Check if a last byte is needed ( odd length packet )
. if so, set the control flag right
. Tell the card to send it
. Enable the transmit interrupt, so I know if it failed
. Free the kernel data if I actually sent it.
*/
static int smc_send_packet (volatile void *packet, int packet_length)
{
byte packet_no;
unsigned long ioaddr;
byte *buf;
int length;
int numPages;
int try = 0;
int time_out;
byte status;
byte saved_pnr;
word saved_ptr;
/* save PTR and PNR registers before manipulation */
SMC_SELECT_BANK (2);
saved_pnr = SMC_inb( PN_REG );
saved_ptr = SMC_inw( PTR_REG );
PRINTK3 ("%s: smc_hardware_send_packet\n", SMC_DEV_NAME);
length = ETH_ZLEN < packet_length ? packet_length : ETH_ZLEN;
/* allocate memory
** The MMU wants the number of pages to be the number of 256 bytes
** 'pages', minus 1 ( since a packet can't ever have 0 pages :) )
**
** The 91C111 ignores the size bits, but the code is left intact
** for backwards and future compatibility.
**
** Pkt size for allocating is data length +6 (for additional status
** words, length and ctl!)
**
** If odd size then last byte is included in this header.
*/
numPages = ((length & 0xfffe) + 6);
numPages >>= 8; /* Divide by 256 */
if (numPages > 7) {
printf ("%s: Far too big packet error. \n", SMC_DEV_NAME);
return 0;
}
/* now, try to allocate the memory */
SMC_SELECT_BANK (2);
SMC_outw (MC_ALLOC | numPages, MMU_CMD_REG);
/* FIXME: the ALLOC_INT bit never gets set *
* so the following will always give a *
* memory allocation error. *
* same code works in armboot though *
* -ro
*/
again:
try++;
time_out = MEMORY_WAIT_TIME;
do {
status = SMC_inb (SMC91111_INT_REG);
if (status & IM_ALLOC_INT) {
/* acknowledge the interrupt */
SMC_outb (IM_ALLOC_INT, SMC91111_INT_REG);
break;
}
} while (--time_out);
if (!time_out) {
PRINTK2 ("%s: memory allocation, try %d failed ...\n",
SMC_DEV_NAME, try);
if (try < SMC_ALLOC_MAX_TRY)
goto again;
else
return 0;
}
PRINTK2 ("%s: memory allocation, try %d succeeded ...\n",
SMC_DEV_NAME, try);
/* I can send the packet now.. */
ioaddr = SMC_BASE_ADDRESS;
buf = (byte *) packet;
/* If I get here, I _know_ there is a packet slot waiting for me */
packet_no = SMC_inb (AR_REG);
if (packet_no & AR_FAILED) {
/* or isn't there? BAD CHIP! */
printf ("%s: Memory allocation failed. \n", SMC_DEV_NAME);
return 0;
}
/* we have a packet address, so tell the card to use it */
#ifndef CONFIG_XAENIAX
SMC_outb (packet_no, PN_REG);
#else
/* On Xaeniax board, we can't use SMC_outb here because that way
* the Allocate MMU command will end up written to the command register
* as well, which will lead to a problem.
*/
SMC_outl (packet_no << 16, 0);
#endif
/* do not write new ptr value if Write data fifo not empty */
while ( saved_ptr & PTR_NOTEMPTY )
printf ("Write data fifo not empty!\n");
/* point to the beginning of the packet */
SMC_outw (PTR_AUTOINC, PTR_REG);
PRINTK3 ("%s: Trying to xmit packet of length %x\n",
SMC_DEV_NAME, length);
#if SMC_DEBUG > 2
printf ("Transmitting Packet\n");
print_packet (buf, length);
#endif
/* send the packet length ( +6 for status, length and ctl byte )
and the status word ( set to zeros ) */
#ifdef USE_32_BIT
SMC_outl ((length + 6) << 16, SMC91111_DATA_REG);
#else
SMC_outw (0, SMC91111_DATA_REG);
/* send the packet length ( +6 for status words, length, and ctl */
SMC_outw ((length + 6), SMC91111_DATA_REG);
#endif
/* send the actual data
. I _think_ it's faster to send the longs first, and then
. mop up by sending the last word. It depends heavily
. on alignment, at least on the 486. Maybe it would be
. a good idea to check which is optimal? But that could take
. almost as much time as is saved?
*/
#ifdef USE_32_BIT
SMC_outsl (SMC91111_DATA_REG, buf, length >> 2);
#ifndef CONFIG_XAENIAX
if (length & 0x2)
SMC_outw (*((word *) (buf + (length & 0xFFFFFFFC))),
SMC91111_DATA_REG);
#else
/* On XANEIAX, we can only use 32-bit writes, so we need to handle
* unaligned tail part specially. The standard code doesn't work.
*/
if ((length & 3) == 3) {
u16 * ptr = (u16*) &buf[length-3];
SMC_outl((*ptr) | ((0x2000 | buf[length-1]) << 16),
SMC91111_DATA_REG);
} else if ((length & 2) == 2) {
u16 * ptr = (u16*) &buf[length-2];
SMC_outl(*ptr, SMC91111_DATA_REG);
} else if (length & 1) {
SMC_outl((0x2000 | buf[length-1]), SMC91111_DATA_REG);
} else {
SMC_outl(0, SMC91111_DATA_REG);
}
#endif
#else
SMC_outsw (SMC91111_DATA_REG, buf, (length) >> 1);
#endif /* USE_32_BIT */
#ifndef CONFIG_XAENIAX
/* Send the last byte, if there is one. */
if ((length & 1) == 0) {
SMC_outw (0, SMC91111_DATA_REG);
} else {
SMC_outw (buf[length - 1] | 0x2000, SMC91111_DATA_REG);
}
#endif
/* and let the chipset deal with it */
SMC_outw (MC_ENQUEUE, MMU_CMD_REG);
/* poll for TX INT */
/* if (poll4int (IM_TX_INT, SMC_TX_TIMEOUT)) { */
/* poll for TX_EMPTY INT - autorelease enabled */
if (poll4int(IM_TX_EMPTY_INT, SMC_TX_TIMEOUT)) {
/* sending failed */
PRINTK2 ("%s: TX timeout, sending failed...\n", SMC_DEV_NAME);
/* release packet */
/* no need to release, MMU does that now */
#ifdef CONFIG_XAENIAX
SMC_outw (MC_FREEPKT, MMU_CMD_REG);
#endif
/* wait for MMU getting ready (low) */
while (SMC_inw (MMU_CMD_REG) & MC_BUSY) {
udelay (10);
}
PRINTK2 ("MMU ready\n");
return 0;
} else {
/* ack. int */
SMC_outb (IM_TX_EMPTY_INT, SMC91111_INT_REG);
/* SMC_outb (IM_TX_INT, SMC91111_INT_REG); */
PRINTK2 ("%s: Sent packet of length %d \n", SMC_DEV_NAME,
length);
/* release packet */
/* no need to release, MMU does that now */
#ifdef CONFIG_XAENIAX
SMC_outw (MC_FREEPKT, MMU_CMD_REG);
#endif
/* wait for MMU getting ready (low) */
while (SMC_inw (MMU_CMD_REG) & MC_BUSY) {
udelay (10);
}
PRINTK2 ("MMU ready\n");
}
/* restore previously saved registers */
#ifndef CONFIG_XAENIAX
SMC_outb( saved_pnr, PN_REG );
#else
/* On Xaeniax board, we can't use SMC_outb here because that way
* the Allocate MMU command will end up written to the command register
* as well, which will lead to a problem.
*/
SMC_outl(saved_pnr << 16, 0);
#endif
SMC_outw( saved_ptr, PTR_REG );
return length;
}
/*-------------------------------------------------------------------------
|
| smc_destructor( struct net_device * dev )
| Input parameters:
| dev, pointer to the device structure
|
| Output:
| None.
|
---------------------------------------------------------------------------
*/
void smc_destructor()
{
PRINTK2(CARDNAME ": smc_destructor\n");
}
/*
* Open and Initialize the board
*
* Set up everything, reset the card, etc ..
*
*/
static int smc_open (bd_t * bd)
{
int i, err;
PRINTK2 ("%s: smc_open\n", SMC_DEV_NAME);
/* reset the hardware */
smc_reset ();
smc_enable ();
/* Configure the PHY */
#ifndef CONFIG_SMC91111_EXT_PHY
smc_phy_configure ();
#endif
/* conservative setting (10Mbps, HalfDuplex, no AutoNeg.) */
/* SMC_SELECT_BANK(0); */
/* SMC_outw(0, RPC_REG); */
SMC_SELECT_BANK (1);
err = smc_get_ethaddr (bd); /* set smc_mac_addr, and sync it with u-boot globals */
if (err < 0) {
memset (bd->bi_enetaddr, 0, 6); /* hack to make error stick! upper code will abort if not set */
return (-1); /* upper code ignores this, but NOT bi_enetaddr */
}
#ifdef USE_32_BIT
for (i = 0; i < 6; i += 2) {
word address;
address = smc_mac_addr[i + 1] << 8;
address |= smc_mac_addr[i];
SMC_outw (address, (ADDR0_REG + i));
}
#else
for (i = 0; i < 6; i++)
SMC_outb (smc_mac_addr[i], (ADDR0_REG + i));
#endif
return 0;
}
/*-------------------------------------------------------------
.
. smc_rcv - receive a packet from the card
.
. There is ( at least ) a packet waiting to be read from
. chip-memory.
.
. o Read the status
. o If an error, record it
. o otherwise, read in the packet
--------------------------------------------------------------
*/
static int smc_rcv()
{
int packet_number;
word status;
word packet_length;
int is_error = 0;
#ifdef USE_32_BIT
dword stat_len;
#endif
byte saved_pnr;
word saved_ptr;
SMC_SELECT_BANK(2);
/* save PTR and PTR registers */
saved_pnr = SMC_inb( PN_REG );
saved_ptr = SMC_inw( PTR_REG );
packet_number = SMC_inw( RXFIFO_REG );
if ( packet_number & RXFIFO_REMPTY ) {
return 0;
}
PRINTK3("%s: smc_rcv\n", SMC_DEV_NAME);
/* start reading from the start of the packet */
SMC_outw( PTR_READ | PTR_RCV | PTR_AUTOINC, PTR_REG );
/* First two words are status and packet_length */
#ifdef USE_32_BIT
stat_len = SMC_inl(SMC91111_DATA_REG);
status = stat_len & 0xffff;
packet_length = stat_len >> 16;
#else
status = SMC_inw( SMC91111_DATA_REG );
packet_length = SMC_inw( SMC91111_DATA_REG );
#endif
packet_length &= 0x07ff; /* mask off top bits */
PRINTK2("RCV: STATUS %4x LENGTH %4x\n", status, packet_length );
if ( !(status & RS_ERRORS ) ){
/* Adjust for having already read the first two words */
packet_length -= 4; /*4; */
/* set odd length for bug in LAN91C111, */
/* which never sets RS_ODDFRAME */
/* TODO ? */
#ifdef USE_32_BIT
PRINTK3(" Reading %d dwords (and %d bytes) \n",
packet_length >> 2, packet_length & 3 );
/* QUESTION: Like in the TX routine, do I want
to send the DWORDs or the bytes first, or some
mixture. A mixture might improve already slow PIO
performance */
SMC_insl( SMC91111_DATA_REG , NetRxPackets[0], packet_length >> 2 );
/* read the left over bytes */
if (packet_length & 3) {
int i;
byte *tail = (byte *)(NetRxPackets[0] + (packet_length & ~3));
dword leftover = SMC_inl(SMC91111_DATA_REG);
for (i=0; i<(packet_length & 3); i++)
*tail++ = (byte) (leftover >> (8*i)) & 0xff;
}
#else
PRINTK3(" Reading %d words and %d byte(s) \n",
(packet_length >> 1 ), packet_length & 1 );
SMC_insw(SMC91111_DATA_REG , NetRxPackets[0], packet_length >> 1);
#endif /* USE_32_BIT */
#if SMC_DEBUG > 2
printf("Receiving Packet\n");
print_packet( NetRxPackets[0], packet_length );
#endif
} else {
/* error ... */
/* TODO ? */
is_error = 1;
}
while ( SMC_inw( MMU_CMD_REG ) & MC_BUSY )
udelay(1); /* Wait until not busy */
/* error or good, tell the card to get rid of this packet */
SMC_outw( MC_RELEASE, MMU_CMD_REG );
while ( SMC_inw( MMU_CMD_REG ) & MC_BUSY )
udelay(1); /* Wait until not busy */
/* restore saved registers */
#ifndef CONFIG_XAENIAX
SMC_outb( saved_pnr, PN_REG );
#else
/* On Xaeniax board, we can't use SMC_outb here because that way
* the Allocate MMU command will end up written to the command register
* as well, which will lead to a problem.
*/
SMC_outl( saved_pnr << 16, 0);
#endif
SMC_outw( saved_ptr, PTR_REG );
if (!is_error) {
/* Pass the packet up to the protocol layers. */
NetReceive(NetRxPackets[0], packet_length);
return packet_length;
} else {
return 0;
}
}
/*----------------------------------------------------
. smc_close
.
. this makes the board clean up everything that it can
. and not talk to the outside world. Caused by
. an 'ifconfig ethX down'
.
-----------------------------------------------------*/
static int smc_close()
{
PRINTK2("%s: smc_close\n", SMC_DEV_NAME);
/* clear everything */
smc_shutdown();
return 0;
}
#if 0
/*------------------------------------------------------------
. Modify a bit in the LAN91C111 register set
.-------------------------------------------------------------*/
static word smc_modify_regbit(int bank, int ioaddr, int reg,
unsigned int bit, int val)
{
word regval;
SMC_SELECT_BANK( bank );
regval = SMC_inw( reg );
if (val)
regval |= bit;
else
regval &= ~bit;
SMC_outw( regval, 0 );
return(regval);
}
/*------------------------------------------------------------
. Retrieve a bit in the LAN91C111 register set
.-------------------------------------------------------------*/
static int smc_get_regbit(int bank, int ioaddr, int reg, unsigned int bit)
{
SMC_SELECT_BANK( bank );
if ( SMC_inw( reg ) & bit)
return(1);
else
return(0);
}
/*------------------------------------------------------------
. Modify a LAN91C111 register (word access only)
.-------------------------------------------------------------*/
static void smc_modify_reg(int bank, int ioaddr, int reg, word val)
{
SMC_SELECT_BANK( bank );
SMC_outw( val, reg );
}
/*------------------------------------------------------------
. Retrieve a LAN91C111 register (word access only)
.-------------------------------------------------------------*/
static int smc_get_reg(int bank, int ioaddr, int reg)
{
SMC_SELECT_BANK( bank );
return(SMC_inw( reg ));
}
#endif /* 0 */
/*---PHY CONTROL AND CONFIGURATION----------------------------------------- */
#if (SMC_DEBUG > 2 )
/*------------------------------------------------------------
. Debugging function for viewing MII Management serial bitstream
.-------------------------------------------------------------*/
static void smc_dump_mii_stream (byte * bits, int size)
{
int i;
printf ("BIT#:");
for (i = 0; i < size; ++i) {
printf ("%d", i % 10);
}
printf ("\nMDOE:");
for (i = 0; i < size; ++i) {
if (bits[i] & MII_MDOE)
printf ("1");
else
printf ("0");
}
printf ("\nMDO :");
for (i = 0; i < size; ++i) {
if (bits[i] & MII_MDO)
printf ("1");
else
printf ("0");
}
printf ("\nMDI :");
for (i = 0; i < size; ++i) {
if (bits[i] & MII_MDI)
printf ("1");
else
printf ("0");
}
printf ("\n");
}
#endif
/*------------------------------------------------------------
. Reads a register from the MII Management serial interface
.-------------------------------------------------------------*/
#ifndef CONFIG_SMC91111_EXT_PHY
static word smc_read_phy_register (byte phyreg)
{
int oldBank;
int i;
byte mask;
word mii_reg;
byte bits[64];
int clk_idx = 0;
int input_idx;
word phydata;
byte phyaddr = SMC_PHY_ADDR;
/* 32 consecutive ones on MDO to establish sync */
for (i = 0; i < 32; ++i)
bits[clk_idx++] = MII_MDOE | MII_MDO;
/* Start code <01> */
bits[clk_idx++] = MII_MDOE;
bits[clk_idx++] = MII_MDOE | MII_MDO;
/* Read command <10> */
bits[clk_idx++] = MII_MDOE | MII_MDO;
bits[clk_idx++] = MII_MDOE;
/* Output the PHY address, msb first */
mask = (byte) 0x10;
for (i = 0; i < 5; ++i) {
if (phyaddr & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
/* Shift to next lowest bit */
mask >>= 1;
}
/* Output the phy register number, msb first */
mask = (byte) 0x10;
for (i = 0; i < 5; ++i) {
if (phyreg & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
/* Shift to next lowest bit */
mask >>= 1;
}
/* Tristate and turnaround (2 bit times) */
bits[clk_idx++] = 0;
/*bits[clk_idx++] = 0; */
/* Input starts at this bit time */
input_idx = clk_idx;
/* Will input 16 bits */
for (i = 0; i < 16; ++i)
bits[clk_idx++] = 0;
/* Final clock bit */
bits[clk_idx++] = 0;
/* Save the current bank */
oldBank = SMC_inw (BANK_SELECT);
/* Select bank 3 */
SMC_SELECT_BANK (3);
/* Get the current MII register value */
mii_reg = SMC_inw (MII_REG);
/* Turn off all MII Interface bits */
mii_reg &= ~(MII_MDOE | MII_MCLK | MII_MDI | MII_MDO);
/* Clock all 64 cycles */
for (i = 0; i < sizeof bits; ++i) {
/* Clock Low - output data */
SMC_outw (mii_reg | bits[i], MII_REG);
udelay (SMC_PHY_CLOCK_DELAY);
/* Clock Hi - input data */
SMC_outw (mii_reg | bits[i] | MII_MCLK, MII_REG);
udelay (SMC_PHY_CLOCK_DELAY);
bits[i] |= SMC_inw (MII_REG) & MII_MDI;
}
/* Return to idle state */
/* Set clock to low, data to low, and output tristated */
SMC_outw (mii_reg, MII_REG);
udelay (SMC_PHY_CLOCK_DELAY);
/* Restore original bank select */
SMC_SELECT_BANK (oldBank);
/* Recover input data */
phydata = 0;
for (i = 0; i < 16; ++i) {
phydata <<= 1;
if (bits[input_idx++] & MII_MDI)
phydata |= 0x0001;
}
#if (SMC_DEBUG > 2 )
printf ("smc_read_phy_register(): phyaddr=%x,phyreg=%x,phydata=%x\n",
phyaddr, phyreg, phydata);
smc_dump_mii_stream (bits, sizeof bits);
#endif
return (phydata);
}
/*------------------------------------------------------------
. Writes a register to the MII Management serial interface
.-------------------------------------------------------------*/
static void smc_write_phy_register (byte phyreg, word phydata)
{
int oldBank;
int i;
word mask;
word mii_reg;
byte bits[65];
int clk_idx = 0;
byte phyaddr = SMC_PHY_ADDR;
/* 32 consecutive ones on MDO to establish sync */
for (i = 0; i < 32; ++i)
bits[clk_idx++] = MII_MDOE | MII_MDO;
/* Start code <01> */
bits[clk_idx++] = MII_MDOE;
bits[clk_idx++] = MII_MDOE | MII_MDO;
/* Write command <01> */
bits[clk_idx++] = MII_MDOE;
bits[clk_idx++] = MII_MDOE | MII_MDO;
/* Output the PHY address, msb first */
mask = (byte) 0x10;
for (i = 0; i < 5; ++i) {
if (phyaddr & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
/* Shift to next lowest bit */
mask >>= 1;
}
/* Output the phy register number, msb first */
mask = (byte) 0x10;
for (i = 0; i < 5; ++i) {
if (phyreg & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
/* Shift to next lowest bit */
mask >>= 1;
}
/* Tristate and turnaround (2 bit times) */
bits[clk_idx++] = 0;
bits[clk_idx++] = 0;
/* Write out 16 bits of data, msb first */
mask = 0x8000;
for (i = 0; i < 16; ++i) {
if (phydata & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
/* Shift to next lowest bit */
mask >>= 1;
}
/* Final clock bit (tristate) */
bits[clk_idx++] = 0;
/* Save the current bank */
oldBank = SMC_inw (BANK_SELECT);
/* Select bank 3 */
SMC_SELECT_BANK (3);
/* Get the current MII register value */
mii_reg = SMC_inw (MII_REG);
/* Turn off all MII Interface bits */
mii_reg &= ~(MII_MDOE | MII_MCLK | MII_MDI | MII_MDO);
/* Clock all cycles */
for (i = 0; i < sizeof bits; ++i) {
/* Clock Low - output data */
SMC_outw (mii_reg | bits[i], MII_REG);
udelay (SMC_PHY_CLOCK_DELAY);
/* Clock Hi - input data */
SMC_outw (mii_reg | bits[i] | MII_MCLK, MII_REG);
udelay (SMC_PHY_CLOCK_DELAY);
bits[i] |= SMC_inw (MII_REG) & MII_MDI;
}
/* Return to idle state */
/* Set clock to low, data to low, and output tristated */
SMC_outw (mii_reg, MII_REG);
udelay (SMC_PHY_CLOCK_DELAY);
/* Restore original bank select */
SMC_SELECT_BANK (oldBank);
#if (SMC_DEBUG > 2 )
printf ("smc_write_phy_register(): phyaddr=%x,phyreg=%x,phydata=%x\n",
phyaddr, phyreg, phydata);
smc_dump_mii_stream (bits, sizeof bits);
#endif
}
#endif /* !CONFIG_SMC91111_EXT_PHY */
/*------------------------------------------------------------
. Waits the specified number of milliseconds - kernel friendly
.-------------------------------------------------------------*/
#ifndef CONFIG_SMC91111_EXT_PHY
static void smc_wait_ms(unsigned int ms)
{
udelay(ms*1000);
}
#endif /* !CONFIG_SMC91111_EXT_PHY */
/*------------------------------------------------------------
. Configures the specified PHY using Autonegotiation. Calls
. smc_phy_fixed() if the user has requested a certain config.
.-------------------------------------------------------------*/
#ifndef CONFIG_SMC91111_EXT_PHY
static void smc_phy_configure ()
{
int timeout;
byte phyaddr;
word my_phy_caps; /* My PHY capabilities */
word my_ad_caps; /* My Advertised capabilities */
word status = 0; /*;my status = 0 */
int failed = 0;
PRINTK3 ("%s: smc_program_phy()\n", SMC_DEV_NAME);
/* Get the detected phy address */
phyaddr = SMC_PHY_ADDR;
/* Reset the PHY, setting all other bits to zero */
smc_write_phy_register (PHY_CNTL_REG, PHY_CNTL_RST);
/* Wait for the reset to complete, or time out */
timeout = 6; /* Wait up to 3 seconds */
while (timeout--) {
if (!(smc_read_phy_register (PHY_CNTL_REG)
& PHY_CNTL_RST)) {
/* reset complete */
break;
}
smc_wait_ms (500); /* wait 500 millisecs */
}
if (timeout < 1) {
printf ("%s:PHY reset timed out\n", SMC_DEV_NAME);
goto smc_phy_configure_exit;
}
/* Read PHY Register 18, Status Output */
/* lp->lastPhy18 = smc_read_phy_register(PHY_INT_REG); */
/* Enable PHY Interrupts (for register 18) */
/* Interrupts listed here are disabled */
smc_write_phy_register (PHY_MASK_REG, 0xffff);
/* Configure the Receive/Phy Control register */
SMC_SELECT_BANK (0);
SMC_outw (RPC_DEFAULT, RPC_REG);
/* Copy our capabilities from PHY_STAT_REG to PHY_AD_REG */
my_phy_caps = smc_read_phy_register (PHY_STAT_REG);
my_ad_caps = PHY_AD_CSMA; /* I am CSMA capable */
if (my_phy_caps & PHY_STAT_CAP_T4)
my_ad_caps |= PHY_AD_T4;
if (my_phy_caps & PHY_STAT_CAP_TXF)
my_ad_caps |= PHY_AD_TX_FDX;
if (my_phy_caps & PHY_STAT_CAP_TXH)
my_ad_caps |= PHY_AD_TX_HDX;
if (my_phy_caps & PHY_STAT_CAP_TF)
my_ad_caps |= PHY_AD_10_FDX;
if (my_phy_caps & PHY_STAT_CAP_TH)
my_ad_caps |= PHY_AD_10_HDX;
/* Update our Auto-Neg Advertisement Register */
smc_write_phy_register (PHY_AD_REG, my_ad_caps);
/* Read the register back. Without this, it appears that when */
/* auto-negotiation is restarted, sometimes it isn't ready and */
/* the link does not come up. */
smc_read_phy_register(PHY_AD_REG);
PRINTK2 ("%s: phy caps=%x\n", SMC_DEV_NAME, my_phy_caps);
PRINTK2 ("%s: phy advertised caps=%x\n", SMC_DEV_NAME, my_ad_caps);
/* Restart auto-negotiation process in order to advertise my caps */
smc_write_phy_register (PHY_CNTL_REG,
PHY_CNTL_ANEG_EN | PHY_CNTL_ANEG_RST);
/* Wait for the auto-negotiation to complete. This may take from */
/* 2 to 3 seconds. */
/* Wait for the reset to complete, or time out */
timeout = CONFIG_SMC_AUTONEG_TIMEOUT * 2;
while (timeout--) {
status = smc_read_phy_register (PHY_STAT_REG);
if (status & PHY_STAT_ANEG_ACK) {
/* auto-negotiate complete */
break;
}
smc_wait_ms (500); /* wait 500 millisecs */
/* Restart auto-negotiation if remote fault */
if (status & PHY_STAT_REM_FLT) {
printf ("%s: PHY remote fault detected\n",
SMC_DEV_NAME);
/* Restart auto-negotiation */
printf ("%s: PHY restarting auto-negotiation\n",
SMC_DEV_NAME);
smc_write_phy_register (PHY_CNTL_REG,
PHY_CNTL_ANEG_EN |
PHY_CNTL_ANEG_RST |
PHY_CNTL_SPEED |
PHY_CNTL_DPLX);
}
}
if (timeout < 1) {
printf ("%s: PHY auto-negotiate timed out\n", SMC_DEV_NAME);
failed = 1;
}
/* Fail if we detected an auto-negotiate remote fault */
if (status & PHY_STAT_REM_FLT) {
printf ("%s: PHY remote fault detected\n", SMC_DEV_NAME);
failed = 1;
}
/* Re-Configure the Receive/Phy Control register */
SMC_outw (RPC_DEFAULT, RPC_REG);
smc_phy_configure_exit: ;
}
#endif /* !CONFIG_SMC91111_EXT_PHY */
#if SMC_DEBUG > 2
static void print_packet( byte * buf, int length )
{
int i;
int remainder;
int lines;
printf("Packet of length %d \n", length );
#if SMC_DEBUG > 3
lines = length / 16;
remainder = length % 16;
for ( i = 0; i < lines ; i ++ ) {
int cur;
for ( cur = 0; cur < 8; cur ++ ) {
byte a, b;
a = *(buf ++ );
b = *(buf ++ );
printf("%02x%02x ", a, b );
}
printf("\n");
}
for ( i = 0; i < remainder/2 ; i++ ) {
byte a, b;
a = *(buf ++ );
b = *(buf ++ );
printf("%02x%02x ", a, b );
}
printf("\n");
#endif
}
#endif
int eth_init(bd_t *bd) {
#ifdef SHARED_RESOURCES
swap_to(ETHERNET);
#endif
return (smc_open(bd));
}
void eth_halt() {
smc_close();
}
int eth_rx() {
return smc_rcv();
}
int eth_send(volatile void *packet, int length) {
return smc_send_packet(packet, length);
}
int smc_get_ethaddr (bd_t * bd)
{
int env_size, rom_valid, env_present = 0, reg;
char *s = NULL, *e, es[] = "11:22:33:44:55:66";
char s_env_mac[64];
uchar v_env_mac[6], v_rom_mac[6], *v_mac;
env_size = getenv_r ("ethaddr", s_env_mac, sizeof (s_env_mac));
if ((env_size > 0) && (env_size < sizeof (es))) { /* exit if env is bad */
printf ("\n*** ERROR: ethaddr is not set properly!!\n");
return (-1);
}
if (env_size > 0) {
env_present = 1;
s = s_env_mac;
}
for (reg = 0; reg < 6; ++reg) { /* turn string into mac value */
v_env_mac[reg] = s ? simple_strtoul (s, &e, 16) : 0;
if (s)
s = (*e) ? e + 1 : e;
}
rom_valid = get_rom_mac (v_rom_mac); /* get ROM mac value if any */
if (!env_present) { /* if NO env */
if (rom_valid) { /* but ROM is valid */
v_mac = v_rom_mac;
sprintf (s_env_mac, "%02X:%02X:%02X:%02X:%02X:%02X",
v_mac[0], v_mac[1], v_mac[2], v_mac[3],
v_mac[4], v_mac[5]);
setenv ("ethaddr", s_env_mac);
} else { /* no env, bad ROM */
printf ("\n*** ERROR: ethaddr is NOT set !!\n");
return (-1);
}
} else { /* good env, don't care ROM */
v_mac = v_env_mac; /* always use a good env over a ROM */
}
if (env_present && rom_valid) { /* if both env and ROM are good */
if (memcmp (v_env_mac, v_rom_mac, 6) != 0) {
printf ("\nWarning: MAC addresses don't match:\n");
printf ("\tHW MAC address: "
"%02X:%02X:%02X:%02X:%02X:%02X\n",
v_rom_mac[0], v_rom_mac[1],
v_rom_mac[2], v_rom_mac[3],
v_rom_mac[4], v_rom_mac[5] );
printf ("\t\"ethaddr\" value: "
"%02X:%02X:%02X:%02X:%02X:%02X\n",
v_env_mac[0], v_env_mac[1],
v_env_mac[2], v_env_mac[3],
v_env_mac[4], v_env_mac[5]) ;
debug ("### Set MAC addr from environment\n");
}
}
memcpy (bd->bi_enetaddr, v_mac, 6); /* update global address to match env (allows env changing) */
smc_set_mac_addr ((uchar *)v_mac); /* use old function to update smc default */
PRINTK("Using MAC Address %02X:%02X:%02X:%02X:%02X:%02X\n", v_mac[0], v_mac[1],
v_mac[2], v_mac[3], v_mac[4], v_mac[5]);
return (0);
}
int get_rom_mac (uchar *v_rom_mac)
{
#ifdef HARDCODE_MAC /* used for testing or to supress run time warnings */
char hw_mac_addr[] = { 0x02, 0x80, 0xad, 0x20, 0x31, 0xb8 };
memcpy (v_rom_mac, hw_mac_addr, 6);
return (1);
#else
int i;
int valid_mac = 0;
SMC_SELECT_BANK (1);
for (i=0; i<6; i++)
{
v_rom_mac[i] = SMC_inb ((ADDR0_REG + i));
valid_mac |= v_rom_mac[i];
}
return (valid_mac ? 1 : 0);
#endif
}