upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/board/esd/cpci750/sdram_init.c

1439 lines
54 KiB

/*
* (C) Copyright 2001
* Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*************************************************************************
* adaption for the Marvell DB64360 Board
* Ingo Assmus (ingo.assmus@keymile.com)
*
* adaption for the cpci750 Board
* Reinhard Arlt (reinhard.arlt@esd-electronics.com)
*************************************************************************/
/* sdram_init.c - automatic memory sizing */
#include <common.h>
#include <74xx_7xx.h>
#include "../../Marvell/include/memory.h"
#include "../../Marvell/include/pci.h"
#include "../../Marvell/include/mv_gen_reg.h"
#include <net.h>
#include "eth.h"
#include "mpsc.h"
#include "../../Marvell/common/i2c.h"
#include "64360.h"
#include "mv_regs.h"
#undef DEBUG
/* #define DEBUG */
#ifdef CONFIG_PCI
#define MAP_PCI
#endif /* of CONFIG_PCI */
#ifdef DEBUG
#define DP(x) x
#else
#define DP(x)
#endif
int set_dfcdlInit(void); /* setup delay line of Mv64360 */
/* ------------------------------------------------------------------------- */
int
memory_map_bank(unsigned int bankNo,
unsigned int bankBase,
unsigned int bankLength)
{
#ifdef MAP_PCI
PCI_HOST host;
#endif
#ifdef DEBUG
if (bankLength > 0) {
printf("mapping bank %d at %08x - %08x\n",
bankNo, bankBase, bankBase + bankLength - 1);
} else {
printf("unmapping bank %d\n", bankNo);
}
#endif
memoryMapBank(bankNo, bankBase, bankLength);
#ifdef MAP_PCI
for (host=PCI_HOST0;host<=PCI_HOST1;host++) {
const int features=
PREFETCH_ENABLE |
DELAYED_READ_ENABLE |
AGGRESSIVE_PREFETCH |
READ_LINE_AGGRESSIVE_PREFETCH |
READ_MULTI_AGGRESSIVE_PREFETCH |
MAX_BURST_4 |
PCI_NO_SWAP;
pciMapMemoryBank(host, bankNo, bankBase, bankLength);
pciSetRegionSnoopMode(host, bankNo, PCI_SNOOP_WB, bankBase,
bankLength);
pciSetRegionFeatures(host, bankNo, features, bankBase, bankLength);
}
#endif
return 0;
}
#define GB (1 << 30)
/* much of this code is based on (or is) the code in the pip405 port */
/* thanks go to the authors of said port - Josh */
/* structure to store the relevant information about an sdram bank */
typedef struct sdram_info {
uchar drb_size;
uchar registered, ecc;
uchar tpar;
uchar tras_clocks;
uchar burst_len;
uchar banks, slot;
} sdram_info_t;
/* Typedefs for 'gtAuxilGetDIMMinfo' function */
typedef enum _memoryType {SDRAM, DDR} MEMORY_TYPE;
typedef enum _voltageInterface {TTL_5V_TOLERANT, LVTTL, HSTL_1_5V,
SSTL_3_3V, SSTL_2_5V, VOLTAGE_UNKNOWN,
} VOLTAGE_INTERFACE;
typedef enum _max_CL_supported_DDR {DDR_CL_1=1, DDR_CL_1_5=2, DDR_CL_2=4, DDR_CL_2_5=8, DDR_CL_3=16, DDR_CL_3_5=32, DDR_CL_FAULT} MAX_CL_SUPPORTED_DDR;
typedef enum _max_CL_supported_SD {SD_CL_1=1, SD_CL_2, SD_CL_3, SD_CL_4, SD_CL_5, SD_CL_6, SD_CL_7, SD_FAULT} MAX_CL_SUPPORTED_SD;
/* SDRAM/DDR information struct */
typedef struct _gtMemoryDimmInfo
{
MEMORY_TYPE memoryType;
unsigned int numOfRowAddresses;
unsigned int numOfColAddresses;
unsigned int numOfModuleBanks;
unsigned int dataWidth;
VOLTAGE_INTERFACE voltageInterface;
unsigned int errorCheckType; /* ECC , PARITY..*/
unsigned int sdramWidth; /* 4,8,16 or 32 */;
unsigned int errorCheckDataWidth; /* 0 - no, 1 - Yes */
unsigned int minClkDelay;
unsigned int burstLengthSupported;
unsigned int numOfBanksOnEachDevice;
unsigned int suportedCasLatencies;
unsigned int RefreshInterval;
unsigned int maxCASlatencySupported_LoP; /* LoP left of point (measured in ns) */
unsigned int maxCASlatencySupported_RoP; /* RoP right of point (measured in ns)*/
MAX_CL_SUPPORTED_DDR maxClSupported_DDR;
MAX_CL_SUPPORTED_SD maxClSupported_SD;
unsigned int moduleBankDensity;
/* module attributes (true for yes) */
bool bufferedAddrAndControlInputs;
bool registeredAddrAndControlInputs;
bool onCardPLL;
bool bufferedDQMBinputs;
bool registeredDQMBinputs;
bool differentialClockInput;
bool redundantRowAddressing;
/* module general attributes */
bool suportedAutoPreCharge;
bool suportedPreChargeAll;
bool suportedEarlyRasPreCharge;
bool suportedWrite1ReadBurst;
bool suported5PercentLowVCC;
bool suported5PercentUpperVCC;
/* module timing parameters */
unsigned int minRasToCasDelay;
unsigned int minRowActiveRowActiveDelay;
unsigned int minRasPulseWidth;
unsigned int minRowPrechargeTime; /* measured in ns */
int addrAndCommandHoldTime; /* LoP left of point (measured in ns) */
int addrAndCommandSetupTime; /* (measured in ns/100) */
int dataInputSetupTime; /* LoP left of point (measured in ns) */
int dataInputHoldTime; /* LoP left of point (measured in ns) */
/* tAC times for highest 2nd and 3rd highest CAS Latency values */
unsigned int clockToDataOut_LoP; /* LoP left of point (measured in ns) */
unsigned int clockToDataOut_RoP; /* RoP right of point (measured in ns)*/
unsigned int clockToDataOutMinus1_LoP; /* LoP left of point (measured in ns) */
unsigned int clockToDataOutMinus1_RoP; /* RoP right of point (measured in ns)*/
unsigned int clockToDataOutMinus2_LoP; /* LoP left of point (measured in ns) */
unsigned int clockToDataOutMinus2_RoP; /* RoP right of point (measured in ns)*/
unsigned int minimumCycleTimeAtMaxCasLatancy_LoP; /* LoP left of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancy_RoP; /* RoP right of point (measured in ns)*/
unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_LoP; /* LoP left of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_RoP; /* RoP right of point (measured in ns)*/
unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_LoP; /* LoP left of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_RoP; /* RoP right of point (measured in ns)*/
/* Parameters calculated from
the extracted DIMM information */
unsigned int size;
unsigned int deviceDensity; /* 16,64,128,256 or 512 Mbit */
unsigned int numberOfDevices;
uchar drb_size; /* DRAM size in n*64Mbit */
uchar slot; /* Slot Number this module is inserted in */
uchar spd_raw_data[128]; /* Content of SPD-EEPROM copied 1:1 */
#ifdef DEBUG
uchar manufactura[8]; /* Content of SPD-EEPROM Byte 64-71 */
uchar modul_id[18]; /* Content of SPD-EEPROM Byte 73-90 */
uchar vendor_data[27]; /* Content of SPD-EEPROM Byte 99-125 */
unsigned long modul_serial_no; /* Content of SPD-EEPROM Byte 95-98 */
unsigned int manufac_date; /* Content of SPD-EEPROM Byte 93-94 */
unsigned int modul_revision; /* Content of SPD-EEPROM Byte 91-92 */
uchar manufac_place; /* Content of SPD-EEPROM Byte 72 */
#endif
} AUX_MEM_DIMM_INFO;
/*
* translate ns.ns/10 coding of SPD timing values
* into 10 ps unit values
*/
static inline unsigned short
NS10to10PS(unsigned char spd_byte)
{
unsigned short ns, ns10;
/* isolate upper nibble */
ns = (spd_byte >> 4) & 0x0F;
/* isolate lower nibble */
ns10 = (spd_byte & 0x0F);
return(ns*100 + ns10*10);
}
/*
* translate ns coding of SPD timing values
* into 10 ps unit values
*/
static inline unsigned short
NSto10PS(unsigned char spd_byte)
{
return(spd_byte*100);
}
/* This code reads the SPD chip on the sdram and populates
* the array which is passed in with the relevant information */
/* static int check_dimm(uchar slot, AUX_MEM_DIMM_INFO *info) */
static int
check_dimm(uchar slot, AUX_MEM_DIMM_INFO *dimmInfo)
{
DECLARE_GLOBAL_DATA_PTR;
unsigned long spd_checksum;
uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR;
int ret;
unsigned int i,j,density = 1,devicesForErrCheck = 0;
#ifdef DEBUG
unsigned int k;
#endif
unsigned int rightOfPoint = 0,leftOfPoint = 0, mult, div, time_tmp;
int sign = 1,shift,maskLeftOfPoint,maskRightOfPoint;
uchar supp_cal, cal_val;
ulong memclk, tmemclk;
ulong tmp;
uchar trp_clocks=0, trcd_clocks, tras_clocks, trrd_clocks;
uchar data[128];
memclk = gd->bus_clk;
tmemclk = 1000000000 / (memclk / 100); /* in 10 ps units */
memset(data, 0, sizeof(data));
ret = 0;
DP(puts("before i2c read\n"));
ret = i2c_read(addr, 0, 2, data, 128);
DP(puts("after i2c read\n"));
if ((data[64] != 'e') || (data[65] != 's') || (data[66] != 'd') || (data[67] != '-') ||
(data[68] != 'g') || (data[69] != 'm') || (data[70] != 'b') || (data[71] != 'h'))
{
ret = -1;
}
if ((ret != 0) && (slot == 0))
{
memset(data, 0, sizeof(data));
data[ 0] = 0x80; data[ 1] = 0x08; data[ 2] = 0x07; data[ 3] = 0x0c;
data[ 4] = 0x09; data[ 5] = 0x01; data[ 6] = 0x48; data[ 7] = 0x00;
data[ 8] = 0x04; data[ 9] = 0x75; data[10] = 0x80; data[11] = 0x02;
data[12] = 0x80; data[13] = 0x10; data[14] = 0x08; data[15] = 0x01;
data[16] = 0x0e; data[17] = 0x04; data[18] = 0x0c; data[19] = 0x01;
data[20] = 0x02; data[21] = 0x20; data[22] = 0x00; data[23] = 0xa0;
data[24] = 0x80; data[25] = 0x00; data[26] = 0x00; data[27] = 0x50;
data[28] = 0x3c; data[29] = 0x50; data[30] = 0x32; data[31] = 0x10;
data[32] = 0xb0; data[33] = 0xb0; data[34] = 0x60; data[35] = 0x60;
data[64] = 'e' ; data[65] = 's' ; data[66] = 'd' ; data[67] = '-' ;
data[68] = 'g' ; data[69] = 'm' ; data[70] = 'b' ; data[71] = 'h' ;
ret = 0;
}
/* zero all the values */
memset(dimmInfo, 0, sizeof(*dimmInfo));
/* copy the SPD content 1:1 into the dimmInfo structure*/
for(i = 0 ; i <= 127 ; i++)
{
dimmInfo->spd_raw_data[i] = data[i];
}
if (ret) {
DP(printf("No DIMM in slot %d [err = %x]\n", slot, ret));
return 0;
}
else
dimmInfo->slot = slot; /* start to fill up dimminfo for this "slot" */
#ifdef CFG_DISPLAY_DIMM_SPD_CONTENT
for(i = 0 ; i <= 127 ; i++)
{
printf("SPD-EEPROM Byte %3d = %3x (%3d)\n", i, data[i], data[i]);
}
#endif
#ifdef DEBUG
/* find Manufactura of Dimm Module */
for(i = 0 ; i < sizeof(dimmInfo->manufactura) ; i++)
{
dimmInfo->manufactura[i] = data[64+i];
}
printf("\nThis RAM-Module is produced by: %s\n", dimmInfo->manufactura);
/* find Manul-ID of Dimm Module */
for(i = 0 ; i < sizeof(dimmInfo->modul_id) ; i++)
{
dimmInfo->modul_id[i] = data[73+i];
}
printf("The Module-ID of this RAM-Module is: %s\n", dimmInfo->modul_id);
/* find Vendor-Data of Dimm Module */
for(i = 0 ; i < sizeof(dimmInfo->vendor_data) ; i++)
{
dimmInfo->vendor_data[i] = data[99+i];
}
printf("Vendor Data of this RAM-Module is: %s\n", dimmInfo->vendor_data);
/* find modul_serial_no of Dimm Module */
dimmInfo->modul_serial_no = (*((unsigned long *)(&data[95])));
printf("Serial No. of this RAM-Module is: %ld (%lx)\n", dimmInfo->modul_serial_no, dimmInfo->modul_serial_no);
/* find Manufac-Data of Dimm Module */
dimmInfo->manufac_date = (*((unsigned int *)(&data[93])));
printf("Manufactoring Date of this RAM-Module is: %d.%d\n", data[93], data [94]); /*dimmInfo->manufac_date*/
/* find modul_revision of Dimm Module */
dimmInfo->modul_revision = (*((unsigned int *)(&data[91])));
printf("Module Revision of this RAM-Module is: %d.%d\n", data[91], data [92]); /* dimmInfo->modul_revision*/
/* find manufac_place of Dimm Module */
dimmInfo->manufac_place = (*((unsigned char *)(&data[72])));
printf("manufac_place of this RAM-Module is: %d\n", dimmInfo->manufac_place);
#endif
/*------------------------------------------------------------------------------------------------------------------------------*/
/* calculate SPD checksum */
/*------------------------------------------------------------------------------------------------------------------------------*/
spd_checksum = 0;
#if 0 /* test-only */
for(i = 0 ; i <= 62 ; i++)
{
spd_checksum += data[i];
}
if ((spd_checksum & 0xff) != data[63])
{
printf("### Error in SPD Checksum !!! Is_value: %2x should value %2x\n", (unsigned int)(spd_checksum & 0xff), data[63]);
hang();
}
else
printf("SPD Checksum ok!\n");
#endif /* test-only */
/*------------------------------------------------------------------------------------------------------------------------------*/
for(i = 2 ; i <= 35 ; i++)
{
switch(i)
{
case 2: /* Memory type (DDR / SDRAM) */
dimmInfo->memoryType = (data[i] == 0x7)? DDR:SDRAM;
#ifdef DEBUG
if (dimmInfo->memoryType == 0)
DP(printf("Dram_type in slot %d is: SDRAM\n", dimmInfo->slot));
if (dimmInfo->memoryType == 1)
DP(printf("Dram_type in slot %d is: DDRAM\n", dimmInfo->slot));
#endif
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 3: /* Number Of Row Addresses */
dimmInfo->numOfRowAddresses = data[i];
DP(printf("Module Number of row addresses: %d\n", dimmInfo->numOfRowAddresses));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 4: /* Number Of Column Addresses */
dimmInfo->numOfColAddresses = data[i];
DP(printf("Module Number of col addresses: %d\n", dimmInfo->numOfColAddresses));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 5: /* Number Of Module Banks */
dimmInfo->numOfModuleBanks = data[i];
DP(printf("Number of Banks on Mod. : %d\n", dimmInfo->numOfModuleBanks));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 6: /* Data Width */
dimmInfo->dataWidth = data[i];
DP(printf("Module Data Width: %d\n", dimmInfo->dataWidth));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 8: /* Voltage Interface */
switch(data[i])
{
case 0x0:
dimmInfo->voltageInterface = TTL_5V_TOLERANT;
DP(printf("Module is TTL_5V_TOLERANT\n"));
break;
case 0x1:
dimmInfo->voltageInterface = LVTTL;
DP(printf("Module is LVTTL\n"));
break;
case 0x2:
dimmInfo->voltageInterface = HSTL_1_5V;
DP(printf("Module is TTL_5V_TOLERANT\n"));
break;
case 0x3:
dimmInfo->voltageInterface = SSTL_3_3V;
DP(printf("Module is HSTL_1_5V\n"));
break;
case 0x4:
dimmInfo->voltageInterface = SSTL_2_5V;
DP(printf("Module is SSTL_2_5V\n"));
break;
default:
dimmInfo->voltageInterface = VOLTAGE_UNKNOWN;
DP(printf("Module is VOLTAGE_UNKNOWN\n"));
break;
}
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 9: /* Minimum Cycle Time At Max CasLatancy */
shift = (dimmInfo->memoryType == DDR)? 4:2;
mult = (dimmInfo->memoryType == DDR)? 10:25;
maskLeftOfPoint = (dimmInfo->memoryType == DDR)? 0xf0:0xfc;
maskRightOfPoint = (dimmInfo->memoryType == DDR)? 0xf:0x03;
leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
rightOfPoint = (data[i] & maskRightOfPoint)* mult;
dimmInfo->minimumCycleTimeAtMaxCasLatancy_LoP = leftOfPoint;
dimmInfo->minimumCycleTimeAtMaxCasLatancy_RoP = rightOfPoint;
DP(printf("Minimum Cycle Time At Max CasLatancy: %d.%d [ns]\n",leftOfPoint, rightOfPoint));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 10: /* Clock To Data Out */
div = (dimmInfo->memoryType == DDR)? 100:10;
time_tmp = (((data[i] & 0xf0) >> 4)*10) + ((data[i] & 0x0f));
leftOfPoint = time_tmp / div;
rightOfPoint = time_tmp % div;
dimmInfo->clockToDataOut_LoP = leftOfPoint;
dimmInfo->clockToDataOut_RoP = rightOfPoint;
DP(printf("Clock To Data Out: %d.%2d [ns]\n",leftOfPoint, rightOfPoint ));
/*dimmInfo->clockToDataOut*/
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
#ifdef CONFIG_ECC
case 11: /* Error Check Type */
dimmInfo->errorCheckType = data[i];
DP(printf("Error Check Type (0=NONE): %d\n", dimmInfo->errorCheckType));
break;
#endif
/*------------------------------------------------------------------------------------------------------------------------------*/
case 12: /* Refresh Interval */
dimmInfo->RefreshInterval = data[i];
DP(printf("RefreshInterval (80= Self refresh Normal, 15.625us) : %x\n", dimmInfo->RefreshInterval));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 13: /* Sdram Width */
dimmInfo->sdramWidth = data[i];
DP(printf("Sdram Width: %d\n", dimmInfo->sdramWidth));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 14: /* Error Check Data Width */
dimmInfo->errorCheckDataWidth = data[i];
DP(printf("Error Check Data Width: %d\n", dimmInfo->errorCheckDataWidth));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 15: /* Minimum Clock Delay */
dimmInfo->minClkDelay = data[i];
DP(printf("Minimum Clock Delay: %d\n", dimmInfo->minClkDelay));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 16: /* Burst Length Supported */
/******-******-******-*******
* bit3 | bit2 | bit1 | bit0 *
*******-******-******-*******
burst length = * 8 | 4 | 2 | 1 *
*****************************
If for example bit0 and bit2 are set, the burst
length supported are 1 and 4. */
dimmInfo->burstLengthSupported = data[i];
#ifdef DEBUG
DP(printf("Burst Length Supported: "));
if (dimmInfo->burstLengthSupported & 0x01)
DP(printf("1, "));
if (dimmInfo->burstLengthSupported & 0x02)
DP(printf("2, "));
if (dimmInfo->burstLengthSupported & 0x04)
DP(printf("4, "));
if (dimmInfo->burstLengthSupported & 0x08)
DP(printf("8, "));
DP(printf(" Bit \n"));
#endif
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 17: /* Number Of Banks On Each Device */
dimmInfo->numOfBanksOnEachDevice = data[i];
DP(printf("Number Of Banks On Each Chip: %d\n", dimmInfo->numOfBanksOnEachDevice));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 18: /* Suported Cas Latencies */
/* DDR:
*******-******-******-******-******-******-******-*******
* bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
*******-******-******-******-******-******-******-*******
CAS = * TBD | TBD | 3.5 | 3 | 2.5 | 2 | 1.5 | 1 *
*********************************************************
SDRAM:
*******-******-******-******-******-******-******-*******
* bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
*******-******-******-******-******-******-******-*******
CAS = * TBD | 7 | 6 | 5 | 4 | 3 | 2 | 1 *
********************************************************/
dimmInfo->suportedCasLatencies = data[i];
#ifdef DEBUG
DP(printf("Suported Cas Latencies: (CL) "));
if (dimmInfo->memoryType == 0) /* SDRAM*/
{
for (k = 0; k <=7; k++)
{
if (dimmInfo->suportedCasLatencies & (1 << k))
DP(printf("%d, ", k+1));
}
}
else /* DDR-RAM*/
{
if (dimmInfo->suportedCasLatencies & 1)
DP(printf("1, "));
if (dimmInfo->suportedCasLatencies & 2)
DP(printf("1.5, "));
if (dimmInfo->suportedCasLatencies & 4)
DP(printf("2, "));
if (dimmInfo->suportedCasLatencies & 8)
DP(printf("2.5, "));
if (dimmInfo->suportedCasLatencies & 16)
DP(printf("3, "));
if (dimmInfo->suportedCasLatencies & 32)
DP(printf("3.5, "));
}
DP(printf("\n"));
#endif
/* Calculating MAX CAS latency */
for(j = 7 ; j > 0 ; j--)
{
if(((dimmInfo->suportedCasLatencies >> j) & 0x1) == 1)
{
switch(dimmInfo->memoryType)
{
case DDR:
/* CAS latency 1, 1.5, 2, 2.5, 3, 3.5 */
switch (j)
{
case 7:
DP(printf("Max. Cas Latencies (DDR): ERROR !!!\n"));
dimmInfo->maxClSupported_DDR = DDR_CL_FAULT;
hang();
break;
case 6:
DP(printf("Max. Cas Latencies (DDR): ERROR !!!\n"));
dimmInfo->maxClSupported_DDR = DDR_CL_FAULT;
hang();
break;
case 5:
DP(printf("Max. Cas Latencies (DDR): 3.5 clk's\n"));
dimmInfo->maxClSupported_DDR = DDR_CL_3_5;
break;
case 4:
DP(printf("Max. Cas Latencies (DDR): 3 clk's \n"));
dimmInfo->maxClSupported_DDR = DDR_CL_3;
break;
case 3:
DP(printf("Max. Cas Latencies (DDR): 2.5 clk's \n"));
dimmInfo->maxClSupported_DDR = DDR_CL_2_5;
break;
case 2:
DP(printf("Max. Cas Latencies (DDR): 2 clk's \n"));
dimmInfo->maxClSupported_DDR = DDR_CL_2;
break;
case 1:
DP(printf("Max. Cas Latencies (DDR): 1.5 clk's \n"));
dimmInfo->maxClSupported_DDR = DDR_CL_1_5;
break;
}
dimmInfo->maxCASlatencySupported_LoP = 1 + (int) (5 * j /10);
if (((5*j) % 10) != 0)
dimmInfo->maxCASlatencySupported_RoP = 5;
else
dimmInfo->maxCASlatencySupported_RoP = 0;
DP(printf("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n", dimmInfo->maxCASlatencySupported_LoP, dimmInfo->maxCASlatencySupported_RoP));
break;
case SDRAM:
/* CAS latency 1, 2, 3, 4, 5, 6, 7 */
dimmInfo->maxClSupported_SD = j; /* Cas Latency DDR-RAM Coded */
DP(printf("Max. Cas Latencies (SD): %d\n", dimmInfo->maxClSupported_SD));
dimmInfo->maxCASlatencySupported_LoP = j ;
dimmInfo->maxCASlatencySupported_RoP = 0;
DP(printf("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n", dimmInfo->maxCASlatencySupported_LoP, dimmInfo->maxCASlatencySupported_RoP));
break;
}
break;
}
}
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 21: /* Buffered Address And Control Inputs */
DP(printf("\nModul Attributes (SPD Byte 21): \n"));
dimmInfo->bufferedAddrAndControlInputs = data[i] & BIT0;
dimmInfo->registeredAddrAndControlInputs = (data[i] & BIT1) >> 1;
dimmInfo->onCardPLL = (data[i] & BIT2) >> 2;
dimmInfo->bufferedDQMBinputs = (data[i] & BIT3) >> 3;
dimmInfo->registeredDQMBinputs = (data[i] & BIT4) >> 4;
dimmInfo->differentialClockInput = (data[i] & BIT5) >> 5;
dimmInfo->redundantRowAddressing = (data[i] & BIT6) >> 6;
#ifdef DEBUG
if (dimmInfo->bufferedAddrAndControlInputs == 1)
DP(printf(" - Buffered Address/Control Input: Yes \n"));
else
DP(printf(" - Buffered Address/Control Input: No \n"));
if (dimmInfo->registeredAddrAndControlInputs == 1)
DP(printf(" - Registered Address/Control Input: Yes \n"));
else
DP(printf(" - Registered Address/Control Input: No \n"));
if (dimmInfo->onCardPLL == 1)
DP(printf(" - On-Card PLL (clock): Yes \n"));
else
DP(printf(" - On-Card PLL (clock): No \n"));
if (dimmInfo->bufferedDQMBinputs == 1)
DP(printf(" - Bufferd DQMB Inputs: Yes \n"));
else
DP(printf(" - Bufferd DQMB Inputs: No \n"));
if (dimmInfo->registeredDQMBinputs == 1)
DP(printf(" - Registered DQMB Inputs: Yes \n"));
else
DP(printf(" - Registered DQMB Inputs: No \n"));
if (dimmInfo->differentialClockInput == 1)
DP(printf(" - Differential Clock Input: Yes \n"));
else
DP(printf(" - Differential Clock Input: No \n"));
if (dimmInfo->redundantRowAddressing == 1)
DP(printf(" - redundant Row Addressing: Yes \n"));
else
DP(printf(" - redundant Row Addressing: No \n"));
#endif
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 22: /* Suported AutoPreCharge */
DP(printf("\nModul Attributes (SPD Byte 22): \n"));
dimmInfo->suportedEarlyRasPreCharge= data[i] & BIT0;
dimmInfo->suportedAutoPreCharge = (data[i] & BIT1) >> 1;
dimmInfo->suportedPreChargeAll = (data[i] & BIT2) >> 2;
dimmInfo->suportedWrite1ReadBurst= (data[i] & BIT3) >> 3;
dimmInfo->suported5PercentLowVCC= (data[i] & BIT4) >> 4;
dimmInfo->suported5PercentUpperVCC= (data[i] & BIT5) >> 5;
#ifdef DEBUG
if (dimmInfo->suportedEarlyRasPreCharge == 1)
DP(printf(" - Early Ras Precharge: Yes \n"));
else
DP(printf(" - Early Ras Precharge: No \n"));
if (dimmInfo->suportedAutoPreCharge == 1)
DP(printf(" - AutoPreCharge: Yes \n"));
else
DP(printf(" - AutoPreCharge: No \n"));
if (dimmInfo->suportedPreChargeAll == 1)
DP(printf(" - Precharge All: Yes \n"));
else
DP(printf(" - Precharge All: No \n"));
if (dimmInfo->suportedWrite1ReadBurst == 1)
DP(printf(" - Write 1/ReadBurst: Yes \n"));
else
DP(printf(" - Write 1/ReadBurst: No \n"));
if (dimmInfo->suported5PercentLowVCC == 1)
DP(printf(" - lower VCC tolerance: 5 Percent \n"));
else
DP(printf(" - lower VCC tolerance: 10 Percent \n"));
if (dimmInfo->suported5PercentUpperVCC == 1)
DP(printf(" - upper VCC tolerance: 5 Percent \n"));
else
DP(printf(" - upper VCC tolerance: 10 Percent \n"));
#endif
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 23: /* Minimum Cycle Time At Maximum Cas Latancy Minus 1 (2nd highest CL) */
shift = (dimmInfo->memoryType == DDR)? 4:2;
mult = (dimmInfo->memoryType == DDR)? 10:25;
maskLeftOfPoint = (dimmInfo->memoryType == DDR)? 0xf0:0xfc;
maskRightOfPoint = (dimmInfo->memoryType == DDR)? 0xf:0x03;
leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
rightOfPoint = (data[i] & maskRightOfPoint)* mult;
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_LoP = leftOfPoint;
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_RoP = rightOfPoint;
DP(printf("Minimum Cycle Time At 2nd highest CasLatancy (0 = Not supported): %d.%d [ns]\n",leftOfPoint, rightOfPoint ));
/*dimmInfo->minimumCycleTimeAtMaxCasLatancy*/
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 24: /* Clock To Data Out 2nd highest Cas Latency Value*/
div = (dimmInfo->memoryType == DDR)? 100:10;
time_tmp = (((data[i] & 0xf0) >> 4)*10) + ((data[i] & 0x0f));
leftOfPoint = time_tmp / div;
rightOfPoint = time_tmp % div;
dimmInfo->clockToDataOutMinus1_LoP = leftOfPoint;
dimmInfo->clockToDataOutMinus1_RoP = rightOfPoint;
DP(printf("Clock To Data Out (2nd CL value): %d.%2d [ns]\n",leftOfPoint, rightOfPoint ));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 25: /* Minimum Cycle Time At Maximum Cas Latancy Minus 2 (3rd highest CL) */
shift = (dimmInfo->memoryType == DDR)? 4:2;
mult = (dimmInfo->memoryType == DDR)? 10:25;
maskLeftOfPoint = (dimmInfo->memoryType == DDR)? 0xf0:0xfc;
maskRightOfPoint = (dimmInfo->memoryType == DDR)? 0xf:0x03;
leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
rightOfPoint = (data[i] & maskRightOfPoint)* mult;
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_LoP = leftOfPoint;
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_RoP = rightOfPoint;
DP(printf("Minimum Cycle Time At 3rd highest CasLatancy (0 = Not supported): %d.%d [ns]\n",leftOfPoint, rightOfPoint ));
/*dimmInfo->minimumCycleTimeAtMaxCasLatancy*/
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 26: /* Clock To Data Out 3rd highest Cas Latency Value*/
div = (dimmInfo->memoryType == DDR)? 100:10;
time_tmp = (((data[i] & 0xf0) >> 4)*10) + ((data[i] & 0x0f));
leftOfPoint = time_tmp / div;
rightOfPoint = time_tmp % div;
dimmInfo->clockToDataOutMinus2_LoP = leftOfPoint;
dimmInfo->clockToDataOutMinus2_RoP = rightOfPoint;
DP(printf("Clock To Data Out (3rd CL value): %d.%2d [ns]\n",leftOfPoint, rightOfPoint ));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 27: /* Minimum Row Precharge Time */
shift = (dimmInfo->memoryType == DDR)? 2:0;
maskLeftOfPoint = (dimmInfo->memoryType == DDR)? 0xfc:0xff;
maskRightOfPoint = (dimmInfo->memoryType == DDR)? 0x03:0x00;
leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
rightOfPoint = (data[i] & maskRightOfPoint)*25;
dimmInfo->minRowPrechargeTime = ((leftOfPoint*100) + rightOfPoint); /* measured in n times 10ps Intervals */
trp_clocks = (dimmInfo->minRowPrechargeTime + (tmemclk-1)) / tmemclk;
DP(printf("*** 1 clock cycle = %ld 10ps intervalls = %ld.%ld ns****\n", tmemclk, tmemclk/100, tmemclk%100 ));
DP(printf("Minimum Row Precharge Time [ns]: %d.%2d = in Clk cycles %d\n", leftOfPoint, rightOfPoint, trp_clocks));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 28: /* Minimum Row Active to Row Active Time */
shift = (dimmInfo->memoryType == DDR)? 2:0;
maskLeftOfPoint = (dimmInfo->memoryType == DDR)? 0xfc:0xff;
maskRightOfPoint = (dimmInfo->memoryType == DDR)? 0x03:0x00;
leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
rightOfPoint = (data[i] & maskRightOfPoint)*25;
dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint*100) + rightOfPoint); /* measured in 100ns Intervals */
trrd_clocks = (dimmInfo->minRowActiveRowActiveDelay + (tmemclk-1)) / tmemclk;
DP(printf("Minimum Row Active -To- Row Active Delay [ns]: %d.%2d = in Clk cycles %d\n", leftOfPoint, rightOfPoint, trp_clocks));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 29: /* Minimum Ras-To-Cas Delay */
shift = (dimmInfo->memoryType == DDR)? 2:0;
maskLeftOfPoint = (dimmInfo->memoryType == DDR)? 0xfc:0xff;
maskRightOfPoint = (dimmInfo->memoryType == DDR)? 0x03:0x00;
leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
rightOfPoint = (data[i] & maskRightOfPoint)*25;
dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint*100) + rightOfPoint); /* measured in 100ns Intervals */
trcd_clocks = (dimmInfo->minRowActiveRowActiveDelay + (tmemclk-1) )/ tmemclk;
DP(printf("Minimum Ras-To-Cas Delay [ns]: %d.%2d = in Clk cycles %d\n", leftOfPoint, rightOfPoint, trp_clocks));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 30: /* Minimum Ras Pulse Width */
dimmInfo->minRasPulseWidth = data[i];
tras_clocks = (NSto10PS(data[i])+(tmemclk-1)) / tmemclk;
DP(printf("Minimum Ras Pulse Width [ns]: %d = in Clk cycles %d\n", dimmInfo->minRasPulseWidth, tras_clocks));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 31: /* Module Bank Density */
dimmInfo->moduleBankDensity = data[i];
DP(printf("Module Bank Density: %d\n", dimmInfo->moduleBankDensity));
#ifdef DEBUG
DP(printf("*** Offered Densities (more than 1 = Multisize-Module): "));
{
if (dimmInfo->moduleBankDensity & 1)
DP(printf("4MB, "));
if (dimmInfo->moduleBankDensity & 2)
DP(printf("8MB, "));
if (dimmInfo->moduleBankDensity & 4)
DP(printf("16MB, "));
if (dimmInfo->moduleBankDensity & 8)
DP(printf("32MB, "));
if (dimmInfo->moduleBankDensity & 16)
DP(printf("64MB, "));
if (dimmInfo->moduleBankDensity & 32)
DP(printf("128MB, "));
if ((dimmInfo->moduleBankDensity & 64) || (dimmInfo->moduleBankDensity & 128)) {
DP(printf("ERROR, "));
hang();
}
}
DP(printf("\n"));
#endif
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 32: /* Address And Command Setup Time (measured in ns/1000) */
sign = 1;
switch(dimmInfo->memoryType)
{
case DDR:
time_tmp = (((data[i] & 0xf0) >> 4)*10) + ((data[i] & 0x0f));
leftOfPoint = time_tmp / 100;
rightOfPoint = time_tmp % 100;
break;
case SDRAM:
leftOfPoint = (data[i] & 0xf0) >> 4;
if(leftOfPoint > 7)
{
leftOfPoint = data[i] & 0x70 >> 4;
sign = -1;
}
rightOfPoint = (data[i] & 0x0f);
break;
}
dimmInfo->addrAndCommandSetupTime = (leftOfPoint*100 + rightOfPoint) * sign;
DP(printf("Address And Command Setup Time [ns]: %d.%d\n", sign*leftOfPoint, rightOfPoint));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 33: /* Address And Command Hold Time */
sign = 1;
switch(dimmInfo->memoryType)
{
case DDR:
time_tmp = (((data[i] & 0xf0) >> 4)*10) + ((data[i] & 0x0f));
leftOfPoint = time_tmp / 100;
rightOfPoint = time_tmp % 100;
break;
case SDRAM:
leftOfPoint = (data[i] & 0xf0) >> 4;
if(leftOfPoint > 7)
{
leftOfPoint = data[i] & 0x70 >> 4;
sign = -1;
}
rightOfPoint = (data[i] & 0x0f) ;
break;
}
dimmInfo->addrAndCommandHoldTime = (leftOfPoint * 100 + rightOfPoint) * sign;
DP(printf("Address And Command Hold Time [ns]: %d.%d\n", sign*leftOfPoint, rightOfPoint));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 34: /* Data Input Setup Time */
sign = 1;
switch(dimmInfo->memoryType)
{
case DDR:
time_tmp = (((data[i] & 0xf0) >> 4)*10) + ((data[i] & 0x0f));
leftOfPoint = time_tmp / 100;
rightOfPoint = time_tmp % 100;
break;
case SDRAM:
leftOfPoint = (data[i] & 0xf0) >> 4;
if( leftOfPoint > 7)
{
leftOfPoint = data[i] & 0x70 >> 4;
sign = -1;
}
rightOfPoint = (data[i] & 0x0f );
break;
}
dimmInfo->dataInputSetupTime = (leftOfPoint *100 + rightOfPoint) * sign;
DP(printf("Data Input Setup Time [ns]: %d.%d\n", sign*leftOfPoint, rightOfPoint));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 35: /* Data Input Hold Time */
sign = 1;
switch(dimmInfo->memoryType)
{
case DDR:
time_tmp = (((data[i] & 0xf0) >> 4)*10) + ((data[i] & 0x0f));
leftOfPoint = time_tmp / 100;
rightOfPoint = time_tmp % 100;
break;
case SDRAM:
leftOfPoint = (data[i] & 0xf0) >> 4;
if( leftOfPoint > 7)
{
leftOfPoint = data[i] & 0x70 >> 4;
sign = -1;
}
rightOfPoint = (data[i] & 0x0f) ;
break;
}
dimmInfo->dataInputHoldTime = (leftOfPoint *100 + rightOfPoint) * sign;
DP(printf("Data Input Hold Time [ns]: %d.%d\n\n", sign*leftOfPoint, rightOfPoint));
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
}
}
/* calculating the sdram density */
for(i = 0;i < dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses;i++)
{
density = density*2;
}
dimmInfo->deviceDensity = density*dimmInfo->numOfBanksOnEachDevice*
dimmInfo->sdramWidth;
dimmInfo->numberOfDevices = (dimmInfo->dataWidth / dimmInfo->sdramWidth)*
dimmInfo->numOfModuleBanks;
devicesForErrCheck = (dimmInfo->dataWidth - 64) / dimmInfo->sdramWidth ;
if((dimmInfo->errorCheckType == 0x1) ||
(dimmInfo->errorCheckType == 0x2) ||
(dimmInfo->errorCheckType == 0x3))
{
dimmInfo->size = (dimmInfo->deviceDensity / 8)*
(dimmInfo->numberOfDevices - devicesForErrCheck);
}
else
{
dimmInfo->size = (dimmInfo->deviceDensity/8)*dimmInfo->numberOfDevices;
}
/* compute the module DRB size */
tmp = (1 << (dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses));
tmp *= dimmInfo->numOfModuleBanks;
tmp *= dimmInfo->sdramWidth;
tmp = tmp >> 24; /* div by 0x4000000 (64M) */
dimmInfo->drb_size = (uchar)tmp;
DP(printf("Module DRB size (n*64Mbit): %d\n", dimmInfo->drb_size));
/* try a CAS latency of 3 first... */
/* bit 1 is CL2, bit 2 is CL3 */
supp_cal = (dimmInfo->suportedCasLatencies & 0x1c) >> 1;
cal_val = 0;
if (supp_cal & 8) {
if (NS10to10PS(data[9]) <= tmemclk)
cal_val = 6;
}
if (supp_cal & 4) {
if (NS10to10PS(data[9]) <= tmemclk)
cal_val = 5;
}
/* then 2... */
if (supp_cal & 2) {
if (NS10to10PS(data[23]) <= tmemclk)
cal_val = 4;
}
DP(printf("cal_val = %d\n", cal_val*5));
/* bummer, did't work... */
if (cal_val == 0) {
DP(printf("Couldn't find a good CAS latency\n"));
hang();
return 0;
}
return true;
}
/* sets up the GT properly with information passed in */
int
setup_sdram(AUX_MEM_DIMM_INFO *info)
{
ulong tmp, check;
ulong tmp_sdram_mode=0; /* 0x141c*/
ulong tmp_dunit_control_low=0; /* 0x1404*/
int i;
/* sanity checking */
if (! info->numOfModuleBanks) {
printf("setup_sdram called with 0 banks\n");
return 1;
}
/* delay line */
/* Program the GT with the discovered data */
if (info->registeredAddrAndControlInputs == true)
DP(printf("Module is registered, but we do not support registered Modules !!!\n"));
/* delay line */
set_dfcdlInit(); /* may be its not needed */
DP(printf("Delay line set done\n"));
/* set SDRAM mode NOP*/ /* To_do check it*/
GT_REG_WRITE(SDRAM_OPERATION, 0x5);
while (GTREGREAD(SDRAM_OPERATION) != 0) {
DP(printf("\n*** SDRAM_OPERATION 1418: Module still busy ... please wait... ***\n"));
}
/* SDRAM configuration */
GT_REG_WRITE(SDRAM_CONFIG, 0x58200400);
DP(printf("sdram_conf 0x1400: %08x\n", GTREGREAD(SDRAM_CONFIG)));
/* SDRAM open pages controll keep open as much as I can*/
GT_REG_WRITE(SDRAM_OPEN_PAGES_CONTROL, 0x0);
DP(printf("sdram_open_pages_controll 0x1414: %08x\n", GTREGREAD(SDRAM_OPEN_PAGES_CONTROL)));
/* SDRAM D_UNIT_CONTROL_LOW 0x1404 */
tmp = (GTREGREAD(D_UNIT_CONTROL_LOW) & 0x01); /* Clock Domain Sync from power on reset*/
if (tmp == 0)
DP(printf("Core Signals are sync (by HW-Setting)!!!\n"));
else
DP(printf("Core Signals syncs. are bypassed (by HW-Setting)!!!\n"));
/* SDRAM set CAS Lentency according to SPD information*/
switch(info->memoryType)
{
case SDRAM:
DP(printf("### SD-RAM not supported yet !!!\n"));
hang();
/* ToDo fill SD-RAM if needed !!!!!*/
break;
case DDR:
DP(printf("### SET-CL for DDR-RAM\n"));
switch (info->maxClSupported_DDR)
{
case DDR_CL_3:
tmp_dunit_control_low = 0x3c000000; /* Read-Data sampled on falling edge of Clk*/
tmp_sdram_mode = 0x32; /* CL=3 Burstlength = 4*/
DP(printf("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",tmp_sdram_mode, tmp_dunit_control_low ));
break;
case DDR_CL_2_5:
if (tmp == 1) /* clocks sync*/
{
tmp_dunit_control_low = 0x24000000; /* Read-Data sampled on falling edge of Clk*/
tmp_sdram_mode = 0x62; /* CL=2,5 Burstlength = 4*/
DP(printf("Max. CL is 2,5s CLKs 0x141c= %08lx, 0x1404 = %08lx\n",tmp_sdram_mode, tmp_dunit_control_low ));
}
else /* clk sync. bypassed */
{
tmp_dunit_control_low = 0x03000000; /* Read-Data sampled on rising edge of Clk*/
tmp_sdram_mode = 0x62; /* CL=2,5 Burstlength = 4*/
DP(printf("Max. CL is 2,5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",tmp_sdram_mode, tmp_dunit_control_low ));
}
break;
case DDR_CL_2:
if (tmp == 1) /* Sync*/
{
tmp_dunit_control_low = 0x03000000; /* Read-Data sampled on rising edge of Clk*/
tmp_sdram_mode = 0x22; /* CL=2 Burstlength = 4*/
DP(printf("Max. CL is 2s CLKs 0x141c= %08lx, 0x1404 = %08lx\n",tmp_sdram_mode, tmp_dunit_control_low ));
}
else /* Not sync. */
{
tmp_dunit_control_low = 0x3b000000; /* Read-Data sampled on rising edge of Clk*/
tmp_sdram_mode = 0x22; /* CL=2 Burstlength = 4*/
DP(printf("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",tmp_sdram_mode, tmp_dunit_control_low ));
}
break;
case DDR_CL_1_5:
if (tmp == 1) /* Sync*/
{
tmp_dunit_control_low = 0x23000000; /* Read-Data sampled on falling edge of Clk*/
tmp_sdram_mode = 0x52; /* CL=1,5 Burstlength = 4*/
DP(printf("Max. CL is 1,5s CLKs 0x141c= %08lx, 0x1404 = %08lx\n",tmp_sdram_mode, tmp_dunit_control_low ));
}
else /* not sync*/
{
tmp_dunit_control_low = 0x1a000000; /* Read-Data sampled on rising edge of Clk*/
tmp_sdram_mode = 0x52; /* CL=1,5 Burstlength = 4*/
DP(printf("Max. CL is 1,5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",tmp_sdram_mode, tmp_dunit_control_low ));
}
break;
default:
printf("Max. CL is out of range %d\n", info->maxClSupported_DDR);
hang();
break;
}
break;
}
/* Write results of CL detection procedure */
GT_REG_WRITE(SDRAM_MODE, tmp_sdram_mode);
/* set SDRAM mode SetCommand 0x1418*/
GT_REG_WRITE(SDRAM_OPERATION, 0x3);
while (GTREGREAD(SDRAM_OPERATION) != 0) {
DP(printf("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n"));
}
/* SDRAM D_UNIT_CONTROL_LOW 0x1404 */
tmp = (GTREGREAD(D_UNIT_CONTROL_LOW) & 0x01); /* Clock Domain Sync from power on reset*/
if (tmp != 1) /*clocks are not sync*/
{
/* asyncmode*/
GT_REG_WRITE(D_UNIT_CONTROL_LOW ,
(GTREGREAD(D_UNIT_CONTROL_LOW) & 0x7F) | 0x18110780 | tmp_dunit_control_low );
}
else
{
/* syncmode*/
GT_REG_WRITE(D_UNIT_CONTROL_LOW ,
(GTREGREAD(D_UNIT_CONTROL_LOW) & 0x7F) | 0x00110000 | tmp_dunit_control_low );
}
/* set SDRAM mode SetCommand 0x1418*/
GT_REG_WRITE(SDRAM_OPERATION, 0x3);
while (GTREGREAD(SDRAM_OPERATION) != 0) {
DP(printf("\n*** SDRAM_OPERATION 1418 after D_UNIT_CONTROL_LOW: Module still busy ... please wait... ***\n"));
}
/*------------------------------------------------------------------------------ */
/* bank parameters */
/* SDRAM address decode register */
/* program this with the default value */
tmp = 0x02;
DP(printf("drb_size (n*64Mbit): %d\n", info->drb_size));
switch (info->drb_size) {
case 1: /* 64 Mbit */
case 2: /* 128 Mbit */
DP(printf("RAM-Device_size 64Mbit or 128Mbit)\n"));
tmp |= (0x00 << 4);
break;
case 4: /* 256 Mbit */
case 8: /* 512 Mbit */
DP(printf("RAM-Device_size 256Mbit or 512Mbit)\n"));
tmp |= (0x01 << 4);
break;
case 16: /* 1 Gbit */
case 32: /* 2 Gbit */
DP(printf("RAM-Device_size 1Gbit or 2Gbit)\n"));
tmp |= (0x02 << 4);
break;
default:
printf("Error in dram size calculation\n");
DP(printf("Assume: RAM-Device_size 1Gbit or 2Gbit)\n"));
tmp |= (0x02 << 4);
return 1;
}
/* SDRAM bank parameters */
/* the param registers for slot 1 (banks 2+3) are offset by 0x8 */
DP(printf("setting up slot %d config with: %08lx \n", info->slot, tmp));
GT_REG_WRITE(SDRAM_ADDR_CONTROL, tmp);
/* ------------------------------------------------------------------------------ */
DP(printf("setting up sdram_timing_control_low with: %08x \n", 0x11511220));
GT_REG_WRITE(SDRAM_TIMING_CONTROL_LOW, 0x11511220);
/* ------------------------------------------------------------------------------ */
/* SDRAM configuration */
tmp = GTREGREAD(SDRAM_CONFIG);
if (info->registeredAddrAndControlInputs || info->registeredDQMBinputs) {
tmp |= (1 << 17);
DP(printf("SPD says: registered Addr. and Cont.: %d; registered DQMBinputs: %d\n",info->registeredAddrAndControlInputs, info->registeredDQMBinputs));
}
/* Use buffer 1 to return read data to the CPU
* Page 426 MV64360 */
tmp |= (1 << 26);
DP(printf("Before Buffer assignment - sdram_conf: %08x\n", GTREGREAD(SDRAM_CONFIG)));
DP(printf("After Buffer assignment - sdram_conf: %08x\n", GTREGREAD(SDRAM_CONFIG)));
/* SDRAM timing To_do:*/
tmp = GTREGREAD(SDRAM_TIMING_CONTROL_HIGH);
DP(printf("# sdram_timing_control_high is : %08lx \n", tmp));
/* SDRAM address decode register */
/* program this with the default value */
tmp = GTREGREAD(SDRAM_ADDR_CONTROL);
DP(printf("SDRAM address control (before: decode): %08x ", GTREGREAD(SDRAM_ADDR_CONTROL)));
GT_REG_WRITE(SDRAM_ADDR_CONTROL, (tmp | 0x2));
DP(printf("SDRAM address control (after: decode): %08x\n", GTREGREAD(SDRAM_ADDR_CONTROL)));
/* set the SDRAM configuration for each bank */
/* for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) */
{
i = info->slot;
DP(printf("\n*** Running a MRS cycle for bank %d ***\n", i));
/* map the bank */
memory_map_bank(i, 0, GB/4);
#if 1 /* test only */
/* set SDRAM mode */ /* To_do check it*/
GT_REG_WRITE(SDRAM_OPERATION, 0x3);
check = GTREGREAD(SDRAM_OPERATION);
DP(printf("\n*** SDRAM_OPERATION 1418 (0 = Normal Operation) = %08lx ***\n", check));
/* switch back to normal operation mode */
GT_REG_WRITE(SDRAM_OPERATION, 0);
check = GTREGREAD(SDRAM_OPERATION);
DP(printf("\n*** SDRAM_OPERATION 1418 (0 = Normal Operation) = %08lx ***\n", check));
#endif /* test only */
/* unmap the bank */
memory_map_bank(i, 0, 0);
}
return 0;
}
/*
* Check memory range for valid RAM. A simple memory test determines
* the actually available RAM size between addresses `base' and
* `base + maxsize'. Some (not all) hardware errors are detected:
* - short between address lines
* - short between data lines
*/
long int
dram_size(long int *base, long int maxsize)
{
volatile long int *addr, *b=base;
long int cnt, val, save1, save2;
#define STARTVAL (1<<20) /* start test at 1M */
for (cnt = STARTVAL/sizeof(long); cnt < maxsize/sizeof(long); cnt <<= 1) {
addr = base + cnt; /* pointer arith! */
save1=*addr; /* save contents of addr */
save2=*b; /* save contents of base */
*addr=cnt; /* write cnt to addr */
*b=0; /* put null at base */
/* check at base address */
if ((*b) != 0) {
*addr=save1; /* restore *addr */
*b=save2; /* restore *b */
return (0);
}
val = *addr; /* read *addr */
val = *addr; /* read *addr */
*addr=save1;
*b=save2;
if (val != cnt) {
DP(printf("Found %08x at Address %08x (failure)\n", (unsigned int)val, (unsigned int) addr));
/* fix boundary condition.. STARTVAL means zero */
if(cnt==STARTVAL/sizeof(long)) cnt=0;
return (cnt * sizeof(long));
}
}
return maxsize;
}
/* ------------------------------------------------------------------------- */
/* ppcboot interface function to SDRAM init - this is where all the
* controlling logic happens */
long int
initdram(int board_type)
{
int s0 = 0, s1 = 0;
int checkbank[4] = { [0 ... 3] = 0 };
ulong bank_no, realsize, total, check;
AUX_MEM_DIMM_INFO dimmInfo1;
AUX_MEM_DIMM_INFO dimmInfo2;
int nhr;
/* first, use the SPD to get info about the SDRAM/ DDRRAM */
/* check the NHR bit and skip mem init if it's already done */
nhr = get_hid0() & (1 << 16);
if (nhr) {
printf("Skipping SD- DDRRAM setup due to NHR bit being set\n");
} else {
/* DIMM0 */
s0 = check_dimm(0, &dimmInfo1);
/* DIMM1 */
s1 = check_dimm(1, &dimmInfo2);
memory_map_bank(0, 0, 0);
memory_map_bank(1, 0, 0);
memory_map_bank(2, 0, 0);
memory_map_bank(3, 0, 0);
if (dimmInfo1.numOfModuleBanks && setup_sdram(&dimmInfo1)) {
printf("Setup for DIMM1 failed.\n");
}
if (dimmInfo2.numOfModuleBanks && setup_sdram(&dimmInfo2)) {
printf("Setup for DIMM2 failed.\n");
}
/* set the NHR bit */
set_hid0(get_hid0() | (1 << 16));
}
/* next, size the SDRAM banks */
realsize = total = 0;
check = GB/4;
if (dimmInfo1.numOfModuleBanks > 0) {checkbank[0] = 1; printf("-- DIMM1 has 1 bank\n");}
if (dimmInfo1.numOfModuleBanks > 1) {checkbank[1] = 1; printf("-- DIMM1 has 2 banks\n");}
if (dimmInfo1.numOfModuleBanks > 2)
printf("Error, SPD claims DIMM1 has >2 banks\n");
if (dimmInfo2.numOfModuleBanks > 0) {checkbank[2] = 1; printf("-- DIMM2 has 1 bank\n");}
if (dimmInfo2.numOfModuleBanks > 1) {checkbank[3] = 1; printf("-- DIMM2 has 2 banks\n");}
if (dimmInfo2.numOfModuleBanks > 2)
printf("Error, SPD claims DIMM2 has >2 banks\n");
for (bank_no = 0; bank_no < CFG_DRAM_BANKS; bank_no++) {
/* skip over banks that are not populated */
if (! checkbank[bank_no])
continue;
if ((total + check) > CFG_GT_REGS)
check = CFG_GT_REGS - total;
memory_map_bank(bank_no, total, check);
realsize = dram_size((long int *)total, check);
memory_map_bank(bank_no, total, realsize);
total += realsize;
}
/* Setup Ethernet DMA Adress window to DRAM Area */
return(total);
}
/* ***************************************************************************************
! * SDRAM INIT *
! * This procedure detect all Sdram types: 64, 128, 256, 512 Mbit, 1Gbit and 2Gb *
! * This procedure fits only the Atlantis *
! * *
! *************************************************************************************** */
/* ***************************************************************************************
! * DFCDL initialize MV643xx Design Considerations *
! * *
! *************************************************************************************** */
int
set_dfcdlInit(void)
{
int i;
unsigned int dfcdl_word = 0x0000014f;
for (i=0 ; i < 64; i++)
{
GT_REG_WRITE(SRAM_DATA0, dfcdl_word);
}
GT_REG_WRITE(DFCDL_CONFIG0, 0x00300000); /* enable dynamic delay line updating */
return (0);
}