upstream u-boot with additional patches for our devices/boards:
https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ;
Gbit ethernet patch for some LIME2 revisions ;
with SPI flash support
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
527 lines
16 KiB
527 lines
16 KiB
/*
|
|
* Copyright 2009-2011 Freescale Semiconductor, Inc.
|
|
* Author: Timur Tabi <timur@freescale.com>
|
|
*
|
|
* See file CREDITS for list of people who contributed to this
|
|
* project.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
* MA 02111-1307 USA
|
|
*/
|
|
|
|
/*
|
|
* This file handles the board muxing between the Fman Ethernet MACs and
|
|
* the RGMII/SGMII/XGMII PHYs on a Freescale P3041/P5020 "Hydra" reference
|
|
* board. The RGMII PHYs are the two on-board 1Gb ports. The SGMII PHYs are
|
|
* provided by the standard Freescale four-port SGMII riser card. The 10Gb
|
|
* XGMII PHY is provided via the XAUI riser card. Since there is only one
|
|
* Fman device on a P3041 and P5020, we only support one SGMII card and one
|
|
* RGMII card.
|
|
*
|
|
* Muxing is handled via the PIXIS BRDCFG1 register. The EMI1 bits control
|
|
* muxing among the RGMII PHYs and the SGMII PHYs. The value for RGMII is
|
|
* always the same (0). The value for SGMII depends on which slot the riser is
|
|
* inserted in. The EMI2 bits control muxing for the the XGMII. Like SGMII,
|
|
* the value is based on which slot the XAUI is inserted in.
|
|
*
|
|
* The SERDES configuration is used to determine where the SGMII and XAUI cards
|
|
* exist, and also which Fman MACs are routed to which PHYs. So for a given
|
|
* Fman MAC, there is one and only PHY it connects to. MACs cannot be routed
|
|
* to PHYs dynamically.
|
|
*
|
|
*
|
|
* This file also updates the device tree in three ways:
|
|
*
|
|
* 1) The status of each virtual MDIO node that is referenced by an Ethernet
|
|
* node is set to "okay".
|
|
*
|
|
* 2) The phy-handle property of each active Ethernet MAC node is set to the
|
|
* appropriate PHY node.
|
|
*
|
|
* 3) The "mux value" for each virtual MDIO node is set to the correct value,
|
|
* if necessary. Some virtual MDIO nodes do not have configurable mux
|
|
* values, so those values are hard-coded in the DTS. On the HYDRA board,
|
|
* the virtual MDIO node for the SGMII card needs to be updated.
|
|
*
|
|
* For all this to work, the device tree needs to have the following:
|
|
*
|
|
* 1) An alias for each PHY node that an Ethernet node could be routed to.
|
|
*
|
|
* 2) An alias for each real and virtual MDIO node that is disabled by default
|
|
* and might need to be enabled, and also might need to have its mux-value
|
|
* updated.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <netdev.h>
|
|
#include <asm/fsl_serdes.h>
|
|
#include <fm_eth.h>
|
|
#include <fsl_mdio.h>
|
|
#include <malloc.h>
|
|
#include <fdt_support.h>
|
|
#include <asm/fsl_dtsec.h>
|
|
|
|
#include "../common/ngpixis.h"
|
|
#include "../common/fman.h"
|
|
|
|
#ifdef CONFIG_FMAN_ENET
|
|
|
|
#define BRDCFG1_EMI1_SEL_MASK 0x70
|
|
#define BRDCFG1_EMI1_SEL_SLOT1 0x10
|
|
#define BRDCFG1_EMI1_SEL_SLOT2 0x20
|
|
#define BRDCFG1_EMI1_SEL_SLOT5 0x30
|
|
#define BRDCFG1_EMI1_SEL_SLOT6 0x40
|
|
#define BRDCFG1_EMI1_SEL_SLOT7 0x50
|
|
#define BRDCFG1_EMI1_SEL_RGMII 0x00
|
|
#define BRDCFG1_EMI1_EN 0x08
|
|
#define BRDCFG1_EMI2_SEL_MASK 0x06
|
|
#define BRDCFG1_EMI2_SEL_SLOT1 0x00
|
|
#define BRDCFG1_EMI2_SEL_SLOT2 0x02
|
|
|
|
#define BRDCFG2_REG_GPIO_SEL 0x20
|
|
|
|
/*
|
|
* BRDCFG1 mask and value for each MAC
|
|
*
|
|
* This array contains the BRDCFG1 values (in mask/val format) that route the
|
|
* MDIO bus to a particular RGMII or SGMII PHY.
|
|
*/
|
|
struct {
|
|
u8 mask;
|
|
u8 val;
|
|
} mdio_mux[NUM_FM_PORTS];
|
|
|
|
/*
|
|
* Mapping of all 18 SERDES lanes to board slots. A value of '0' here means
|
|
* that the mapping must be determined dynamically, or that the lane maps to
|
|
* something other than a board slot
|
|
*/
|
|
static u8 lane_to_slot[] = {
|
|
7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 1, 0, 0
|
|
};
|
|
|
|
/*
|
|
* Set the board muxing for a given MAC
|
|
*
|
|
* The MDIO layer calls this function every time it wants to talk to a PHY.
|
|
*/
|
|
void hydra_mux_mdio(u8 mask, u8 val)
|
|
{
|
|
clrsetbits_8(&pixis->brdcfg1, mask, val);
|
|
}
|
|
|
|
struct hydra_mdio {
|
|
u8 mask;
|
|
u8 val;
|
|
struct mii_dev *realbus;
|
|
};
|
|
|
|
static int hydra_mdio_read(struct mii_dev *bus, int addr, int devad,
|
|
int regnum)
|
|
{
|
|
struct hydra_mdio *priv = bus->priv;
|
|
|
|
hydra_mux_mdio(priv->mask, priv->val);
|
|
|
|
return priv->realbus->read(priv->realbus, addr, devad, regnum);
|
|
}
|
|
|
|
static int hydra_mdio_write(struct mii_dev *bus, int addr, int devad,
|
|
int regnum, u16 value)
|
|
{
|
|
struct hydra_mdio *priv = bus->priv;
|
|
|
|
hydra_mux_mdio(priv->mask, priv->val);
|
|
|
|
return priv->realbus->write(priv->realbus, addr, devad, regnum, value);
|
|
}
|
|
|
|
static int hydra_mdio_reset(struct mii_dev *bus)
|
|
{
|
|
struct hydra_mdio *priv = bus->priv;
|
|
|
|
return priv->realbus->reset(priv->realbus);
|
|
}
|
|
|
|
static void hydra_mdio_set_mux(char *name, u8 mask, u8 val)
|
|
{
|
|
struct mii_dev *bus = miiphy_get_dev_by_name(name);
|
|
struct hydra_mdio *priv = bus->priv;
|
|
|
|
priv->mask = mask;
|
|
priv->val = val;
|
|
}
|
|
|
|
static int hydra_mdio_init(char *realbusname, char *fakebusname)
|
|
{
|
|
struct hydra_mdio *hmdio;
|
|
struct mii_dev *bus = mdio_alloc();
|
|
|
|
if (!bus) {
|
|
printf("Failed to allocate Hydra MDIO bus\n");
|
|
return -1;
|
|
}
|
|
|
|
hmdio = malloc(sizeof(*hmdio));
|
|
if (!hmdio) {
|
|
printf("Failed to allocate Hydra private data\n");
|
|
free(bus);
|
|
return -1;
|
|
}
|
|
|
|
bus->read = hydra_mdio_read;
|
|
bus->write = hydra_mdio_write;
|
|
bus->reset = hydra_mdio_reset;
|
|
sprintf(bus->name, fakebusname);
|
|
|
|
hmdio->realbus = miiphy_get_dev_by_name(realbusname);
|
|
|
|
if (!hmdio->realbus) {
|
|
printf("No bus with name %s\n", realbusname);
|
|
free(bus);
|
|
free(hmdio);
|
|
return -1;
|
|
}
|
|
|
|
bus->priv = hmdio;
|
|
|
|
return mdio_register(bus);
|
|
}
|
|
|
|
/*
|
|
* Given an alias or a path for a node, set the mux value of that node.
|
|
*
|
|
* If 'alias' is not a valid alias, then it is treated as a full path to the
|
|
* node. No error checking is performed.
|
|
*
|
|
* This function is normally called to set the fsl,hydra-mdio-muxval property
|
|
* of a virtual MDIO node.
|
|
*/
|
|
static void fdt_set_mdio_mux(void *fdt, const char *alias, u32 mux)
|
|
{
|
|
const char *path = fdt_get_alias(fdt, alias);
|
|
|
|
if (!path)
|
|
path = alias;
|
|
|
|
do_fixup_by_path(fdt, path, "fsl,hydra-mdio-muxval",
|
|
&mux, sizeof(mux), 1);
|
|
}
|
|
|
|
/*
|
|
* Given the following ...
|
|
*
|
|
* 1) A pointer to an Fman Ethernet node (as identified by the 'compat'
|
|
* compatible string and 'addr' physical address)
|
|
*
|
|
* 2) An Fman port
|
|
*
|
|
* ... update the phy-handle property of the Ethernet node to point to the
|
|
* right PHY. This assumes that we already know the PHY for each port. That
|
|
* information is stored in mdio_mux[].
|
|
*
|
|
* The offset of the Fman Ethernet node is also passed in for convenience, but
|
|
* it is not used, and we recalculate the offset anyway.
|
|
*
|
|
* Note that what we call "Fman ports" (enum fm_port) is really an Fman MAC.
|
|
* Inside the Fman, "ports" are things that connect to MACs. We only call them
|
|
* ports in U-Boot because on previous Ethernet devices (e.g. Gianfar), MACs
|
|
* and ports are the same thing.
|
|
*
|
|
* Note that this code would be cleaner if had a function called
|
|
* fm_info_get_phy_address(), which returns a value from the fm1_dtsec_info[]
|
|
* array. That's because all we're doing is figuring out the PHY address for
|
|
* a given Fman MAC and writing it to the device tree. Well, we already did
|
|
* the hard work to figure that out in board_eth_init(), so it's silly to
|
|
* repeat that here.
|
|
*/
|
|
void board_ft_fman_fixup_port(void *fdt, char *compat, phys_addr_t addr,
|
|
enum fm_port port, int offset)
|
|
{
|
|
unsigned int mux = mdio_mux[port].val & mdio_mux[port].mask;
|
|
char phy[16];
|
|
|
|
if (port == FM1_10GEC1) {
|
|
/* XAUI */
|
|
int lane = serdes_get_first_lane(XAUI_FM1);
|
|
if (lane >= 0) {
|
|
/* The XAUI PHY is identified by the slot */
|
|
sprintf(phy, "phy_xgmii_%u", lane_to_slot[lane]);
|
|
fdt_set_phy_handle(fdt, compat, addr, phy);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (mux == BRDCFG1_EMI1_SEL_RGMII) {
|
|
/* RGMII */
|
|
/* The RGMII PHY is identified by the MAC connected to it */
|
|
sprintf(phy, "phy_rgmii_%u", port == FM1_DTSEC4 ? 0 : 1);
|
|
fdt_set_phy_handle(fdt, compat, addr, phy);
|
|
}
|
|
|
|
/* If it's not RGMII or XGMII, it must be SGMII */
|
|
if (mux) {
|
|
/* The SGMII PHY is identified by the MAC connected to it */
|
|
sprintf(phy, "phy_sgmii_%x",
|
|
CONFIG_SYS_FM1_DTSEC1_PHY_ADDR + (port - FM1_DTSEC1));
|
|
fdt_set_phy_handle(fdt, compat, addr, phy);
|
|
}
|
|
}
|
|
|
|
#define PIXIS_SW2_LANE_23_SEL 0x80
|
|
#define PIXIS_SW2_LANE_45_SEL 0x40
|
|
#define PIXIS_SW2_LANE_67_SEL_MASK 0x30
|
|
#define PIXIS_SW2_LANE_67_SEL_5 0x00
|
|
#define PIXIS_SW2_LANE_67_SEL_6 0x20
|
|
#define PIXIS_SW2_LANE_67_SEL_7 0x10
|
|
#define PIXIS_SW2_LANE_8_SEL 0x08
|
|
#define PIXIS_SW2_LANE_1617_SEL 0x04
|
|
|
|
/*
|
|
* Initialize the lane_to_slot[] array.
|
|
*
|
|
* On the P4080DS "Expedition" board, the mapping of SERDES lanes to board
|
|
* slots is hard-coded. On the Hydra board, however, the mapping is controlled
|
|
* by board switch SW2, so the lane_to_slot[] array needs to be dynamically
|
|
* initialized.
|
|
*/
|
|
static void initialize_lane_to_slot(void)
|
|
{
|
|
u8 sw2 = in_8(&PIXIS_SW(2));
|
|
|
|
lane_to_slot[2] = (sw2 & PIXIS_SW2_LANE_23_SEL) ? 7 : 4;
|
|
lane_to_slot[3] = lane_to_slot[2];
|
|
|
|
lane_to_slot[4] = (sw2 & PIXIS_SW2_LANE_45_SEL) ? 7 : 6;
|
|
lane_to_slot[5] = lane_to_slot[4];
|
|
|
|
switch (sw2 & PIXIS_SW2_LANE_67_SEL_MASK) {
|
|
case PIXIS_SW2_LANE_67_SEL_5:
|
|
lane_to_slot[6] = 5;
|
|
break;
|
|
case PIXIS_SW2_LANE_67_SEL_6:
|
|
lane_to_slot[6] = 6;
|
|
break;
|
|
case PIXIS_SW2_LANE_67_SEL_7:
|
|
lane_to_slot[6] = 7;
|
|
break;
|
|
}
|
|
lane_to_slot[7] = lane_to_slot[6];
|
|
|
|
lane_to_slot[8] = (sw2 & PIXIS_SW2_LANE_8_SEL) ? 3 : 0;
|
|
|
|
lane_to_slot[16] = (sw2 & PIXIS_SW2_LANE_1617_SEL) ? 1 : 0;
|
|
lane_to_slot[17] = lane_to_slot[16];
|
|
}
|
|
|
|
#endif /* #ifdef CONFIG_FMAN_ENET */
|
|
|
|
/*
|
|
* Configure the status for the virtual MDIO nodes
|
|
*
|
|
* Rather than create the virtual MDIO nodes from scratch for each active
|
|
* virtual MDIO, we expect the DTS to have the nodes defined already, and we
|
|
* only enable the ones that are actually active.
|
|
*
|
|
* We assume that the DTS already hard-codes the status for all the
|
|
* virtual MDIO nodes to "disabled", so all we need to do is enable the
|
|
* active ones.
|
|
*
|
|
* For SGMII, we also need to set the mux value in the node.
|
|
*/
|
|
void fdt_fixup_board_enet(void *fdt)
|
|
{
|
|
#ifdef CONFIG_FMAN_ENET
|
|
unsigned int i;
|
|
int lane;
|
|
|
|
for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
|
|
int idx = i - FM1_DTSEC1;
|
|
|
|
switch (fm_info_get_enet_if(i)) {
|
|
case PHY_INTERFACE_MODE_SGMII:
|
|
lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx);
|
|
if (lane >= 0) {
|
|
fdt_status_okay_by_alias(fdt, "emi1_sgmii");
|
|
/* Also set the MUX value */
|
|
fdt_set_mdio_mux(fdt, "emi1_sgmii",
|
|
mdio_mux[i].val);
|
|
}
|
|
break;
|
|
case PHY_INTERFACE_MODE_RGMII:
|
|
fdt_status_okay_by_alias(fdt, "emi1_rgmii");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
lane = serdes_get_first_lane(XAUI_FM1);
|
|
if (lane >= 0)
|
|
fdt_status_okay_by_alias(fdt, "emi2_xgmii");
|
|
#endif
|
|
}
|
|
|
|
int board_eth_init(bd_t *bis)
|
|
{
|
|
#ifdef CONFIG_FMAN_ENET
|
|
struct fsl_pq_mdio_info dtsec_mdio_info;
|
|
struct tgec_mdio_info tgec_mdio_info;
|
|
unsigned int i, slot;
|
|
int lane;
|
|
|
|
printf("Initializing Fman\n");
|
|
|
|
initialize_lane_to_slot();
|
|
|
|
/* We want to use the PIXIS to configure MUX routing, not GPIOs. */
|
|
setbits_8(&pixis->brdcfg2, BRDCFG2_REG_GPIO_SEL);
|
|
|
|
memset(mdio_mux, 0, sizeof(mdio_mux));
|
|
|
|
dtsec_mdio_info.regs =
|
|
(struct tsec_mii_mng *)CONFIG_SYS_FM1_DTSEC1_MDIO_ADDR;
|
|
dtsec_mdio_info.name = DEFAULT_FM_MDIO_NAME;
|
|
|
|
/* Register the real 1G MDIO bus */
|
|
fsl_pq_mdio_init(bis, &dtsec_mdio_info);
|
|
|
|
tgec_mdio_info.regs =
|
|
(struct tgec_mdio_controller *)CONFIG_SYS_FM1_TGEC_MDIO_ADDR;
|
|
tgec_mdio_info.name = DEFAULT_FM_TGEC_MDIO_NAME;
|
|
|
|
/* Register the real 10G MDIO bus */
|
|
fm_tgec_mdio_init(bis, &tgec_mdio_info);
|
|
|
|
/* Register the three virtual MDIO front-ends */
|
|
hydra_mdio_init(DEFAULT_FM_MDIO_NAME, "HYDRA_RGMII_MDIO");
|
|
hydra_mdio_init(DEFAULT_FM_MDIO_NAME, "HYDRA_SGMII_MDIO");
|
|
|
|
/*
|
|
* Program the DTSEC PHY addresses assuming that they are all SGMII.
|
|
* For any DTSEC that's RGMII, we'll override its PHY address later.
|
|
* We assume that DTSEC5 is only used for RGMII.
|
|
*/
|
|
fm_info_set_phy_address(FM1_DTSEC1, CONFIG_SYS_FM1_DTSEC1_PHY_ADDR);
|
|
fm_info_set_phy_address(FM1_DTSEC2, CONFIG_SYS_FM1_DTSEC2_PHY_ADDR);
|
|
fm_info_set_phy_address(FM1_DTSEC3, CONFIG_SYS_FM1_DTSEC3_PHY_ADDR);
|
|
fm_info_set_phy_address(FM1_DTSEC4, CONFIG_SYS_FM1_DTSEC4_PHY_ADDR);
|
|
|
|
for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
|
|
int idx = i - FM1_DTSEC1;
|
|
|
|
switch (fm_info_get_enet_if(i)) {
|
|
case PHY_INTERFACE_MODE_SGMII:
|
|
lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx);
|
|
if (lane < 0)
|
|
break;
|
|
slot = lane_to_slot[lane];
|
|
mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
|
|
switch (slot) {
|
|
case 1:
|
|
/* Always DTSEC5 on Bank 3 */
|
|
mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT1 |
|
|
BRDCFG1_EMI1_EN;
|
|
break;
|
|
case 2:
|
|
mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT2 |
|
|
BRDCFG1_EMI1_EN;
|
|
break;
|
|
case 5:
|
|
mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT5 |
|
|
BRDCFG1_EMI1_EN;
|
|
break;
|
|
case 6:
|
|
mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT6 |
|
|
BRDCFG1_EMI1_EN;
|
|
break;
|
|
case 7:
|
|
mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT7 |
|
|
BRDCFG1_EMI1_EN;
|
|
break;
|
|
};
|
|
|
|
hydra_mdio_set_mux("HYDRA_SGMII_MDIO",
|
|
mdio_mux[i].mask, mdio_mux[i].val);
|
|
fm_info_set_mdio(i,
|
|
miiphy_get_dev_by_name("HYDRA_SGMII_MDIO"));
|
|
break;
|
|
case PHY_INTERFACE_MODE_RGMII:
|
|
/*
|
|
* If DTSEC4 is RGMII, then it's routed via via EC1 to
|
|
* the first on-board RGMII port. If DTSEC5 is RGMII,
|
|
* then it's routed via via EC2 to the second on-board
|
|
* RGMII port. The other DTSECs cannot be routed to
|
|
* RGMII.
|
|
*/
|
|
fm_info_set_phy_address(i, i == FM1_DTSEC4 ? 0 : 1);
|
|
mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
|
|
mdio_mux[i].val = BRDCFG1_EMI1_SEL_RGMII |
|
|
BRDCFG1_EMI1_EN;
|
|
hydra_mdio_set_mux("HYDRA_RGMII_MDIO",
|
|
mdio_mux[i].mask, mdio_mux[i].val);
|
|
fm_info_set_mdio(i,
|
|
miiphy_get_dev_by_name("HYDRA_RGMII_MDIO"));
|
|
break;
|
|
case PHY_INTERFACE_MODE_NONE:
|
|
fm_info_set_phy_address(i, 0);
|
|
break;
|
|
default:
|
|
printf("Fman1: DTSEC%u set to unknown interface %i\n",
|
|
idx + 1, fm_info_get_enet_if(i));
|
|
fm_info_set_phy_address(i, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For 10G, we only support one XAUI card per Fman. If present, then we
|
|
* force its routing and never touch those bits again, which removes the
|
|
* need for Linux to do any muxing. This works because of the way
|
|
* BRDCFG1 is defined, but it's a bit hackish.
|
|
*
|
|
* The PHY address for the XAUI card depends on which slot it's in. The
|
|
* macros we use imply that the PHY address is based on which FM, but
|
|
* that's not true. On the P4080DS, FM1 could only use XAUI in slot 5,
|
|
* and FM2 could only use a XAUI in slot 4. On the Hydra board, we
|
|
* check the actual slot and just use the macros as-is, even though
|
|
* the P3041 and P5020 only have one Fman.
|
|
*/
|
|
lane = serdes_get_first_lane(XAUI_FM1);
|
|
if (lane >= 0) {
|
|
slot = lane_to_slot[lane];
|
|
if (slot == 1) {
|
|
/* XAUI card is in slot 1 */
|
|
clrsetbits_8(&pixis->brdcfg1, BRDCFG1_EMI2_SEL_MASK,
|
|
BRDCFG1_EMI2_SEL_SLOT1);
|
|
fm_info_set_phy_address(FM1_10GEC1,
|
|
CONFIG_SYS_FM1_10GEC1_PHY_ADDR);
|
|
} else {
|
|
/* XAUI card is in slot 2 */
|
|
clrsetbits_8(&pixis->brdcfg1, BRDCFG1_EMI2_SEL_MASK,
|
|
BRDCFG1_EMI2_SEL_SLOT2);
|
|
fm_info_set_phy_address(FM1_10GEC1,
|
|
CONFIG_SYS_FM2_10GEC1_PHY_ADDR);
|
|
}
|
|
}
|
|
|
|
fm_info_set_mdio(FM1_10GEC1,
|
|
miiphy_get_dev_by_name(DEFAULT_FM_TGEC_MDIO_NAME));
|
|
|
|
cpu_eth_init(bis);
|
|
#endif
|
|
|
|
return pci_eth_init(bis);
|
|
}
|
|
|