upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/drivers/mtd/nand/fsl_ifc_nand.c

1066 lines
29 KiB

/* Integrated Flash Controller NAND Machine Driver
*
* Copyright (c) 2012 Freescale Semiconductor, Inc
*
* Authors: Dipen Dudhat <Dipen.Dudhat@freescale.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <nand.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <asm/io.h>
#include <linux/errno.h>
#include <fsl_ifc.h>
#ifndef CONFIG_SYS_FSL_IFC_BANK_COUNT
#define CONFIG_SYS_FSL_IFC_BANK_COUNT 4
#endif
#define MAX_BANKS CONFIG_SYS_FSL_IFC_BANK_COUNT
#define ERR_BYTE 0xFF /* Value returned for read bytes
when read failed */
struct fsl_ifc_ctrl;
/* mtd information per set */
struct fsl_ifc_mtd {
struct nand_chip chip;
struct fsl_ifc_ctrl *ctrl;
struct device *dev;
int bank; /* Chip select bank number */
unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
u8 __iomem *vbase; /* Chip select base virtual address */
};
/* overview of the fsl ifc controller */
struct fsl_ifc_ctrl {
struct nand_hw_control controller;
struct fsl_ifc_mtd *chips[MAX_BANKS];
/* device info */
struct fsl_ifc regs;
void __iomem *addr; /* Address of assigned IFC buffer */
unsigned int cs_nand; /* On which chipsel NAND is connected */
unsigned int page; /* Last page written to / read from */
unsigned int read_bytes; /* Number of bytes read during command */
unsigned int column; /* Saved column from SEQIN */
unsigned int index; /* Pointer to next byte to 'read' */
unsigned int status; /* status read from NEESR after last op */
unsigned int oob; /* Non zero if operating on OOB data */
unsigned int eccread; /* Non zero for a full-page ECC read */
};
static struct fsl_ifc_ctrl *ifc_ctrl;
/* 512-byte page with 4-bit ECC, 8-bit */
static struct nand_ecclayout oob_512_8bit_ecc4 = {
.eccbytes = 8,
.eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
.oobfree = { {0, 5}, {6, 2} },
};
/* 512-byte page with 4-bit ECC, 16-bit */
static struct nand_ecclayout oob_512_16bit_ecc4 = {
.eccbytes = 8,
.eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
.oobfree = { {2, 6}, },
};
/* 2048-byte page size with 4-bit ECC */
static struct nand_ecclayout oob_2048_ecc4 = {
.eccbytes = 32,
.eccpos = {
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,
},
.oobfree = { {2, 6}, {40, 24} },
};
/* 4096-byte page size with 4-bit ECC */
static struct nand_ecclayout oob_4096_ecc4 = {
.eccbytes = 64,
.eccpos = {
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71,
},
.oobfree = { {2, 6}, {72, 56} },
};
/* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */
static struct nand_ecclayout oob_4096_ecc8 = {
.eccbytes = 128,
.eccpos = {
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132, 133, 134, 135,
},
.oobfree = { {2, 6}, {136, 82} },
};
/* 8192-byte page size with 4-bit ECC */
static struct nand_ecclayout oob_8192_ecc4 = {
.eccbytes = 128,
.eccpos = {
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132, 133, 134, 135,
},
.oobfree = { {2, 6}, {136, 208} },
};
/* 8192-byte page size with 8-bit ECC -- requires 218-byte OOB */
static struct nand_ecclayout oob_8192_ecc8 = {
.eccbytes = 256,
.eccpos = {
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132, 133, 134, 135,
136, 137, 138, 139, 140, 141, 142, 143,
144, 145, 146, 147, 148, 149, 150, 151,
152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167,
168, 169, 170, 171, 172, 173, 174, 175,
176, 177, 178, 179, 180, 181, 182, 183,
184, 185, 186, 187, 188, 189, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199,
200, 201, 202, 203, 204, 205, 206, 207,
208, 209, 210, 211, 212, 213, 214, 215,
216, 217, 218, 219, 220, 221, 222, 223,
224, 225, 226, 227, 228, 229, 230, 231,
232, 233, 234, 235, 236, 237, 238, 239,
240, 241, 242, 243, 244, 245, 246, 247,
248, 249, 250, 251, 252, 253, 254, 255,
256, 257, 258, 259, 260, 261, 262, 263,
},
.oobfree = { {2, 6}, {264, 80} },
};
/*
* Generic flash bbt descriptors
*/
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 2, /* 0 on 8-bit small page */
.len = 4,
.veroffs = 6,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 2, /* 0 on 8-bit small page */
.len = 4,
.veroffs = 6,
.maxblocks = 4,
.pattern = mirror_pattern,
};
/*
* Set up the IFC hardware block and page address fields, and the ifc nand
* structure addr field to point to the correct IFC buffer in memory
*/
static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_runtime *ifc = ctrl->regs.rregs;
int buf_num;
ctrl->page = page_addr;
/* Program ROW0/COL0 */
ifc_out32(&ifc->ifc_nand.row0, page_addr);
ifc_out32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column);
buf_num = page_addr & priv->bufnum_mask;
ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
ctrl->index = column;
/* for OOB data point to the second half of the buffer */
if (oob)
ctrl->index += mtd->writesize;
}
static int is_blank(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
unsigned int bufnum)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2);
u32 __iomem *main = (u32 *)addr;
u8 __iomem *oob = addr + mtd->writesize;
int i;
for (i = 0; i < mtd->writesize / 4; i++) {
if (__raw_readl(&main[i]) != 0xffffffff)
return 0;
}
for (i = 0; i < chip->ecc.layout->eccbytes; i++) {
int pos = chip->ecc.layout->eccpos[i];
if (__raw_readb(&oob[pos]) != 0xff)
return 0;
}
return 1;
}
/* returns nonzero if entire page is blank */
static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
u32 *eccstat, unsigned int bufnum)
{
u32 reg = eccstat[bufnum / 4];
int errors;
errors = (reg >> ((3 - bufnum % 4) * 8)) & 15;
return errors;
}
/*
* execute IFC NAND command and wait for it to complete
*/
static int fsl_ifc_run_command(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_runtime *ifc = ctrl->regs.rregs;
u32 timeo = (CONFIG_SYS_HZ * 10) / 1000;
u32 time_start;
u32 eccstat[8] = {0};
int i;
/* set the chip select for NAND Transaction */
ifc_out32(&ifc->ifc_nand.nand_csel, ifc_ctrl->cs_nand);
/* start read/write seq */
ifc_out32(&ifc->ifc_nand.nandseq_strt,
IFC_NAND_SEQ_STRT_FIR_STRT);
/* wait for NAND Machine complete flag or timeout */
time_start = get_timer(0);
while (get_timer(time_start) < timeo) {
ctrl->status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
if (ctrl->status & IFC_NAND_EVTER_STAT_OPC)
break;
}
ifc_out32(&ifc->ifc_nand.nand_evter_stat, ctrl->status);
if (ctrl->status & IFC_NAND_EVTER_STAT_FTOER)
printf("%s: Flash Time Out Error\n", __func__);
if (ctrl->status & IFC_NAND_EVTER_STAT_WPER)
printf("%s: Write Protect Error\n", __func__);
if (ctrl->eccread) {
int errors;
int bufnum = ctrl->page & priv->bufnum_mask;
int sector = bufnum * chip->ecc.steps;
int sector_end = sector + chip->ecc.steps - 1;
for (i = sector / 4; i <= sector_end / 4; i++) {
if (i >= ARRAY_SIZE(eccstat)) {
printf("%s: eccstat too small for %d\n",
__func__, i);
return -EIO;
}
eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]);
}
for (i = sector; i <= sector_end; i++) {
errors = check_read_ecc(mtd, ctrl, eccstat, i);
if (errors == 15) {
/*
* Uncorrectable error.
* OK only if the whole page is blank.
*
* We disable ECCER reporting due to erratum
* IFC-A002770 -- so report it now if we
* see an uncorrectable error in ECCSTAT.
*/
if (!is_blank(mtd, ctrl, bufnum))
ctrl->status |=
IFC_NAND_EVTER_STAT_ECCER;
break;
}
mtd->ecc_stats.corrected += errors;
}
ctrl->eccread = 0;
}
/* returns 0 on success otherwise non-zero) */
return ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO;
}
static void fsl_ifc_do_read(struct nand_chip *chip,
int oob,
struct mtd_info *mtd)
{
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_runtime *ifc = ctrl->regs.rregs;
/* Program FIR/IFC_NAND_FCR0 for Small/Large page */
if (mtd->writesize > 512) {
ifc_out32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
(IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT));
ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
ifc_out32(&ifc->ifc_nand.nand_fcr0,
(NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
(NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
} else {
ifc_out32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT));
if (oob)
ifc_out32(&ifc->ifc_nand.nand_fcr0,
NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT);
else
ifc_out32(&ifc->ifc_nand.nand_fcr0,
NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
}
}
/* cmdfunc send commands to the IFC NAND Machine */
static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_runtime *ifc = ctrl->regs.rregs;
/* clear the read buffer */
ctrl->read_bytes = 0;
if (command != NAND_CMD_PAGEPROG)
ctrl->index = 0;
switch (command) {
/* READ0 read the entire buffer to use hardware ECC. */
case NAND_CMD_READ0: {
ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
set_addr(mtd, 0, page_addr, 0);
ctrl->read_bytes = mtd->writesize + mtd->oobsize;
ctrl->index += column;
if (chip->ecc.mode == NAND_ECC_HW)
ctrl->eccread = 1;
fsl_ifc_do_read(chip, 0, mtd);
fsl_ifc_run_command(mtd);
return;
}
/* READOOB reads only the OOB because no ECC is performed. */
case NAND_CMD_READOOB:
ifc_out32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column);
set_addr(mtd, column, page_addr, 1);
ctrl->read_bytes = mtd->writesize + mtd->oobsize;
fsl_ifc_do_read(chip, 1, mtd);
fsl_ifc_run_command(mtd);
return;
/* READID must read all possible bytes while CEB is active */
case NAND_CMD_READID:
case NAND_CMD_PARAM: {
int timing = IFC_FIR_OP_RB;
if (command == NAND_CMD_PARAM)
timing = IFC_FIR_OP_RBCD;
ifc_out32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
(timing << IFC_NAND_FIR0_OP2_SHIFT));
ifc_out32(&ifc->ifc_nand.nand_fcr0,
command << IFC_NAND_FCR0_CMD0_SHIFT);
ifc_out32(&ifc->ifc_nand.row3, column);
/*
* although currently it's 8 bytes for READID, we always read
* the maximum 256 bytes(for PARAM)
*/
ifc_out32(&ifc->ifc_nand.nand_fbcr, 256);
ctrl->read_bytes = 256;
set_addr(mtd, 0, 0, 0);
fsl_ifc_run_command(mtd);
return;
}
/* ERASE1 stores the block and page address */
case NAND_CMD_ERASE1:
set_addr(mtd, 0, page_addr, 0);
return;
/* ERASE2 uses the block and page address from ERASE1 */
case NAND_CMD_ERASE2:
ifc_out32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT));
ifc_out32(&ifc->ifc_nand.nand_fcr0,
(NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
(NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT));
ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
ctrl->read_bytes = 0;
fsl_ifc_run_command(mtd);
return;
/* SEQIN sets up the addr buffer and all registers except the length */
case NAND_CMD_SEQIN: {
u32 nand_fcr0;
ctrl->column = column;
ctrl->oob = 0;
if (mtd->writesize > 512) {
nand_fcr0 =
(NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
(NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
ifc_out32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_WBCD <<
IFC_NAND_FIR0_OP3_SHIFT) |
(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT));
ifc_out32(&ifc->ifc_nand.nand_fir1,
(IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
(IFC_FIR_OP_RDSTAT <<
IFC_NAND_FIR1_OP6_SHIFT) |
(IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT));
} else {
nand_fcr0 = ((NAND_CMD_PAGEPROG <<
IFC_NAND_FCR0_CMD1_SHIFT) |
(NAND_CMD_SEQIN <<
IFC_NAND_FCR0_CMD2_SHIFT) |
(NAND_CMD_STATUS <<
IFC_NAND_FCR0_CMD3_SHIFT));
ifc_out32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT));
ifc_out32(&ifc->ifc_nand.nand_fir1,
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
(IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
(IFC_FIR_OP_RDSTAT <<
IFC_NAND_FIR1_OP7_SHIFT) |
(IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT));
if (column >= mtd->writesize)
nand_fcr0 |=
NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
else
nand_fcr0 |=
NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
}
if (column >= mtd->writesize) {
/* OOB area --> READOOB */
column -= mtd->writesize;
ctrl->oob = 1;
}
ifc_out32(&ifc->ifc_nand.nand_fcr0, nand_fcr0);
set_addr(mtd, column, page_addr, ctrl->oob);
return;
}
/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
case NAND_CMD_PAGEPROG:
if (ctrl->oob)
ifc_out32(&ifc->ifc_nand.nand_fbcr,
ctrl->index - ctrl->column);
else
ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
fsl_ifc_run_command(mtd);
return;
case NAND_CMD_STATUS:
ifc_out32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT));
ifc_out32(&ifc->ifc_nand.nand_fcr0,
NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT);
ifc_out32(&ifc->ifc_nand.nand_fbcr, 1);
set_addr(mtd, 0, 0, 0);
ctrl->read_bytes = 1;
fsl_ifc_run_command(mtd);
/*
* The chip always seems to report that it is
* write-protected, even when it is not.
*/
if (chip->options & NAND_BUSWIDTH_16)
ifc_out16(ctrl->addr,
ifc_in16(ctrl->addr) | NAND_STATUS_WP);
else
out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
return;
case NAND_CMD_RESET:
ifc_out32(&ifc->ifc_nand.nand_fir0,
IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT);
ifc_out32(&ifc->ifc_nand.nand_fcr0,
NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT);
fsl_ifc_run_command(mtd);
return;
default:
printf("%s: error, unsupported command 0x%x.\n",
__func__, command);
}
}
/*
* Write buf to the IFC NAND Controller Data Buffer
*/
static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
unsigned int bufsize = mtd->writesize + mtd->oobsize;
if (len <= 0) {
printf("%s of %d bytes", __func__, len);
ctrl->status = 0;
return;
}
if ((unsigned int)len > bufsize - ctrl->index) {
printf("%s beyond end of buffer "
"(%d requested, %u available)\n",
__func__, len, bufsize - ctrl->index);
len = bufsize - ctrl->index;
}
memcpy_toio(ctrl->addr + ctrl->index, buf, len);
ctrl->index += len;
}
/*
* read a byte from either the IFC hardware buffer if it has any data left
* otherwise issue a command to read a single byte.
*/
static u8 fsl_ifc_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
unsigned int offset;
/*
* If there are still bytes in the IFC buffer, then use the
* next byte.
*/
if (ctrl->index < ctrl->read_bytes) {
offset = ctrl->index++;
return in_8(ctrl->addr + offset);
}
printf("%s beyond end of buffer\n", __func__);
return ERR_BYTE;
}
/*
* Read two bytes from the IFC hardware buffer
* read function for 16-bit buswith
*/
static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
uint16_t data;
/*
* If there are still bytes in the IFC buffer, then use the
* next byte.
*/
if (ctrl->index < ctrl->read_bytes) {
data = ifc_in16(ctrl->addr + ctrl->index);
ctrl->index += 2;
return (uint8_t)data;
}
printf("%s beyond end of buffer\n", __func__);
return ERR_BYTE;
}
/*
* Read from the IFC Controller Data Buffer
*/
static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
int avail;
if (len < 0)
return;
avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
memcpy_fromio(buf, ctrl->addr + ctrl->index, avail);
ctrl->index += avail;
if (len > avail)
printf("%s beyond end of buffer "
"(%d requested, %d available)\n",
__func__, len, avail);
}
/* This function is called after Program and Erase Operations to
* check for success or failure.
*/
static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_runtime *ifc = ctrl->regs.rregs;
u32 nand_fsr;
if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
return NAND_STATUS_FAIL;
/* Use READ_STATUS command, but wait for the device to be ready */
ifc_out32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT));
ifc_out32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS <<
IFC_NAND_FCR0_CMD0_SHIFT);
ifc_out32(&ifc->ifc_nand.nand_fbcr, 1);
set_addr(mtd, 0, 0, 0);
ctrl->read_bytes = 1;
fsl_ifc_run_command(mtd);
if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
return NAND_STATUS_FAIL;
nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr);
/* Chip sometimes reporting write protect even when it's not */
nand_fsr = nand_fsr | NAND_STATUS_WP;
return nand_fsr;
}
static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
fsl_ifc_read_buf(mtd, buf, mtd->writesize);
fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
mtd->ecc_stats.failed++;
return 0;
}
/* ECC will be calculated automatically, and errors will be detected in
* waitfunc.
*/
static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required, int page)
{
fsl_ifc_write_buf(mtd, buf, mtd->writesize);
fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
static void fsl_ifc_ctrl_init(void)
{
uint32_t ver = 0;
ifc_ctrl = kzalloc(sizeof(*ifc_ctrl), GFP_KERNEL);
if (!ifc_ctrl)
return;
ifc_ctrl->regs.gregs = IFC_FCM_BASE_ADDR;
ver = ifc_in32(&ifc_ctrl->regs.gregs->ifc_rev);
if (ver >= FSL_IFC_V2_0_0)
ifc_ctrl->regs.rregs =
(void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_64KOFFSET;
else
ifc_ctrl->regs.rregs =
(void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_4KOFFSET;
/* clear event registers */
ifc_out32(&ifc_ctrl->regs.rregs->ifc_nand.nand_evter_stat, ~0U);
ifc_out32(&ifc_ctrl->regs.rregs->ifc_nand.pgrdcmpl_evt_stat, ~0U);
/* Enable error and event for any detected errors */
ifc_out32(&ifc_ctrl->regs.rregs->ifc_nand.nand_evter_en,
IFC_NAND_EVTER_EN_OPC_EN |
IFC_NAND_EVTER_EN_PGRDCMPL_EN |
IFC_NAND_EVTER_EN_FTOER_EN |
IFC_NAND_EVTER_EN_WPER_EN);
ifc_out32(&ifc_ctrl->regs.rregs->ifc_nand.ncfgr, 0x0);
}
static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
{
}
static int fsl_ifc_sram_init(uint32_t ver)
{
struct fsl_ifc_runtime *ifc = ifc_ctrl->regs.rregs;
uint32_t cs = 0, csor = 0, csor_8k = 0, csor_ext = 0;
uint32_t ncfgr = 0;
u32 timeo = (CONFIG_SYS_HZ * 10) / 1000;
u32 time_start;
if (ver > FSL_IFC_V1_1_0) {
ncfgr = ifc_in32(&ifc->ifc_nand.ncfgr);
ifc_out32(&ifc->ifc_nand.ncfgr, ncfgr | IFC_NAND_SRAM_INIT_EN);
/* wait for SRAM_INIT bit to be clear or timeout */
time_start = get_timer(0);
while (get_timer(time_start) < timeo) {
ifc_ctrl->status =
ifc_in32(&ifc->ifc_nand.nand_evter_stat);
if (!(ifc_ctrl->status & IFC_NAND_SRAM_INIT_EN))
return 0;
}
printf("fsl-ifc: Failed to Initialise SRAM\n");
return 1;
}
cs = ifc_ctrl->cs_nand >> IFC_NAND_CSEL_SHIFT;
/* Save CSOR and CSOR_ext */
csor = ifc_in32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor);
csor_ext = ifc_in32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor_ext);
/* chage PageSize 8K and SpareSize 1K*/
csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
ifc_out32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor, csor_8k);
ifc_out32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor_ext, 0x0000400);
/* READID */
ifc_out32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT));
ifc_out32(&ifc->ifc_nand.nand_fcr0,
NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT);
ifc_out32(&ifc->ifc_nand.row3, 0x0);
ifc_out32(&ifc->ifc_nand.nand_fbcr, 0x0);
/* Program ROW0/COL0 */
ifc_out32(&ifc->ifc_nand.row0, 0x0);
ifc_out32(&ifc->ifc_nand.col0, 0x0);
/* set the chip select for NAND Transaction */
ifc_out32(&ifc->ifc_nand.nand_csel, ifc_ctrl->cs_nand);
/* start read seq */
ifc_out32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT);
time_start = get_timer(0);
while (get_timer(time_start) < timeo) {
ifc_ctrl->status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
if (ifc_ctrl->status & IFC_NAND_EVTER_STAT_OPC)
break;
}
if (ifc_ctrl->status != IFC_NAND_EVTER_STAT_OPC) {
printf("fsl-ifc: Failed to Initialise SRAM\n");
return 1;
}
ifc_out32(&ifc->ifc_nand.nand_evter_stat, ifc_ctrl->status);
/* Restore CSOR and CSOR_ext */
ifc_out32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor, csor);
ifc_out32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor_ext, csor_ext);
return 0;
}
static int fsl_ifc_chip_init(int devnum, u8 *addr)
{
struct mtd_info *mtd;
struct nand_chip *nand;
struct fsl_ifc_mtd *priv;
struct nand_ecclayout *layout;
struct fsl_ifc_fcm *gregs = NULL;
uint32_t cspr = 0, csor = 0, ver = 0;
int ret = 0;
if (!ifc_ctrl) {
fsl_ifc_ctrl_init();
if (!ifc_ctrl)
return -1;
}
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->ctrl = ifc_ctrl;
priv->vbase = addr;
gregs = ifc_ctrl->regs.gregs;
/* Find which chip select it is connected to.
*/
for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) {
phys_addr_t phys_addr = virt_to_phys(addr);
cspr = ifc_in32(&gregs->cspr_cs[priv->bank].cspr);
csor = ifc_in32(&gregs->csor_cs[priv->bank].csor);
if ((cspr & CSPR_V) && (cspr & CSPR_MSEL) == CSPR_MSEL_NAND &&
(cspr & CSPR_BA) == CSPR_PHYS_ADDR(phys_addr)) {
ifc_ctrl->cs_nand = priv->bank << IFC_NAND_CSEL_SHIFT;
break;
}
}
if (priv->bank >= MAX_BANKS) {
printf("%s: address did not match any "
"chip selects\n", __func__);
kfree(priv);
return -ENODEV;
}
nand = &priv->chip;
mtd = nand_to_mtd(nand);
ifc_ctrl->chips[priv->bank] = priv;
/* fill in nand_chip structure */
/* set up function call table */
nand->write_buf = fsl_ifc_write_buf;
nand->read_buf = fsl_ifc_read_buf;
nand->select_chip = fsl_ifc_select_chip;
nand->cmdfunc = fsl_ifc_cmdfunc;
nand->waitfunc = fsl_ifc_wait;
/* set up nand options */
nand->bbt_td = &bbt_main_descr;
nand->bbt_md = &bbt_mirror_descr;
/* set up nand options */
nand->options = NAND_NO_SUBPAGE_WRITE;
nand->bbt_options = NAND_BBT_USE_FLASH;
if (cspr & CSPR_PORT_SIZE_16) {
nand->read_byte = fsl_ifc_read_byte16;
nand->options |= NAND_BUSWIDTH_16;
} else {
nand->read_byte = fsl_ifc_read_byte;
}
nand->controller = &ifc_ctrl->controller;
nand_set_controller_data(nand, priv);
nand->ecc.read_page = fsl_ifc_read_page;
nand->ecc.write_page = fsl_ifc_write_page;
/* Hardware generates ECC per 512 Bytes */
nand->ecc.size = 512;
nand->ecc.bytes = 8;
switch (csor & CSOR_NAND_PGS_MASK) {
case CSOR_NAND_PGS_512:
if (nand->options & NAND_BUSWIDTH_16) {
layout = &oob_512_16bit_ecc4;
} else {
layout = &oob_512_8bit_ecc4;
/* Avoid conflict with bad block marker */
bbt_main_descr.offs = 0;
bbt_mirror_descr.offs = 0;
}
nand->ecc.strength = 4;
priv->bufnum_mask = 15;
break;
case CSOR_NAND_PGS_2K:
layout = &oob_2048_ecc4;
nand->ecc.strength = 4;
priv->bufnum_mask = 3;
break;
case CSOR_NAND_PGS_4K:
if ((csor & CSOR_NAND_ECC_MODE_MASK) ==
CSOR_NAND_ECC_MODE_4) {
layout = &oob_4096_ecc4;
nand->ecc.strength = 4;
} else {
layout = &oob_4096_ecc8;
nand->ecc.strength = 8;
nand->ecc.bytes = 16;
}
priv->bufnum_mask = 1;
break;
case CSOR_NAND_PGS_8K:
if ((csor & CSOR_NAND_ECC_MODE_MASK) ==
CSOR_NAND_ECC_MODE_4) {
layout = &oob_8192_ecc4;
nand->ecc.strength = 4;
} else {
layout = &oob_8192_ecc8;
nand->ecc.strength = 8;
nand->ecc.bytes = 16;
}
priv->bufnum_mask = 0;
break;
default:
printf("ifc nand: bad csor %#x: bad page size\n", csor);
return -ENODEV;
}
/* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
if (csor & CSOR_NAND_ECC_DEC_EN) {
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.layout = layout;
} else {
nand->ecc.mode = NAND_ECC_SOFT;
}
ver = ifc_in32(&gregs->ifc_rev);
if (ver >= FSL_IFC_V1_1_0)
ret = fsl_ifc_sram_init(ver);
if (ret)
return ret;
if (ver >= FSL_IFC_V2_0_0)
priv->bufnum_mask = (priv->bufnum_mask * 2) + 1;
ret = nand_scan_ident(mtd, 1, NULL);
if (ret)
return ret;
ret = nand_scan_tail(mtd);
if (ret)
return ret;
ret = nand_register(devnum, mtd);
if (ret)
return ret;
return 0;
}
#ifndef CONFIG_SYS_NAND_BASE_LIST
#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
#endif
static unsigned long base_address[CONFIG_SYS_MAX_NAND_DEVICE] =
CONFIG_SYS_NAND_BASE_LIST;
void board_nand_init(void)
{
int i;
for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
fsl_ifc_chip_init(i, (u8 *)base_address[i]);
}