upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/cpu/ppc4xx/44x_spd_ddr2.c

3035 lines
94 KiB

/*
* cpu/ppc4xx/44x_spd_ddr2.c
* This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
* DDR2 controller (non Denali Core). Those are 440SP/SPe.
*
* (C) Copyright 2007-2008
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*
* COPYRIGHT AMCC CORPORATION 2004
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*/
/* define DEBUG for debugging output (obviously ;-)) */
#if 0
#define DEBUG
#endif
#include <common.h>
#include <command.h>
#include <ppc4xx.h>
#include <i2c.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#if defined(CONFIG_SPD_EEPROM) && \
(defined(CONFIG_440SP) || defined(CONFIG_440SPE))
/*-----------------------------------------------------------------------------+
* Defines
*-----------------------------------------------------------------------------*/
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#define SDRAM_DDR1 1
#define SDRAM_DDR2 2
#define SDRAM_NONE 0
#define MAXDIMMS 2
#define MAXRANKS 4
#define MAXBXCF 4
#define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
#define ONE_BILLION 1000000000
#define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
#define CMD_NOP (7 << 19)
#define CMD_PRECHARGE (2 << 19)
#define CMD_REFRESH (1 << 19)
#define CMD_EMR (0 << 19)
#define CMD_READ (5 << 19)
#define CMD_WRITE (4 << 19)
#define SELECT_MR (0 << 16)
#define SELECT_EMR (1 << 16)
#define SELECT_EMR2 (2 << 16)
#define SELECT_EMR3 (3 << 16)
/* MR */
#define DLL_RESET 0x00000100
#define WRITE_RECOV_2 (1 << 9)
#define WRITE_RECOV_3 (2 << 9)
#define WRITE_RECOV_4 (3 << 9)
#define WRITE_RECOV_5 (4 << 9)
#define WRITE_RECOV_6 (5 << 9)
#define BURST_LEN_4 0x00000002
/* EMR */
#define ODT_0_OHM 0x00000000
#define ODT_50_OHM 0x00000044
#define ODT_75_OHM 0x00000004
#define ODT_150_OHM 0x00000040
#define ODS_FULL 0x00000000
#define ODS_REDUCED 0x00000002
/* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
#define ODT_EB0R (0x80000000 >> 8)
#define ODT_EB0W (0x80000000 >> 7)
#define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
#define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
#define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
/* Defines for the Read Cycle Delay test */
#define NUMMEMTESTS 8
#define NUMMEMWORDS 8
#define NUMLOOPS 64 /* memory test loops */
/*
* This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
* region. Right now the cache should still be disabled in U-Boot because of the
* EMAC driver, that need it's buffer descriptor to be located in non cached
* memory.
*
* If at some time this restriction doesn't apply anymore, just define
* CONFIG_4xx_DCACHE in the board config file and this code should setup
* everything correctly.
*/
#ifdef CONFIG_4xx_DCACHE
#define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
#else
#define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
#endif
/*
* Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
*/
void __spd_ddr_init_hang (void)
{
hang ();
}
void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
/*
* To provide an interface for board specific config values in this common
* DDR setup code, we implement he "weak" default functions here. They return
* the default value back to the caller.
*
* Please see include/configs/yucca.h for an example fora board specific
* implementation.
*/
u32 __ddr_wrdtr(u32 default_val)
{
return default_val;
}
u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr")));
u32 __ddr_clktr(u32 default_val)
{
return default_val;
}
u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr")));
/* Private Structure Definitions */
/* enum only to ease code for cas latency setting */
typedef enum ddr_cas_id {
DDR_CAS_2 = 20,
DDR_CAS_2_5 = 25,
DDR_CAS_3 = 30,
DDR_CAS_4 = 40,
DDR_CAS_5 = 50
} ddr_cas_id_t;
/*-----------------------------------------------------------------------------+
* Prototypes
*-----------------------------------------------------------------------------*/
static unsigned long sdram_memsize(void);
static void get_spd_info(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void check_mem_type(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void check_frequency(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void check_rank_number(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void check_voltage_type(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_memory_queue(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_codt(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_mode(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks,
ddr_cas_id_t *selected_cas,
int *write_recovery);
static void program_tr(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_rtr(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_bxcf(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_copt1(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
static void program_initplr(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks,
ddr_cas_id_t selected_cas,
int write_recovery);
static unsigned long is_ecc_enabled(void);
#ifdef CONFIG_DDR_ECC
static void program_ecc(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks,
unsigned long tlb_word2_i_value);
static void program_ecc_addr(unsigned long start_address,
unsigned long num_bytes,
unsigned long tlb_word2_i_value);
#endif
static void program_DQS_calibration(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks);
#ifdef HARD_CODED_DQS /* calibration test with hardvalues */
static void test(void);
#else
static void DQS_calibration_process(void);
#endif
static void ppc440sp_sdram_register_dump(void);
int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
void dcbz_area(u32 start_address, u32 num_bytes);
void dflush(void);
static u32 mfdcr_any(u32 dcr)
{
u32 val;
switch (dcr) {
case SDRAM_R0BAS + 0:
val = mfdcr(SDRAM_R0BAS + 0);
break;
case SDRAM_R0BAS + 1:
val = mfdcr(SDRAM_R0BAS + 1);
break;
case SDRAM_R0BAS + 2:
val = mfdcr(SDRAM_R0BAS + 2);
break;
case SDRAM_R0BAS + 3:
val = mfdcr(SDRAM_R0BAS + 3);
break;
default:
printf("DCR %d not defined in case statement!!!\n", dcr);
val = 0; /* just to satisfy the compiler */
}
return val;
}
static void mtdcr_any(u32 dcr, u32 val)
{
switch (dcr) {
case SDRAM_R0BAS + 0:
mtdcr(SDRAM_R0BAS + 0, val);
break;
case SDRAM_R0BAS + 1:
mtdcr(SDRAM_R0BAS + 1, val);
break;
case SDRAM_R0BAS + 2:
mtdcr(SDRAM_R0BAS + 2, val);
break;
case SDRAM_R0BAS + 3:
mtdcr(SDRAM_R0BAS + 3, val);
break;
default:
printf("DCR %d not defined in case statement!!!\n", dcr);
}
}
static unsigned char spd_read(uchar chip, uint addr)
{
unsigned char data[2];
if (i2c_probe(chip) == 0)
if (i2c_read(chip, addr, 1, data, 1) == 0)
return data[0];
return 0;
}
/*-----------------------------------------------------------------------------+
* sdram_memsize
*-----------------------------------------------------------------------------*/
static unsigned long sdram_memsize(void)
{
unsigned long mem_size;
unsigned long mcopt2;
unsigned long mcstat;
unsigned long mb0cf;
unsigned long sdsz;
unsigned long i;
mem_size = 0;
mfsdram(SDRAM_MCOPT2, mcopt2);
mfsdram(SDRAM_MCSTAT, mcstat);
/* DDR controller must be enabled and not in self-refresh. */
/* Otherwise memsize is zero. */
if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
&& ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
&& ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
== (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
for (i = 0; i < MAXBXCF; i++) {
mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
/* Banks enabled */
if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
switch(sdsz) {
case SDRAM_RXBAS_SDSZ_8:
mem_size+=8;
break;
case SDRAM_RXBAS_SDSZ_16:
mem_size+=16;
break;
case SDRAM_RXBAS_SDSZ_32:
mem_size+=32;
break;
case SDRAM_RXBAS_SDSZ_64:
mem_size+=64;
break;
case SDRAM_RXBAS_SDSZ_128:
mem_size+=128;
break;
case SDRAM_RXBAS_SDSZ_256:
mem_size+=256;
break;
case SDRAM_RXBAS_SDSZ_512:
mem_size+=512;
break;
case SDRAM_RXBAS_SDSZ_1024:
mem_size+=1024;
break;
case SDRAM_RXBAS_SDSZ_2048:
mem_size+=2048;
break;
case SDRAM_RXBAS_SDSZ_4096:
mem_size+=4096;
break;
default:
mem_size=0;
break;
}
}
}
}
mem_size *= 1024 * 1024;
return(mem_size);
}
/*-----------------------------------------------------------------------------+
* initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
* Note: This routine runs from flash with a stack set up in the chip's
* sram space. It is important that the routine does not require .sbss, .bss or
* .data sections. It also cannot call routines that require these sections.
*-----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
* Function: initdram
* Description: Configures SDRAM memory banks for DDR operation.
* Auto Memory Configuration option reads the DDR SDRAM EEPROMs
* via the IIC bus and then configures the DDR SDRAM memory
* banks appropriately. If Auto Memory Configuration is
* not used, it is assumed that no DIMM is plugged
*-----------------------------------------------------------------------------*/
long int initdram(int board_type)
{
unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
unsigned char spd0[MAX_SPD_BYTES];
unsigned char spd1[MAX_SPD_BYTES];
unsigned char *dimm_spd[MAXDIMMS];
unsigned long dimm_populated[MAXDIMMS];
unsigned long num_dimm_banks; /* on board dimm banks */
unsigned long val;
ddr_cas_id_t selected_cas;
int write_recovery;
unsigned long dram_size = 0;
num_dimm_banks = sizeof(iic0_dimm_addr);
/*------------------------------------------------------------------
* Set up an array of SPD matrixes.
*-----------------------------------------------------------------*/
dimm_spd[0] = spd0;
dimm_spd[1] = spd1;
/*------------------------------------------------------------------
* Reset the DDR-SDRAM controller.
*-----------------------------------------------------------------*/
mtsdr(SDR0_SRST, (0x80000000 >> 10));
mtsdr(SDR0_SRST, 0x00000000);
/*
* Make sure I2C controller is initialized
* before continuing.
*/
/* switch to correct I2C bus */
I2C_SET_BUS(CFG_SPD_BUS_NUM);
i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
/*------------------------------------------------------------------
* Clear out the serial presence detect buffers.
* Perform IIC reads from the dimm. Fill in the spds.
* Check to see if the dimm slots are populated
*-----------------------------------------------------------------*/
get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*------------------------------------------------------------------
* Check the memory type for the dimms plugged.
*-----------------------------------------------------------------*/
check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*------------------------------------------------------------------
* Check the frequency supported for the dimms plugged.
*-----------------------------------------------------------------*/
check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*------------------------------------------------------------------
* Check the total rank number.
*-----------------------------------------------------------------*/
check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*------------------------------------------------------------------
* Check the voltage type for the dimms plugged.
*-----------------------------------------------------------------*/
check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*------------------------------------------------------------------
* Program SDRAM controller options 2 register
* Except Enabling of the memory controller.
*-----------------------------------------------------------------*/
mfsdram(SDRAM_MCOPT2, val);
mtsdram(SDRAM_MCOPT2,
(val &
~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
SDRAM_MCOPT2_ISIE_MASK))
| (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
SDRAM_MCOPT2_ISIE_ENABLE));
/*------------------------------------------------------------------
* Program SDRAM controller options 1 register
* Note: Does not enable the memory controller.
*-----------------------------------------------------------------*/
program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*------------------------------------------------------------------
* Set the SDRAM Controller On Die Termination Register
*-----------------------------------------------------------------*/
program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*------------------------------------------------------------------
* Program SDRAM refresh register.
*-----------------------------------------------------------------*/
program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*------------------------------------------------------------------
* Program SDRAM mode register.
*-----------------------------------------------------------------*/
program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
&selected_cas, &write_recovery);
/*------------------------------------------------------------------
* Set the SDRAM Write Data/DM/DQS Clock Timing Reg
*-----------------------------------------------------------------*/
mfsdram(SDRAM_WRDTR, val);
mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
/*------------------------------------------------------------------
* Set the SDRAM Clock Timing Register
*-----------------------------------------------------------------*/
mfsdram(SDRAM_CLKTR, val);
mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) |
ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG));
/*------------------------------------------------------------------
* Program the BxCF registers.
*-----------------------------------------------------------------*/
program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*------------------------------------------------------------------
* Program SDRAM timing registers.
*-----------------------------------------------------------------*/
program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*------------------------------------------------------------------
* Set the Extended Mode register
*-----------------------------------------------------------------*/
mfsdram(SDRAM_MEMODE, val);
mtsdram(SDRAM_MEMODE,
(val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
(SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
| SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
/*------------------------------------------------------------------
* Program Initialization preload registers.
*-----------------------------------------------------------------*/
program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
selected_cas, write_recovery);
/*------------------------------------------------------------------
* Delay to ensure 200usec have elapsed since reset.
*-----------------------------------------------------------------*/
udelay(400);
/*------------------------------------------------------------------
* Set the memory queue core base addr.
*-----------------------------------------------------------------*/
program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*------------------------------------------------------------------
* Program SDRAM controller options 2 register
* Enable the memory controller.
*-----------------------------------------------------------------*/
mfsdram(SDRAM_MCOPT2, val);
mtsdram(SDRAM_MCOPT2,
(val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
(SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
/*------------------------------------------------------------------
* Wait for SDRAM_CFG0_DC_EN to complete.
*-----------------------------------------------------------------*/
do {
mfsdram(SDRAM_MCSTAT, val);
} while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
/* get installed memory size */
dram_size = sdram_memsize();
/* and program tlb entries for this size (dynamic) */
/*
* Program TLB entries with caches enabled, for best performace
* while auto-calibrating and ECC generation
*/
program_tlb(0, 0, dram_size, 0);
/*------------------------------------------------------------------
* DQS calibration.
*-----------------------------------------------------------------*/
program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
#ifdef CONFIG_DDR_ECC
/*------------------------------------------------------------------
* If ecc is enabled, initialize the parity bits.
*-----------------------------------------------------------------*/
program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0);
#endif
/*
* Now after initialization (auto-calibration and ECC generation)
* remove the TLB entries with caches enabled and program again with
* desired cache functionality
*/
remove_tlb(0, dram_size);
program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
ppc440sp_sdram_register_dump();
return dram_size;
}
static void get_spd_info(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long dimm_found;
unsigned char num_of_bytes;
unsigned char total_size;
dimm_found = FALSE;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
num_of_bytes = 0;
total_size = 0;
num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
debug("\nspd_read(0x%x) returned %d\n",
iic0_dimm_addr[dimm_num], num_of_bytes);
total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
debug("spd_read(0x%x) returned %d\n",
iic0_dimm_addr[dimm_num], total_size);
if ((num_of_bytes != 0) && (total_size != 0)) {
dimm_populated[dimm_num] = TRUE;
dimm_found = TRUE;
debug("DIMM slot %lu: populated\n", dimm_num);
} else {
dimm_populated[dimm_num] = FALSE;
debug("DIMM slot %lu: Not populated\n", dimm_num);
}
}
if (dimm_found == FALSE) {
printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
spd_ddr_init_hang ();
}
}
void board_add_ram_info(int use_default)
{
PPC4xx_SYS_INFO board_cfg;
u32 val;
if (is_ecc_enabled())
puts(" (ECC");
else
puts(" (ECC not");
get_sys_info(&board_cfg);
mfsdr(SDR0_DDR0, val);
val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
printf(" enabled, %d MHz", (val * 2) / 1000000);
mfsdram(SDRAM_MMODE, val);
val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
printf(", CL%d)", val);
}
/*------------------------------------------------------------------
* For the memory DIMMs installed, this routine verifies that they
* really are DDR specific DIMMs.
*-----------------------------------------------------------------*/
static void check_mem_type(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long dimm_type;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
switch (dimm_type) {
case 1:
printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
"slot %d.\n", (unsigned int)dimm_num);
printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
break;
case 2:
printf("ERROR: EDO DIMM detected in slot %d.\n",
(unsigned int)dimm_num);
printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
break;
case 3:
printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
(unsigned int)dimm_num);
printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
break;
case 4:
printf("ERROR: SDRAM DIMM detected in slot %d.\n",
(unsigned int)dimm_num);
printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
break;
case 5:
printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
(unsigned int)dimm_num);
printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
break;
case 6:
printf("ERROR: SGRAM DIMM detected in slot %d.\n",
(unsigned int)dimm_num);
printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
break;
case 7:
debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
dimm_populated[dimm_num] = SDRAM_DDR1;
break;
case 8:
debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
dimm_populated[dimm_num] = SDRAM_DDR2;
break;
default:
printf("ERROR: Unknown DIMM detected in slot %d.\n",
(unsigned int)dimm_num);
printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
break;
}
}
}
for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
&& (dimm_populated[dimm_num] != SDRAM_NONE)
&& (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
spd_ddr_init_hang ();
}
}
}
/*------------------------------------------------------------------
* For the memory DIMMs installed, this routine verifies that
* frequency previously calculated is supported.
*-----------------------------------------------------------------*/
static void check_frequency(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long tcyc_reg;
unsigned long cycle_time;
unsigned long calc_cycle_time;
unsigned long sdram_freq;
unsigned long sdr_ddrpll;
PPC4xx_SYS_INFO board_cfg;
/*------------------------------------------------------------------
* Get the board configuration info.
*-----------------------------------------------------------------*/
get_sys_info(&board_cfg);
mfsdr(SDR0_DDR0, sdr_ddrpll);
sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
/*
* calc_cycle_time is calculated from DDR frequency set by board/chip
* and is expressed in multiple of 10 picoseconds
* to match the way DIMM cycle time is calculated below.
*/
calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] != SDRAM_NONE) {
tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
/*
* Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
* the higher order nibble (bits 4-7) designates the cycle time
* to a granularity of 1ns;
* the value presented by the lower order nibble (bits 0-3)
* has a granularity of .1ns and is added to the value designated
* by the higher nibble. In addition, four lines of the lower order
* nibble are assigned to support +.25,+.33, +.66 and +.75.
*/
/* Convert from hex to decimal */
if ((tcyc_reg & 0x0F) == 0x0D)
cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
else if ((tcyc_reg & 0x0F) == 0x0C)
cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
else if ((tcyc_reg & 0x0F) == 0x0B)
cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
else if ((tcyc_reg & 0x0F) == 0x0A)
cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
else
cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
((tcyc_reg & 0x0F)*10);
debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
if (cycle_time > (calc_cycle_time + 10)) {
/*
* the provided sdram cycle_time is too small
* for the available DIMM cycle_time.
* The additionnal 100ps is here to accept a small incertainty.
*/
printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
"slot %d \n while calculated cycle time is %d ps.\n",
(unsigned int)(cycle_time*10),
(unsigned int)dimm_num,
(unsigned int)(calc_cycle_time*10));
printf("Replace the DIMM, or change DDR frequency via "
"strapping bits.\n\n");
spd_ddr_init_hang ();
}
}
}
}
/*------------------------------------------------------------------
* For the memory DIMMs installed, this routine verifies two
* ranks/banks maximum are availables.
*-----------------------------------------------------------------*/
static void check_rank_number(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long dimm_rank;
unsigned long total_rank = 0;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] != SDRAM_NONE) {
dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
dimm_rank = (dimm_rank & 0x0F) +1;
else
dimm_rank = dimm_rank & 0x0F;
if (dimm_rank > MAXRANKS) {
printf("ERROR: DRAM DIMM detected with %d ranks in "
"slot %d is not supported.\n", dimm_rank, dimm_num);
printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
} else
total_rank += dimm_rank;
}
if (total_rank > MAXRANKS) {
printf("ERROR: DRAM DIMM detected with a total of %d ranks "
"for all slots.\n", (unsigned int)total_rank);
printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
printf("Remove one of the DIMM modules.\n\n");
spd_ddr_init_hang ();
}
}
}
/*------------------------------------------------------------------
* only support 2.5V modules.
* This routine verifies this.
*-----------------------------------------------------------------*/
static void check_voltage_type(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long voltage_type;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] != SDRAM_NONE) {
voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
switch (voltage_type) {
case 0x00:
printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
printf("This DIMM is 5.0 Volt/TTL.\n");
printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
(unsigned int)dimm_num);
spd_ddr_init_hang ();
break;
case 0x01:
printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
printf("This DIMM is LVTTL.\n");
printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
(unsigned int)dimm_num);
spd_ddr_init_hang ();
break;
case 0x02:
printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
printf("This DIMM is 1.5 Volt.\n");
printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
(unsigned int)dimm_num);
spd_ddr_init_hang ();
break;
case 0x03:
printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
printf("This DIMM is 3.3 Volt/TTL.\n");
printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
(unsigned int)dimm_num);
spd_ddr_init_hang ();
break;
case 0x04:
/* 2.5 Voltage only for DDR1 */
break;
case 0x05:
/* 1.8 Voltage only for DDR2 */
break;
default:
printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
(unsigned int)dimm_num);
spd_ddr_init_hang ();
break;
}
}
}
}
/*-----------------------------------------------------------------------------+
* program_copt1.
*-----------------------------------------------------------------------------*/
static void program_copt1(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long mcopt1;
unsigned long ecc_enabled;
unsigned long ecc = 0;
unsigned long data_width = 0;
unsigned long dimm_32bit;
unsigned long dimm_64bit;
unsigned long registered = 0;
unsigned long attribute = 0;
unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
unsigned long bankcount;
unsigned long ddrtype;
unsigned long val;
#ifdef CONFIG_DDR_ECC
ecc_enabled = TRUE;
#else
ecc_enabled = FALSE;
#endif
dimm_32bit = FALSE;
dimm_64bit = FALSE;
buf0 = FALSE;
buf1 = FALSE;
/*------------------------------------------------------------------
* Set memory controller options reg 1, SDRAM_MCOPT1.
*-----------------------------------------------------------------*/
mfsdram(SDRAM_MCOPT1, val);
mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
SDRAM_MCOPT1_DREF_MASK);
mcopt1 |= SDRAM_MCOPT1_QDEP;
mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] != SDRAM_NONE) {
/* test ecc support */
ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
if (ecc != 0x02) /* ecc not supported */
ecc_enabled = FALSE;
/* test bank count */
bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
if (bankcount == 0x04) /* bank count = 4 */
mcopt1 |= SDRAM_MCOPT1_4_BANKS;
else /* bank count = 8 */
mcopt1 |= SDRAM_MCOPT1_8_BANKS;
/* test DDR type */
ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
/* test for buffered/unbuffered, registered, differential clocks */
registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
/* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
if (dimm_num == 0) {
if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
if (registered == 1) { /* DDR2 always buffered */
/* TODO: what about above comments ? */
mcopt1 |= SDRAM_MCOPT1_RDEN;
buf0 = TRUE;
} else {
/* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
if ((attribute & 0x02) == 0x00) {
/* buffered not supported */
buf0 = FALSE;
} else {
mcopt1 |= SDRAM_MCOPT1_RDEN;
buf0 = TRUE;
}
}
}
else if (dimm_num == 1) {
if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
if (registered == 1) {
/* DDR2 always buffered */
mcopt1 |= SDRAM_MCOPT1_RDEN;
buf1 = TRUE;
} else {
if ((attribute & 0x02) == 0x00) {
/* buffered not supported */
buf1 = FALSE;
} else {
mcopt1 |= SDRAM_MCOPT1_RDEN;
buf1 = TRUE;
}
}
}
/* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
(((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
switch (data_width) {
case 72:
case 64:
dimm_64bit = TRUE;
break;
case 40:
case 32:
dimm_32bit = TRUE;
break;
default:
printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
data_width);
printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
break;
}
}
}
/* verify matching properties */
if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
if (buf0 != buf1) {
printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
spd_ddr_init_hang ();
}
}
if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
spd_ddr_init_hang ();
}
else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
mcopt1 |= SDRAM_MCOPT1_DMWD_64;
} else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
mcopt1 |= SDRAM_MCOPT1_DMWD_32;
} else {
printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
spd_ddr_init_hang ();
}
if (ecc_enabled == TRUE)
mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
else
mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
mtsdram(SDRAM_MCOPT1, mcopt1);
}
/*-----------------------------------------------------------------------------+
* program_codt.
*-----------------------------------------------------------------------------*/
static void program_codt(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long codt;
unsigned long modt0 = 0;
unsigned long modt1 = 0;
unsigned long modt2 = 0;
unsigned long modt3 = 0;
unsigned char dimm_num;
unsigned char dimm_rank;
unsigned char total_rank = 0;
unsigned char total_dimm = 0;
unsigned char dimm_type = 0;
unsigned char firstSlot = 0;
/*------------------------------------------------------------------
* Set the SDRAM Controller On Die Termination Register
*-----------------------------------------------------------------*/
mfsdram(SDRAM_CODT, codt);
codt |= (SDRAM_CODT_IO_NMODE
& (~SDRAM_CODT_DQS_SINGLE_END
& ~SDRAM_CODT_CKSE_SINGLE_END
& ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
& ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] != SDRAM_NONE) {
dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
dimm_rank = (dimm_rank & 0x0F) + 1;
dimm_type = SDRAM_DDR2;
} else {
dimm_rank = dimm_rank & 0x0F;
dimm_type = SDRAM_DDR1;
}
total_rank += dimm_rank;
total_dimm++;
if ((dimm_num == 0) && (total_dimm == 1))
firstSlot = TRUE;
else
firstSlot = FALSE;
}
}
if (dimm_type == SDRAM_DDR2) {
codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
if ((total_dimm == 1) && (firstSlot == TRUE)) {
if (total_rank == 1) {
codt |= CALC_ODT_R(0);
modt0 = CALC_ODT_W(0);
modt1 = 0x00000000;
modt2 = 0x00000000;
modt3 = 0x00000000;
}
if (total_rank == 2) {
codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
modt0 = CALC_ODT_W(0);
modt1 = CALC_ODT_W(0);
modt2 = 0x00000000;
modt3 = 0x00000000;
}
} else if ((total_dimm == 1) && (firstSlot != TRUE)) {
if (total_rank == 1) {
codt |= CALC_ODT_R(2);
modt0 = 0x00000000;
modt1 = 0x00000000;
modt2 = CALC_ODT_W(2);
modt3 = 0x00000000;
}
if (total_rank == 2) {
codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
modt0 = 0x00000000;
modt1 = 0x00000000;
modt2 = CALC_ODT_W(2);
modt3 = CALC_ODT_W(2);
}
}
if (total_dimm == 2) {
if (total_rank == 2) {
codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
modt0 = CALC_ODT_RW(2);
modt1 = 0x00000000;
modt2 = CALC_ODT_RW(0);
modt3 = 0x00000000;
}
if (total_rank == 4) {
codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
CALC_ODT_R(2) | CALC_ODT_R(3);
modt0 = CALC_ODT_RW(2);
modt1 = 0x00000000;
modt2 = CALC_ODT_RW(0);
modt3 = 0x00000000;
}
}
} else {
codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
modt0 = 0x00000000;
modt1 = 0x00000000;
modt2 = 0x00000000;
modt3 = 0x00000000;
if (total_dimm == 1) {
if (total_rank == 1)
codt |= 0x00800000;
if (total_rank == 2)
codt |= 0x02800000;
}
if (total_dimm == 2) {
if (total_rank == 2)
codt |= 0x08800000;
if (total_rank == 4)
codt |= 0x2a800000;
}
}
debug("nb of dimm %d\n", total_dimm);
debug("nb of rank %d\n", total_rank);
if (total_dimm == 1)
debug("dimm in slot %d\n", firstSlot);
mtsdram(SDRAM_CODT, codt);
mtsdram(SDRAM_MODT0, modt0);
mtsdram(SDRAM_MODT1, modt1);
mtsdram(SDRAM_MODT2, modt2);
mtsdram(SDRAM_MODT3, modt3);
}
/*-----------------------------------------------------------------------------+
* program_initplr.
*-----------------------------------------------------------------------------*/
static void program_initplr(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks,
ddr_cas_id_t selected_cas,
int write_recovery)
{
u32 cas = 0;
u32 odt = 0;
u32 ods = 0;
u32 mr;
u32 wr;
u32 emr;
u32 emr2;
u32 emr3;
int dimm_num;
int total_dimm = 0;
/******************************************************
** Assumption: if more than one DIMM, all DIMMs are the same
** as already checked in check_memory_type
******************************************************/
if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
mtsdram(SDRAM_INITPLR0, 0x81B80000);
mtsdram(SDRAM_INITPLR1, 0x81900400);
mtsdram(SDRAM_INITPLR2, 0x81810000);
mtsdram(SDRAM_INITPLR3, 0xff800162);
mtsdram(SDRAM_INITPLR4, 0x81900400);
mtsdram(SDRAM_INITPLR5, 0x86080000);
mtsdram(SDRAM_INITPLR6, 0x86080000);
mtsdram(SDRAM_INITPLR7, 0x81000062);
} else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
switch (selected_cas) {
case DDR_CAS_3:
cas = 3 << 4;
break;
case DDR_CAS_4:
cas = 4 << 4;
break;
case DDR_CAS_5:
cas = 5 << 4;
break;
default:
printf("ERROR: ucode error on selected_cas value %d", selected_cas);
spd_ddr_init_hang ();
break;
}
#if 0
/*
* ToDo - Still a problem with the write recovery:
* On the Corsair CM2X512-5400C4 module, setting write recovery
* in the INITPLR reg to the value calculated in program_mode()
* results in not correctly working DDR2 memory (crash after
* relocation).
*
* So for now, set the write recovery to 3. This seems to work
* on the Corair module too.
*
* 2007-03-01, sr
*/
switch (write_recovery) {
case 3:
wr = WRITE_RECOV_3;
break;
case 4:
wr = WRITE_RECOV_4;
break;
case 5:
wr = WRITE_RECOV_5;
break;
case 6:
wr = WRITE_RECOV_6;
break;
default:
printf("ERROR: write recovery not support (%d)", write_recovery);
spd_ddr_init_hang ();
break;
}
#else
wr = WRITE_RECOV_3; /* test-only, see description above */
#endif
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
if (dimm_populated[dimm_num] != SDRAM_NONE)
total_dimm++;
if (total_dimm == 1) {
odt = ODT_150_OHM;
ods = ODS_FULL;
} else if (total_dimm == 2) {
odt = ODT_75_OHM;
ods = ODS_REDUCED;
} else {
printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
spd_ddr_init_hang ();
}
mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
emr = CMD_EMR | SELECT_EMR | odt | ods;
emr2 = CMD_EMR | SELECT_EMR2;
emr3 = CMD_EMR | SELECT_EMR3;
mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
udelay(1000);
mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
udelay(1000);
mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
} else {
printf("ERROR: ucode error as unknown DDR type in program_initplr");
spd_ddr_init_hang ();
}
}
/*------------------------------------------------------------------
* This routine programs the SDRAM_MMODE register.
* the selected_cas is an output parameter, that will be passed
* by caller to call the above program_initplr( )
*-----------------------------------------------------------------*/
static void program_mode(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks,
ddr_cas_id_t *selected_cas,
int *write_recovery)
{
unsigned long dimm_num;
unsigned long sdram_ddr1;
unsigned long t_wr_ns;
unsigned long t_wr_clk;
unsigned long cas_bit;
unsigned long cas_index;
unsigned long sdram_freq;
unsigned long ddr_check;
unsigned long mmode;
unsigned long tcyc_reg;
unsigned long cycle_2_0_clk;
unsigned long cycle_2_5_clk;
unsigned long cycle_3_0_clk;
unsigned long cycle_4_0_clk;
unsigned long cycle_5_0_clk;
unsigned long max_2_0_tcyc_ns_x_100;
unsigned long max_2_5_tcyc_ns_x_100;
unsigned long max_3_0_tcyc_ns_x_100;
unsigned long max_4_0_tcyc_ns_x_100;
unsigned long max_5_0_tcyc_ns_x_100;
unsigned long cycle_time_ns_x_100[3];
PPC4xx_SYS_INFO board_cfg;
unsigned char cas_2_0_available;
unsigned char cas_2_5_available;
unsigned char cas_3_0_available;
unsigned char cas_4_0_available;
unsigned char cas_5_0_available;
unsigned long sdr_ddrpll;
/*------------------------------------------------------------------
* Get the board configuration info.
*-----------------------------------------------------------------*/
get_sys_info(&board_cfg);
mfsdr(SDR0_DDR0, sdr_ddrpll);
sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
debug("sdram_freq=%d\n", sdram_freq);
/*------------------------------------------------------------------
* Handle the timing. We need to find the worst case timing of all
* the dimm modules installed.
*-----------------------------------------------------------------*/
t_wr_ns = 0;
cas_2_0_available = TRUE;
cas_2_5_available = TRUE;
cas_3_0_available = TRUE;
cas_4_0_available = TRUE;
cas_5_0_available = TRUE;
max_2_0_tcyc_ns_x_100 = 10;
max_2_5_tcyc_ns_x_100 = 10;
max_3_0_tcyc_ns_x_100 = 10;
max_4_0_tcyc_ns_x_100 = 10;
max_5_0_tcyc_ns_x_100 = 10;
sdram_ddr1 = TRUE;
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_populated[dimm_num] != SDRAM_NONE) {
if (dimm_populated[dimm_num] == SDRAM_DDR1)
sdram_ddr1 = TRUE;
else
sdram_ddr1 = FALSE;
/* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
/* For a particular DIMM, grab the three CAS values it supports */
for (cas_index = 0; cas_index < 3; cas_index++) {
switch (cas_index) {
case 0:
tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
break;
case 1:
tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
break;
default:
tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
break;
}
if ((tcyc_reg & 0x0F) >= 10) {
if ((tcyc_reg & 0x0F) == 0x0D) {
/* Convert from hex to decimal */
cycle_time_ns_x_100[cas_index] =
(((tcyc_reg & 0xF0) >> 4) * 100) + 75;
} else {
printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
"in slot %d\n", (unsigned int)dimm_num);
spd_ddr_init_hang ();
}
} else {
/* Convert from hex to decimal */
cycle_time_ns_x_100[cas_index] =
(((tcyc_reg & 0xF0) >> 4) * 100) +
((tcyc_reg & 0x0F)*10);
}
debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
cycle_time_ns_x_100[cas_index]);
}
/* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
/* supported for a particular DIMM. */
cas_index = 0;
if (sdram_ddr1) {
/*
* DDR devices use the following bitmask for CAS latency:
* Bit 7 6 5 4 3 2 1 0
* TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
*/
if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
(cycle_time_ns_x_100[cas_index] != 0)) {
max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
cycle_time_ns_x_100[cas_index]);
cas_index++;
} else {
if (cas_index != 0)
cas_index++;
cas_4_0_available = FALSE;
}
if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
(cycle_time_ns_x_100[cas_index] != 0)) {
max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
cycle_time_ns_x_100[cas_index]);
cas_index++;
} else {
if (cas_index != 0)
cas_index++;
cas_3_0_available = FALSE;
}
if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
(cycle_time_ns_x_100[cas_index] != 0)) {
max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
cycle_time_ns_x_100[cas_index]);
cas_index++;
} else {
if (cas_index != 0)
cas_index++;
cas_2_5_available = FALSE;
}
if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
(cycle_time_ns_x_100[cas_index] != 0)) {
max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
cycle_time_ns_x_100[cas_index]);
cas_index++;
} else {
if (cas_index != 0)
cas_index++;
cas_2_0_available = FALSE;
}
} else {
/*
* DDR2 devices use the following bitmask for CAS latency:
* Bit 7 6 5 4 3 2 1 0
* TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
*/
if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
(cycle_time_ns_x_100[cas_index] != 0)) {
max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
cycle_time_ns_x_100[cas_index]);
cas_index++;
} else {
if (cas_index != 0)
cas_index++;
cas_5_0_available = FALSE;
}
if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
(cycle_time_ns_x_100[cas_index] != 0)) {
max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
cycle_time_ns_x_100[cas_index]);
cas_index++;
} else {
if (cas_index != 0)
cas_index++;
cas_4_0_available = FALSE;
}
if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
(cycle_time_ns_x_100[cas_index] != 0)) {
max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
cycle_time_ns_x_100[cas_index]);
cas_index++;
} else {
if (cas_index != 0)
cas_index++;
cas_3_0_available = FALSE;
}
}
}
}
/*------------------------------------------------------------------
* Set the SDRAM mode, SDRAM_MMODE
*-----------------------------------------------------------------*/
mfsdram(SDRAM_MMODE, mmode);
mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
/* add 10 here because of rounding problems */
cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
if (sdram_ddr1 == TRUE) { /* DDR1 */
if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
*selected_cas = DDR_CAS_2;
} else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
*selected_cas = DDR_CAS_2_5;
} else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
*selected_cas = DDR_CAS_3;
} else {
printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
spd_ddr_init_hang ();
}
} else { /* DDR2 */
debug("cas_3_0_available=%d\n", cas_3_0_available);
debug("cas_4_0_available=%d\n", cas_4_0_available);
debug("cas_5_0_available=%d\n", cas_5_0_available);
if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
*selected_cas = DDR_CAS_3;
} else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
*selected_cas = DDR_CAS_4;
} else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
*selected_cas = DDR_CAS_5;
} else {
printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
printf("cas3=%d cas4=%d cas5=%d\n",
cas_3_0_available, cas_4_0_available, cas_5_0_available);
printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
spd_ddr_init_hang ();
}
}
if (sdram_ddr1 == TRUE)
mmode |= SDRAM_MMODE_WR_DDR1;
else {
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_populated[dimm_num] != SDRAM_NONE)
t_wr_ns = max(t_wr_ns,
spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
}
/*
* convert from nanoseconds to ddr clocks
* round up if necessary
*/
t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
if (sdram_freq != ddr_check)
t_wr_clk++;
switch (t_wr_clk) {
case 0:
case 1:
case 2:
case 3:
mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
break;
case 4:
mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
break;
case 5:
mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
break;
default:
mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
break;
}
*write_recovery = t_wr_clk;
}
debug("CAS latency = %d\n", *selected_cas);
debug("Write recovery = %d\n", *write_recovery);
mtsdram(SDRAM_MMODE, mmode);
}
/*-----------------------------------------------------------------------------+
* program_rtr.
*-----------------------------------------------------------------------------*/
static void program_rtr(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
PPC4xx_SYS_INFO board_cfg;
unsigned long max_refresh_rate;
unsigned long dimm_num;
unsigned long refresh_rate_type;
unsigned long refresh_rate;
unsigned long rint;
unsigned long sdram_freq;
unsigned long sdr_ddrpll;
unsigned long val;
/*------------------------------------------------------------------
* Get the board configuration info.
*-----------------------------------------------------------------*/
get_sys_info(&board_cfg);
/*------------------------------------------------------------------
* Set the SDRAM Refresh Timing Register, SDRAM_RTR
*-----------------------------------------------------------------*/
mfsdr(SDR0_DDR0, sdr_ddrpll);
sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
max_refresh_rate = 0;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] != SDRAM_NONE) {
refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
refresh_rate_type &= 0x7F;
switch (refresh_rate_type) {
case 0:
refresh_rate = 15625;
break;
case 1:
refresh_rate = 3906;
break;
case 2:
refresh_rate = 7812;
break;
case 3:
refresh_rate = 31250;
break;
case 4:
refresh_rate = 62500;
break;
case 5:
refresh_rate = 125000;
break;
default:
refresh_rate = 0;
printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
(unsigned int)dimm_num);
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
break;
}
max_refresh_rate = max(max_refresh_rate, refresh_rate);
}
}
rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
mfsdram(SDRAM_RTR, val);
mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
(SDRAM_RTR_RINT_ENCODE(rint)));
}
/*------------------------------------------------------------------
* This routine programs the SDRAM_TRx registers.
*-----------------------------------------------------------------*/
static void program_tr(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long sdram_ddr1;
unsigned long t_rp_ns;
unsigned long t_rcd_ns;
unsigned long t_rrd_ns;
unsigned long t_ras_ns;
unsigned long t_rc_ns;
unsigned long t_rfc_ns;
unsigned long t_wpc_ns;
unsigned long t_wtr_ns;
unsigned long t_rpc_ns;
unsigned long t_rp_clk;
unsigned long t_rcd_clk;
unsigned long t_rrd_clk;
unsigned long t_ras_clk;
unsigned long t_rc_clk;
unsigned long t_rfc_clk;
unsigned long t_wpc_clk;
unsigned long t_wtr_clk;
unsigned long t_rpc_clk;
unsigned long sdtr1, sdtr2, sdtr3;
unsigned long ddr_check;
unsigned long sdram_freq;
unsigned long sdr_ddrpll;
PPC4xx_SYS_INFO board_cfg;
/*------------------------------------------------------------------
* Get the board configuration info.
*-----------------------------------------------------------------*/
get_sys_info(&board_cfg);
mfsdr(SDR0_DDR0, sdr_ddrpll);
sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
/*------------------------------------------------------------------
* Handle the timing. We need to find the worst case timing of all
* the dimm modules installed.
*-----------------------------------------------------------------*/
t_rp_ns = 0;
t_rrd_ns = 0;
t_rcd_ns = 0;
t_ras_ns = 0;
t_rc_ns = 0;
t_rfc_ns = 0;
t_wpc_ns = 0;
t_wtr_ns = 0;
t_rpc_ns = 0;
sdram_ddr1 = TRUE;
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_populated[dimm_num] != SDRAM_NONE) {
if (dimm_populated[dimm_num] == SDRAM_DDR2)
sdram_ddr1 = TRUE;
else
sdram_ddr1 = FALSE;
t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
}
}
/*------------------------------------------------------------------
* Set the SDRAM Timing Reg 1, SDRAM_TR1
*-----------------------------------------------------------------*/
mfsdram(SDRAM_SDTR1, sdtr1);
sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
/* default values */
sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
/* normal operations */
sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
mtsdram(SDRAM_SDTR1, sdtr1);
/*------------------------------------------------------------------
* Set the SDRAM Timing Reg 2, SDRAM_TR2
*-----------------------------------------------------------------*/
mfsdram(SDRAM_SDTR2, sdtr2);
sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
SDRAM_SDTR2_RRD_MASK);
/*
* convert t_rcd from nanoseconds to ddr clocks
* round up if necessary
*/
t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
if (sdram_freq != ddr_check)
t_rcd_clk++;
switch (t_rcd_clk) {
case 0:
case 1:
sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
break;
case 2:
sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
break;
case 3:
sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
break;
case 4:
sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
break;
default:
sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
break;
}
if (sdram_ddr1 == TRUE) { /* DDR1 */
if (sdram_freq < 200000000) {
sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
} else {
sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
}
} else { /* DDR2 */
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_populated[dimm_num] != SDRAM_NONE) {
t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
}
}
/*
* convert from nanoseconds to ddr clocks
* round up if necessary
*/
t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
if (sdram_freq != ddr_check)
t_wpc_clk++;
switch (t_wpc_clk) {
case 0:
case 1:
case 2:
sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
break;
case 3:
sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
break;
case 4:
sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
break;
case 5:
sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
break;
default:
sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
break;
}
/*
* convert from nanoseconds to ddr clocks
* round up if necessary
*/
t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
if (sdram_freq != ddr_check)
t_wtr_clk++;
switch (t_wtr_clk) {
case 0:
case 1:
sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
break;
case 2:
sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
break;
case 3:
sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
break;
default:
sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
break;
}
/*
* convert from nanoseconds to ddr clocks
* round up if necessary
*/
t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
if (sdram_freq != ddr_check)
t_rpc_clk++;
switch (t_rpc_clk) {
case 0:
case 1:
case 2:
sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
break;
case 3:
sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
break;
default:
sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
break;
}
}
/* default value */
sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
/*
* convert t_rrd from nanoseconds to ddr clocks
* round up if necessary
*/
t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
if (sdram_freq != ddr_check)
t_rrd_clk++;
if (t_rrd_clk == 3)
sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
else
sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
/*
* convert t_rp from nanoseconds to ddr clocks
* round up if necessary
*/
t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
if (sdram_freq != ddr_check)
t_rp_clk++;
switch (t_rp_clk) {
case 0:
case 1:
case 2:
case 3:
sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
break;
case 4:
sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
break;
case 5:
sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
break;
case 6:
sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
break;
default:
sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
break;
}
mtsdram(SDRAM_SDTR2, sdtr2);
/*------------------------------------------------------------------
* Set the SDRAM Timing Reg 3, SDRAM_TR3
*-----------------------------------------------------------------*/
mfsdram(SDRAM_SDTR3, sdtr3);
sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
/*
* convert t_ras from nanoseconds to ddr clocks
* round up if necessary
*/
t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
if (sdram_freq != ddr_check)
t_ras_clk++;
sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
/*
* convert t_rc from nanoseconds to ddr clocks
* round up if necessary
*/
t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
if (sdram_freq != ddr_check)
t_rc_clk++;
sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
/* default xcs value */
sdtr3 |= SDRAM_SDTR3_XCS;
/*
* convert t_rfc from nanoseconds to ddr clocks
* round up if necessary
*/
t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
if (sdram_freq != ddr_check)
t_rfc_clk++;
sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
mtsdram(SDRAM_SDTR3, sdtr3);
}
/*-----------------------------------------------------------------------------+
* program_bxcf.
*-----------------------------------------------------------------------------*/
static void program_bxcf(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long num_col_addr;
unsigned long num_ranks;
unsigned long num_banks;
unsigned long mode;
unsigned long ind_rank;
unsigned long ind;
unsigned long ind_bank;
unsigned long bank_0_populated;
/*------------------------------------------------------------------
* Set the BxCF regs. First, wipe out the bank config registers.
*-----------------------------------------------------------------*/
mtsdram(SDRAM_MB0CF, 0x00000000);
mtsdram(SDRAM_MB1CF, 0x00000000);
mtsdram(SDRAM_MB2CF, 0x00000000);
mtsdram(SDRAM_MB3CF, 0x00000000);
mode = SDRAM_BXCF_M_BE_ENABLE;
bank_0_populated = 0;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] != SDRAM_NONE) {
num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
num_ranks = (num_ranks & 0x0F) +1;
else
num_ranks = num_ranks & 0x0F;
num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
for (ind_bank = 0; ind_bank < 2; ind_bank++) {
if (num_banks == 4)
ind = 0;
else
ind = 5;
switch (num_col_addr) {
case 0x08:
mode |= (SDRAM_BXCF_M_AM_0 + ind);
break;
case 0x09:
mode |= (SDRAM_BXCF_M_AM_1 + ind);
break;
case 0x0A:
mode |= (SDRAM_BXCF_M_AM_2 + ind);
break;
case 0x0B:
mode |= (SDRAM_BXCF_M_AM_3 + ind);
break;
case 0x0C:
mode |= (SDRAM_BXCF_M_AM_4 + ind);
break;
default:
printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
(unsigned int)dimm_num);
printf("ERROR: Unsupported value for number of "
"column addresses: %d.\n", (unsigned int)num_col_addr);
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
}
}
if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
bank_0_populated = 1;
for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
mtsdram(SDRAM_MB0CF +
((dimm_num + bank_0_populated + ind_rank) << 2),
mode);
}
}
}
}
/*------------------------------------------------------------------
* program memory queue.
*-----------------------------------------------------------------*/
static void program_memory_queue(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long rank_base_addr;
unsigned long rank_reg;
unsigned long rank_size_bytes;
unsigned long rank_size_id;
unsigned long num_ranks;
unsigned long baseadd_size;
unsigned long i;
unsigned long bank_0_populated = 0;
/*------------------------------------------------------------------
* Reset the rank_base_address.
*-----------------------------------------------------------------*/
rank_reg = SDRAM_R0BAS;
rank_base_addr = 0x00000000;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] != SDRAM_NONE) {
num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
num_ranks = (num_ranks & 0x0F) + 1;
else
num_ranks = num_ranks & 0x0F;
rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
/*------------------------------------------------------------------
* Set the sizes
*-----------------------------------------------------------------*/
baseadd_size = 0;
rank_size_bytes = 4 * 1024 * 1024 * rank_size_id;
switch (rank_size_id) {
case 0x02:
baseadd_size |= SDRAM_RXBAS_SDSZ_8;
break;
case 0x04:
baseadd_size |= SDRAM_RXBAS_SDSZ_16;
break;
case 0x08:
baseadd_size |= SDRAM_RXBAS_SDSZ_32;
break;
case 0x10:
baseadd_size |= SDRAM_RXBAS_SDSZ_64;
break;
case 0x20:
baseadd_size |= SDRAM_RXBAS_SDSZ_128;
break;
case 0x40:
baseadd_size |= SDRAM_RXBAS_SDSZ_256;
break;
case 0x80:
baseadd_size |= SDRAM_RXBAS_SDSZ_512;
break;
default:
printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
(unsigned int)dimm_num);
printf("ERROR: Unsupported value for the banksize: %d.\n",
(unsigned int)rank_size_id);
printf("Replace the DIMM module with a supported DIMM.\n\n");
spd_ddr_init_hang ();
}
if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
bank_0_populated = 1;
for (i = 0; i < num_ranks; i++) {
mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
(SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
baseadd_size));
rank_base_addr += rank_size_bytes;
}
}
}
}
/*-----------------------------------------------------------------------------+
* is_ecc_enabled.
*-----------------------------------------------------------------------------*/
static unsigned long is_ecc_enabled(void)
{
unsigned long dimm_num;
unsigned long ecc;
unsigned long val;
ecc = 0;
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
mfsdram(SDRAM_MCOPT1, val);
ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
}
return ecc;
}
static void blank_string(int size)
{
int i;
for (i=0; i<size; i++)
putc('\b');
for (i=0; i<size; i++)
putc(' ');
for (i=0; i<size; i++)
putc('\b');
}
#ifdef CONFIG_DDR_ECC
/*-----------------------------------------------------------------------------+
* program_ecc.
*-----------------------------------------------------------------------------*/
static void program_ecc(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks,
unsigned long tlb_word2_i_value)
{
unsigned long mcopt1;
unsigned long mcopt2;
unsigned long mcstat;
unsigned long dimm_num;
unsigned long ecc;
ecc = 0;
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_populated[dimm_num] != SDRAM_NONE)
ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
}
if (ecc == 0)
return;
mfsdram(SDRAM_MCOPT1, mcopt1);
mfsdram(SDRAM_MCOPT2, mcopt2);
if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
/* DDR controller must be enabled and not in self-refresh. */
mfsdram(SDRAM_MCSTAT, mcstat);
if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
&& ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
&& ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
== (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
}
}
return;
}
static void wait_ddr_idle(void)
{
u32 val;
do {
mfsdram(SDRAM_MCSTAT, val);
} while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
}
/*-----------------------------------------------------------------------------+
* program_ecc_addr.
*-----------------------------------------------------------------------------*/
static void program_ecc_addr(unsigned long start_address,
unsigned long num_bytes,
unsigned long tlb_word2_i_value)
{
unsigned long current_address;
unsigned long end_address;
unsigned long address_increment;
unsigned long mcopt1;
char str[] = "ECC generation -";
char slash[] = "\\|/-\\|/-";
int loop = 0;
int loopi = 0;
current_address = start_address;
mfsdram(SDRAM_MCOPT1, mcopt1);
if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
mtsdram(SDRAM_MCOPT1,
(mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
sync();
eieio();
wait_ddr_idle();
puts(str);
if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
/* ECC bit set method for non-cached memory */
if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
address_increment = 4;
else
address_increment = 8;
end_address = current_address + num_bytes;
while (current_address < end_address) {
*((unsigned long *)current_address) = 0x00000000;
current_address += address_increment;
if ((loop++ % (2 << 20)) == 0) {
putc('\b');
putc(slash[loopi++ % 8]);
}
}
} else {
/* ECC bit set method for cached memory */
dcbz_area(start_address, num_bytes);
dflush();
}
blank_string(strlen(str));
sync();
eieio();
wait_ddr_idle();
/* clear ECC error repoting registers */
mtsdram(SDRAM_ECCCR, 0xffffffff);
mtdcr(0x4c, 0xffffffff);
mtsdram(SDRAM_MCOPT1,
(mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
sync();
eieio();
wait_ddr_idle();
}
}
#endif
/*-----------------------------------------------------------------------------+
* program_DQS_calibration.
*-----------------------------------------------------------------------------*/
static void program_DQS_calibration(unsigned long *dimm_populated,
unsigned char *iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long val;
#ifdef HARD_CODED_DQS /* calibration test with hardvalues */
mtsdram(SDRAM_RQDC, 0x80000037);
mtsdram(SDRAM_RDCC, 0x40000000);
mtsdram(SDRAM_RFDC, 0x000001DF);
test();
#else
/*------------------------------------------------------------------
* Program RDCC register
* Read sample cycle auto-update enable
*-----------------------------------------------------------------*/
mfsdram(SDRAM_RDCC, val);
mtsdram(SDRAM_RDCC,
(val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
| SDRAM_RDCC_RSAE_ENABLE);
/*------------------------------------------------------------------
* Program RQDC register
* Internal DQS delay mechanism enable
*-----------------------------------------------------------------*/
mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
/*------------------------------------------------------------------
* Program RFDC register
* Set Feedback Fractional Oversample
* Auto-detect read sample cycle enable
*-----------------------------------------------------------------*/
mfsdram(SDRAM_RFDC, val);
mtsdram(SDRAM_RFDC,
(val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
SDRAM_RFDC_RFFD_MASK))
| (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
SDRAM_RFDC_RFFD_ENCODE(0)));
DQS_calibration_process();
#endif
}
static int short_mem_test(void)
{
u32 *membase;
u32 bxcr_num;
u32 bxcf;
int i;
int j;
u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
{0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
{0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
{0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
{0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
{0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
{0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
{0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
{0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
int l;
for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
/* Banks enabled */
if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
/* Bank is enabled */
/*------------------------------------------------------------------
* Run the short memory test.
*-----------------------------------------------------------------*/
membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
for (i = 0; i < NUMMEMTESTS; i++) {
for (j = 0; j < NUMMEMWORDS; j++) {
membase[j] = test[i][j];
ppcDcbf((u32)&(membase[j]));
}
sync();
for (l=0; l<NUMLOOPS; l++) {
for (j = 0; j < NUMMEMWORDS; j++) {
if (membase[j] != test[i][j]) {
ppcDcbf((u32)&(membase[j]));
return 0;
}
ppcDcbf((u32)&(membase[j]));
}
sync();
}
}
} /* if bank enabled */
} /* for bxcf_num */
return 1;
}
#ifndef HARD_CODED_DQS
/*-----------------------------------------------------------------------------+
* DQS_calibration_process.
*-----------------------------------------------------------------------------*/
static void DQS_calibration_process(void)
{
unsigned long rfdc_reg;
unsigned long rffd;
unsigned long val;
long rffd_average;
long max_start;
long min_end;
unsigned long begin_rqfd[MAXRANKS];
unsigned long begin_rffd[MAXRANKS];
unsigned long end_rqfd[MAXRANKS];
unsigned long end_rffd[MAXRANKS];
char window_found;
unsigned long dlycal;
unsigned long dly_val;
unsigned long max_pass_length;
unsigned long current_pass_length;
unsigned long current_fail_length;
unsigned long current_start;
long max_end;
unsigned char fail_found;
unsigned char pass_found;
#if !defined(CONFIG_DDR_RQDC_FIXED)
u32 rqdc_reg;
u32 rqfd;
u32 rqfd_start;
u32 rqfd_average;
int loopi = 0;
char str[] = "Auto calibration -";
char slash[] = "\\|/-\\|/-";
/*------------------------------------------------------------------
* Test to determine the best read clock delay tuning bits.
*
* Before the DDR controller can be used, the read clock delay needs to be
* set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
* This value cannot be hardcoded into the program because it changes
* depending on the board's setup and environment.
* To do this, all delay values are tested to see if they
* work or not. By doing this, you get groups of fails with groups of
* passing values. The idea is to find the start and end of a passing
* window and take the center of it to use as the read clock delay.
*
* A failure has to be seen first so that when we hit a pass, we know
* that it is truely the start of the window. If we get passing values
* to start off with, we don't know if we are at the start of the window.
*
* The code assumes that a failure will always be found.
* If a failure is not found, there is no easy way to get the middle
* of the passing window. I guess we can pretty much pick any value
* but some values will be better than others. Since the lowest speed
* we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
* from experimentation it is safe to say you will always have a failure.
*-----------------------------------------------------------------*/
/* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
puts(str);
calibration_loop:
mfsdram(SDRAM_RQDC, rqdc_reg);
mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
#else /* CONFIG_DDR_RQDC_FIXED */
/*
* On Katmai the complete auto-calibration somehow doesn't seem to
* produce the best results, meaning optimal values for RQFD/RFFD.
* This was discovered by GDA using a high bandwidth scope,
* analyzing the DDR2 signals. GDA provided a fixed value for RQFD,
* so now on Katmai "only" RFFD is auto-calibrated.
*/
mtsdram(SDRAM_RQDC, CONFIG_DDR_RQDC_FIXED);
#endif /* CONFIG_DDR_RQDC_FIXED */
max_start = 0;
min_end = 0;
begin_rqfd[0] = 0;
begin_rffd[0] = 0;
begin_rqfd[1] = 0;
begin_rffd[1] = 0;
end_rqfd[0] = 0;
end_rffd[0] = 0;
end_rqfd[1] = 0;
end_rffd[1] = 0;
window_found = FALSE;
max_pass_length = 0;
max_start = 0;
max_end = 0;
current_pass_length = 0;
current_fail_length = 0;
current_start = 0;
window_found = FALSE;
fail_found = FALSE;
pass_found = FALSE;
/*
* get the delay line calibration register value
*/
mfsdram(SDRAM_DLCR, dlycal);
dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
mfsdram(SDRAM_RFDC, rfdc_reg);
rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
/*------------------------------------------------------------------
* Set the timing reg for the test.
*-----------------------------------------------------------------*/
mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
/*------------------------------------------------------------------
* See if the rffd value passed.
*-----------------------------------------------------------------*/
if (short_mem_test()) {
if (fail_found == TRUE) {
pass_found = TRUE;
if (current_pass_length == 0)
current_start = rffd;
current_fail_length = 0;
current_pass_length++;
if (current_pass_length > max_pass_length) {
max_pass_length = current_pass_length;
max_start = current_start;
max_end = rffd;
}
}
} else {
current_pass_length = 0;
current_fail_length++;
if (current_fail_length >= (dly_val >> 2)) {
if (fail_found == FALSE) {
fail_found = TRUE;
} else if (pass_found == TRUE) {
window_found = TRUE;
break;
}
}
}
} /* for rffd */
/*------------------------------------------------------------------
* Set the average RFFD value
*-----------------------------------------------------------------*/
rffd_average = ((max_start + max_end) >> 1);
if (rffd_average < 0)
rffd_average = 0;
if (rffd_average > SDRAM_RFDC_RFFD_MAX)
rffd_average = SDRAM_RFDC_RFFD_MAX;
/* now fix RFDC[RFFD] found and find RQDC[RQFD] */
mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
#if !defined(CONFIG_DDR_RQDC_FIXED)
max_pass_length = 0;
max_start = 0;
max_end = 0;
current_pass_length = 0;
current_fail_length = 0;
current_start = 0;
window_found = FALSE;
fail_found = FALSE;
pass_found = FALSE;
for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
mfsdram(SDRAM_RQDC, rqdc_reg);
rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
/*------------------------------------------------------------------
* Set the timing reg for the test.
*-----------------------------------------------------------------*/
mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
/*------------------------------------------------------------------
* See if the rffd value passed.
*-----------------------------------------------------------------*/
if (short_mem_test()) {
if (fail_found == TRUE) {
pass_found = TRUE;
if (current_pass_length == 0)
current_start = rqfd;
current_fail_length = 0;
current_pass_length++;
if (current_pass_length > max_pass_length) {
max_pass_length = current_pass_length;
max_start = current_start;
max_end = rqfd;
}
}
} else {
current_pass_length = 0;
current_fail_length++;
if (fail_found == FALSE) {
fail_found = TRUE;
} else if (pass_found == TRUE) {
window_found = TRUE;
break;
}
}
}
rqfd_average = ((max_start + max_end) >> 1);
/*------------------------------------------------------------------
* Make sure we found the valid read passing window. Halt if not
*-----------------------------------------------------------------*/
if (window_found == FALSE) {
if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
putc('\b');
putc(slash[loopi++ % 8]);
/* try again from with a different RQFD start value */
rqfd_start++;
goto calibration_loop;
}
printf("\nERROR: Cannot determine a common read delay for the "
"DIMM(s) installed.\n");
debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
ppc440sp_sdram_register_dump();
spd_ddr_init_hang ();
}
if (rqfd_average < 0)
rqfd_average = 0;
if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
rqfd_average = SDRAM_RQDC_RQFD_MAX;
mtsdram(SDRAM_RQDC,
(rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
blank_string(strlen(str));
#endif /* CONFIG_DDR_RQDC_FIXED */
/*
* Now complete RDSS configuration as mentioned on page 7 of the AMCC
* PowerPC440SP/SPe DDR2 application note:
* "DDR1/DDR2 Initialization Sequence and Dynamic Tuning"
*/
mfsdram(SDRAM_RTSR, val);
if ((val & SDRAM_RTSR_TRK1SM_MASK) == SDRAM_RTSR_TRK1SM_ATPLS1) {
mfsdram(SDRAM_RDCC, val);
if ((val & SDRAM_RDCC_RDSS_MASK) != SDRAM_RDCC_RDSS_T4) {
val += 0x40000000;
mtsdram(SDRAM_RDCC, val);
}
}
mfsdram(SDRAM_DLCR, val);
debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
mfsdram(SDRAM_RQDC, val);
debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
mfsdram(SDRAM_RFDC, val);
debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
mfsdram(SDRAM_RDCC, val);
debug("%s[%d] RDCC: 0x%08X\n", __FUNCTION__, __LINE__, val);
}
#else /* calibration test with hardvalues */
/*-----------------------------------------------------------------------------+
* DQS_calibration_process.
*-----------------------------------------------------------------------------*/
static void test(void)
{
unsigned long dimm_num;
unsigned long ecc_temp;
unsigned long i, j;
unsigned long *membase;
unsigned long bxcf[MAXRANKS];
unsigned long val;
char window_found;
char begin_found[MAXDIMMS];
char end_found[MAXDIMMS];
char search_end[MAXDIMMS];
unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
{0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
{0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
{0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
{0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
{0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
{0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
{0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
{0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
/*------------------------------------------------------------------
* Test to determine the best read clock delay tuning bits.
*
* Before the DDR controller can be used, the read clock delay needs to be
* set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
* This value cannot be hardcoded into the program because it changes
* depending on the board's setup and environment.
* To do this, all delay values are tested to see if they
* work or not. By doing this, you get groups of fails with groups of
* passing values. The idea is to find the start and end of a passing
* window and take the center of it to use as the read clock delay.
*
* A failure has to be seen first so that when we hit a pass, we know
* that it is truely the start of the window. If we get passing values
* to start off with, we don't know if we are at the start of the window.
*
* The code assumes that a failure will always be found.
* If a failure is not found, there is no easy way to get the middle
* of the passing window. I guess we can pretty much pick any value
* but some values will be better than others. Since the lowest speed
* we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
* from experimentation it is safe to say you will always have a failure.
*-----------------------------------------------------------------*/
mfsdram(SDRAM_MCOPT1, ecc_temp);
ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
mfsdram(SDRAM_MCOPT1, val);
mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
SDRAM_MCOPT1_MCHK_NON);
window_found = FALSE;
begin_found[0] = FALSE;
end_found[0] = FALSE;
search_end[0] = FALSE;
begin_found[1] = FALSE;
end_found[1] = FALSE;
search_end[1] = FALSE;
for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
/* Banks enabled */
if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
/* Bank is enabled */
membase =
(unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
/*------------------------------------------------------------------
* Run the short memory test.
*-----------------------------------------------------------------*/
for (i = 0; i < NUMMEMTESTS; i++) {
for (j = 0; j < NUMMEMWORDS; j++) {
membase[j] = test[i][j];
ppcDcbf((u32)&(membase[j]));
}
sync();
for (j = 0; j < NUMMEMWORDS; j++) {
if (membase[j] != test[i][j]) {
ppcDcbf((u32)&(membase[j]));
break;
}
ppcDcbf((u32)&(membase[j]));
}
sync();
if (j < NUMMEMWORDS)
break;
}
/*------------------------------------------------------------------
* See if the rffd value passed.
*-----------------------------------------------------------------*/
if (i < NUMMEMTESTS) {
if ((end_found[dimm_num] == FALSE) &&
(search_end[dimm_num] == TRUE)) {
end_found[dimm_num] = TRUE;
}
if ((end_found[0] == TRUE) &&
(end_found[1] == TRUE))
break;
} else {
if (begin_found[dimm_num] == FALSE) {
begin_found[dimm_num] = TRUE;
search_end[dimm_num] = TRUE;
}
}
} else {
begin_found[dimm_num] = TRUE;
end_found[dimm_num] = TRUE;
}
}
if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
window_found = TRUE;
/*------------------------------------------------------------------
* Make sure we found the valid read passing window. Halt if not
*-----------------------------------------------------------------*/
if (window_found == FALSE) {
printf("ERROR: Cannot determine a common read delay for the "
"DIMM(s) installed.\n");
spd_ddr_init_hang ();
}
/*------------------------------------------------------------------
* Restore the ECC variable to what it originally was
*-----------------------------------------------------------------*/
mtsdram(SDRAM_MCOPT1,
(ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
| ecc_temp);
}
#endif
#if defined(DEBUG)
static void ppc440sp_sdram_register_dump(void)
{
unsigned int sdram_reg;
unsigned int sdram_data;
unsigned int dcr_data;
printf("\n Register Dump:\n");
sdram_reg = SDRAM_MCSTAT;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
sdram_reg = SDRAM_MCOPT1;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_MCOPT2;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
sdram_reg = SDRAM_MODT0;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_MODT1;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
sdram_reg = SDRAM_MODT2;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_MODT3;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
sdram_reg = SDRAM_CODT;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_VVPR;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_VVPR = 0x%08X", sdram_data);
sdram_reg = SDRAM_OPARS;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
/*
* OPAR2 is only used as a trigger register.
* No data is contained in this register, and reading or writing
* to is can cause bad things to happen (hangs). Just skip it
* and report NA
* sdram_reg = SDRAM_OPAR2;
* mfsdram(sdram_reg, sdram_data);
* printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
*/
printf(" SDRAM_OPART = N/A ");
sdram_reg = SDRAM_RTR;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_MB0CF;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
sdram_reg = SDRAM_MB1CF;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_MB2CF;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
sdram_reg = SDRAM_MB3CF;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_INITPLR0;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
sdram_reg = SDRAM_INITPLR1;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_INITPLR2;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
sdram_reg = SDRAM_INITPLR3;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_INITPLR4;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
sdram_reg = SDRAM_INITPLR5;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_INITPLR6;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
sdram_reg = SDRAM_INITPLR7;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_INITPLR8;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
sdram_reg = SDRAM_INITPLR9;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_INITPLR10;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
sdram_reg = SDRAM_INITPLR11;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_INITPLR12;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
sdram_reg = SDRAM_INITPLR13;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_INITPLR14;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
sdram_reg = SDRAM_INITPLR15;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_RQDC;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_RQDC = 0x%08X", sdram_data);
sdram_reg = SDRAM_RFDC;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_RDCC;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_RDCC = 0x%08X", sdram_data);
sdram_reg = SDRAM_DLCR;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_CLKTR;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
sdram_reg = SDRAM_WRDTR;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_SDTR1;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
sdram_reg = SDRAM_SDTR2;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_SDTR3;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
sdram_reg = SDRAM_MMODE;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
sdram_reg = SDRAM_MEMODE;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
sdram_reg = SDRAM_ECCCR;
mfsdram(sdram_reg, sdram_data);
printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
dcr_data = mfdcr(SDRAM_R0BAS);
printf(" MQ0_B0BAS = 0x%08X", dcr_data);
dcr_data = mfdcr(SDRAM_R1BAS);
printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
dcr_data = mfdcr(SDRAM_R2BAS);
printf(" MQ2_B0BAS = 0x%08X", dcr_data);
dcr_data = mfdcr(SDRAM_R3BAS);
printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
}
#else
static void ppc440sp_sdram_register_dump(void)
{
}
#endif
#endif /* CONFIG_SPD_EEPROM */