upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/drivers/net/enc28j60.c

963 lines
22 KiB

/*
* (C) Copyright 2010
* Reinhard Meyer, EMK Elektronik, reinhard.meyer@emk-elektronik.de
* Martin Krause, Martin.Krause@tqs.de
* reworked original enc28j60.c
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <net.h>
#include <spi.h>
#include <malloc.h>
#include <netdev.h>
#include <miiphy.h>
#include "enc28j60.h"
/*
* IMPORTANT: spi_claim_bus() and spi_release_bus()
* are called at begin and end of each of the following functions:
* enc_miiphy_read(), enc_miiphy_write(), enc_write_hwaddr(),
* enc_init(), enc_recv(), enc_send(), enc_halt()
* ALL other functions assume that the bus has already been claimed!
* Since NetReceive() might call enc_send() in return, the bus must be
* released, NetReceive() called and claimed again.
*/
/*
* Controller memory layout.
* We only allow 1 frame for transmission and reserve the rest
* for reception to handle as many broadcast packets as possible.
* Also use the memory from 0x0000 for receiver buffer. See errata pt. 5
* 0x0000 - 0x19ff 6656 bytes receive buffer
* 0x1a00 - 0x1fff 1536 bytes transmit buffer =
* control(1)+frame(1518)+status(7)+reserve(10).
*/
#define ENC_RX_BUF_START 0x0000
#define ENC_RX_BUF_END 0x19ff
#define ENC_TX_BUF_START 0x1a00
#define ENC_TX_BUF_END 0x1fff
#define ENC_MAX_FRM_LEN 1518
#define RX_RESET_COUNTER 1000
/*
* For non data transfer functions, like phy read/write, set hwaddr, init
* we do not need a full, time consuming init including link ready wait.
* This enum helps to bring the chip through the minimum necessary inits.
*/
enum enc_initstate {none=0, setupdone, linkready};
typedef struct enc_device {
struct eth_device *dev; /* back pointer */
struct spi_slave *slave;
int rx_reset_counter;
u16 next_pointer;
u8 bank; /* current bank in enc28j60 */
enum enc_initstate initstate;
} enc_dev_t;
/*
* enc_bset: set bits in a common register
* enc_bclr: clear bits in a common register
*
* making the reg parameter u8 will give a compile time warning if the
* functions are called with a register not accessible in all Banks
*/
static void enc_bset(enc_dev_t *enc, const u8 reg, const u8 data)
{
u8 dout[2];
dout[0] = CMD_BFS(reg);
dout[1] = data;
spi_xfer(enc->slave, 2 * 8, dout, NULL,
SPI_XFER_BEGIN | SPI_XFER_END);
}
static void enc_bclr(enc_dev_t *enc, const u8 reg, const u8 data)
{
u8 dout[2];
dout[0] = CMD_BFC(reg);
dout[1] = data;
spi_xfer(enc->slave, 2 * 8, dout, NULL,
SPI_XFER_BEGIN | SPI_XFER_END);
}
/*
* high byte of the register contains bank number:
* 0: no bank switch necessary
* 1: switch to bank 0
* 2: switch to bank 1
* 3: switch to bank 2
* 4: switch to bank 3
*/
static void enc_set_bank(enc_dev_t *enc, const u16 reg)
{
u8 newbank = reg >> 8;
if (newbank == 0 || newbank == enc->bank)
return;
switch (newbank) {
case 1:
enc_bclr(enc, CTL_REG_ECON1,
ENC_ECON1_BSEL0 | ENC_ECON1_BSEL1);
break;
case 2:
enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_BSEL0);
enc_bclr(enc, CTL_REG_ECON1, ENC_ECON1_BSEL1);
break;
case 3:
enc_bclr(enc, CTL_REG_ECON1, ENC_ECON1_BSEL0);
enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_BSEL1);
break;
case 4:
enc_bset(enc, CTL_REG_ECON1,
ENC_ECON1_BSEL0 | ENC_ECON1_BSEL1);
break;
}
enc->bank = newbank;
}
/*
* local functions to access SPI
*
* reg: register inside ENC28J60
* data: 8/16 bits to write
* c: number of retries
*
* enc_r8: read 8 bits
* enc_r16: read 16 bits
* enc_w8: write 8 bits
* enc_w16: write 16 bits
* enc_w8_retry: write 8 bits, verify and retry
* enc_rbuf: read from ENC28J60 into buffer
* enc_wbuf: write from buffer into ENC28J60
*/
/*
* MAC and MII registers need a 3 byte SPI transfer to read,
* all other registers need a 2 byte SPI transfer.
*/
static int enc_reg2nbytes(const u16 reg)
{
/* check if MAC or MII register */
return ((reg >= CTL_REG_MACON1 && reg <= CTL_REG_MIRDH) ||
(reg >= CTL_REG_MAADR1 && reg <= CTL_REG_MAADR4) ||
(reg == CTL_REG_MISTAT)) ? 3 : 2;
}
/*
* Read a byte register
*/
static u8 enc_r8(enc_dev_t *enc, const u16 reg)
{
u8 dout[3];
u8 din[3];
int nbytes = enc_reg2nbytes(reg);
enc_set_bank(enc, reg);
dout[0] = CMD_RCR(reg);
spi_xfer(enc->slave, nbytes * 8, dout, din,
SPI_XFER_BEGIN | SPI_XFER_END);
return din[nbytes-1];
}
/*
* Read a L/H register pair and return a word.
* Must be called with the L register's address.
*/
static u16 enc_r16(enc_dev_t *enc, const u16 reg)
{
u8 dout[3];
u8 din[3];
u16 result;
int nbytes = enc_reg2nbytes(reg);
enc_set_bank(enc, reg);
dout[0] = CMD_RCR(reg);
spi_xfer(enc->slave, nbytes * 8, dout, din,
SPI_XFER_BEGIN | SPI_XFER_END);
result = din[nbytes-1];
dout[0]++; /* next register */
spi_xfer(enc->slave, nbytes * 8, dout, din,
SPI_XFER_BEGIN | SPI_XFER_END);
result |= din[nbytes-1] << 8;
return result;
}
/*
* Write a byte register
*/
static void enc_w8(enc_dev_t *enc, const u16 reg, const u8 data)
{
u8 dout[2];
enc_set_bank(enc, reg);
dout[0] = CMD_WCR(reg);
dout[1] = data;
spi_xfer(enc->slave, 2 * 8, dout, NULL,
SPI_XFER_BEGIN | SPI_XFER_END);
}
/*
* Write a L/H register pair.
* Must be called with the L register's address.
*/
static void enc_w16(enc_dev_t *enc, const u16 reg, const u16 data)
{
u8 dout[2];
enc_set_bank(enc, reg);
dout[0] = CMD_WCR(reg);
dout[1] = data;
spi_xfer(enc->slave, 2 * 8, dout, NULL,
SPI_XFER_BEGIN | SPI_XFER_END);
dout[0]++; /* next register */
dout[1] = data >> 8;
spi_xfer(enc->slave, 2 * 8, dout, NULL,
SPI_XFER_BEGIN | SPI_XFER_END);
}
/*
* Write a byte register, verify and retry
*/
static void enc_w8_retry(enc_dev_t *enc, const u16 reg, const u8 data, const int c)
{
u8 dout[2];
u8 readback;
int i;
enc_set_bank(enc, reg);
for (i = 0; i < c; i++) {
dout[0] = CMD_WCR(reg);
dout[1] = data;
spi_xfer(enc->slave, 2 * 8, dout, NULL,
SPI_XFER_BEGIN | SPI_XFER_END);
readback = enc_r8(enc, reg);
if (readback == data)
break;
/* wait 1ms */
udelay(1000);
}
if (i == c) {
printf("%s: write reg 0x%03x failed\n", enc->dev->name, reg);
}
}
/*
* Read ENC RAM into buffer
*/
static void enc_rbuf(enc_dev_t *enc, const u16 length, u8 *buf)
{
u8 dout[1];
dout[0] = CMD_RBM;
spi_xfer(enc->slave, 8, dout, NULL, SPI_XFER_BEGIN);
spi_xfer(enc->slave, length * 8, NULL, buf, SPI_XFER_END);
#ifdef DEBUG
puts("Rx:\n");
print_buffer(0, buf, 1, length, 0);
#endif
}
/*
* Write buffer into ENC RAM
*/
static void enc_wbuf(enc_dev_t *enc, const u16 length, const u8 *buf, const u8 control)
{
u8 dout[2];
dout[0] = CMD_WBM;
dout[1] = control;
spi_xfer(enc->slave, 2 * 8, dout, NULL, SPI_XFER_BEGIN);
spi_xfer(enc->slave, length * 8, buf, NULL, SPI_XFER_END);
#ifdef DEBUG
puts("Tx:\n");
print_buffer(0, buf, 1, length, 0);
#endif
}
/*
* Try to claim the SPI bus.
* Print error message on failure.
*/
static int enc_claim_bus(enc_dev_t *enc)
{
int rc = spi_claim_bus(enc->slave);
if (rc)
printf("%s: failed to claim SPI bus\n", enc->dev->name);
return rc;
}
/*
* Release previously claimed SPI bus.
* This function is mainly for symmetry to enc_claim_bus().
* Let the toolchain decide to inline it...
*/
static void enc_release_bus(enc_dev_t *enc)
{
spi_release_bus(enc->slave);
}
/*
* Read PHY register
*/
static u16 enc_phy_read(enc_dev_t *enc, const u8 addr)
{
uint64_t etime;
u8 status;
enc_w8(enc, CTL_REG_MIREGADR, addr);
enc_w8(enc, CTL_REG_MICMD, ENC_MICMD_MIIRD);
/* 1 second timeout - only happens on hardware problem */
etime = get_ticks() + get_tbclk();
/* poll MISTAT.BUSY bit until operation is complete */
do
{
status = enc_r8(enc, CTL_REG_MISTAT);
} while (get_ticks() <= etime && (status & ENC_MISTAT_BUSY));
if (status & ENC_MISTAT_BUSY) {
printf("%s: timeout reading phy\n", enc->dev->name);
return 0;
}
enc_w8(enc, CTL_REG_MICMD, 0);
return enc_r16(enc, CTL_REG_MIRDL);
}
/*
* Write PHY register
*/
static void enc_phy_write(enc_dev_t *enc, const u8 addr, const u16 data)
{
uint64_t etime;
u8 status;
enc_w8(enc, CTL_REG_MIREGADR, addr);
enc_w16(enc, CTL_REG_MIWRL, data);
/* 1 second timeout - only happens on hardware problem */
etime = get_ticks() + get_tbclk();
/* poll MISTAT.BUSY bit until operation is complete */
do
{
status = enc_r8(enc, CTL_REG_MISTAT);
} while (get_ticks() <= etime && (status & ENC_MISTAT_BUSY));
if (status & ENC_MISTAT_BUSY) {
printf("%s: timeout writing phy\n", enc->dev->name);
return;
}
}
/*
* Verify link status, wait if necessary
*
* Note: with a 10 MBit/s only PHY there is no autonegotiation possible,
* half/full duplex is a pure setup matter. For the time being, this driver
* will setup in half duplex mode only.
*/
static int enc_phy_link_wait(enc_dev_t *enc)
{
u16 status;
int duplex;
uint64_t etime;
#ifdef CONFIG_ENC_SILENTLINK
/* check if we have a link, then just return */
status = enc_phy_read(enc, PHY_REG_PHSTAT1);
if (status & ENC_PHSTAT1_LLSTAT)
return 0;
#endif
/* wait for link with 1 second timeout */
etime = get_ticks() + get_tbclk();
while (get_ticks() <= etime) {
status = enc_phy_read(enc, PHY_REG_PHSTAT1);
if (status & ENC_PHSTAT1_LLSTAT) {
/* now we have a link */
status = enc_phy_read(enc, PHY_REG_PHSTAT2);
duplex = (status & ENC_PHSTAT2_DPXSTAT) ? 1 : 0;
printf("%s: link up, 10Mbps %s-duplex\n",
enc->dev->name, duplex ? "full" : "half");
return 0;
}
udelay(1000);
}
/* timeout occured */
printf("%s: link down\n", enc->dev->name);
return 1;
}
/*
* This function resets the receiver only.
*/
static void enc_reset_rx(enc_dev_t *enc)
{
u8 econ1;
econ1 = enc_r8(enc, CTL_REG_ECON1);
if ((econ1 & ENC_ECON1_RXRST) == 0) {
enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_RXRST);
enc->rx_reset_counter = RX_RESET_COUNTER;
}
}
/*
* Reset receiver and reenable it.
*/
static void enc_reset_rx_call(enc_dev_t *enc)
{
enc_bclr(enc, CTL_REG_ECON1, ENC_ECON1_RXRST);
enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_RXEN);
}
/*
* Copy a packet from the receive ring and forward it to
* the protocol stack.
*/
static void enc_receive(enc_dev_t *enc)
{
u8 *packet = (u8 *)NetRxPackets[0];
u16 pkt_len;
u16 copy_len;
u16 status;
u8 pkt_cnt = 0;
u16 rxbuf_rdpt;
u8 hbuf[6];
enc_w16(enc, CTL_REG_ERDPTL, enc->next_pointer);
do {
enc_rbuf(enc, 6, hbuf);
enc->next_pointer = hbuf[0] | (hbuf[1] << 8);
pkt_len = hbuf[2] | (hbuf[3] << 8);
status = hbuf[4] | (hbuf[5] << 8);
debug("next_pointer=$%04x pkt_len=%u status=$%04x\n",
enc->next_pointer, pkt_len, status);
if (pkt_len <= ENC_MAX_FRM_LEN)
copy_len = pkt_len;
else
copy_len = 0;
if ((status & (1L << 7)) == 0) /* check Received Ok bit */
copy_len = 0;
/* check if next pointer is resonable */
if (enc->next_pointer >= ENC_TX_BUF_START)
copy_len = 0;
if (copy_len > 0) {
enc_rbuf(enc, copy_len, packet);
}
/* advance read pointer to next pointer */
enc_w16(enc, CTL_REG_ERDPTL, enc->next_pointer);
/* decrease packet counter */
enc_bset(enc, CTL_REG_ECON2, ENC_ECON2_PKTDEC);
/*
* Only odd values should be written to ERXRDPTL,
* see errata B4 pt.13
*/
rxbuf_rdpt = enc->next_pointer - 1;
if ((rxbuf_rdpt < enc_r16(enc, CTL_REG_ERXSTL)) ||
(rxbuf_rdpt > enc_r16(enc, CTL_REG_ERXNDL))) {
enc_w16(enc, CTL_REG_ERXRDPTL,
enc_r16(enc, CTL_REG_ERXNDL));
} else {
enc_w16(enc, CTL_REG_ERXRDPTL, rxbuf_rdpt);
}
/* read pktcnt */
pkt_cnt = enc_r8(enc, CTL_REG_EPKTCNT);
if (copy_len == 0) {
(void)enc_r8(enc, CTL_REG_EIR);
enc_reset_rx(enc);
printf("%s: receive copy_len=0\n", enc->dev->name);
continue;
}
/*
* Because NetReceive() might call enc_send(), we need to
* release the SPI bus, call NetReceive(), reclaim the bus
*/
enc_release_bus(enc);
NetReceive(packet, pkt_len);
if (enc_claim_bus(enc))
return;
(void)enc_r8(enc, CTL_REG_EIR);
} while (pkt_cnt);
/* Use EPKTCNT not EIR.PKTIF flag, see errata pt. 6 */
}
/*
* Poll for completely received packets.
*/
static void enc_poll(enc_dev_t *enc)
{
u8 eir_reg;
u8 pkt_cnt;
#ifdef CONFIG_USE_IRQ
/* clear global interrupt enable bit in enc28j60 */
enc_bclr(enc, CTL_REG_EIE, ENC_EIE_INTIE);
#endif
(void)enc_r8(enc, CTL_REG_ESTAT);
eir_reg = enc_r8(enc, CTL_REG_EIR);
if (eir_reg & ENC_EIR_TXIF) {
/* clear TXIF bit in EIR */
enc_bclr(enc, CTL_REG_EIR, ENC_EIR_TXIF);
}
/* We have to use pktcnt and not pktif bit, see errata pt. 6 */
pkt_cnt = enc_r8(enc, CTL_REG_EPKTCNT);
if (pkt_cnt > 0) {
if ((eir_reg & ENC_EIR_PKTIF) == 0) {
debug("enc_poll: pkt cnt > 0, but pktif not set\n");
}
enc_receive(enc);
/*
* clear PKTIF bit in EIR, this should not need to be done
* but it seems like we get problems if we do not
*/
enc_bclr(enc, CTL_REG_EIR, ENC_EIR_PKTIF);
}
if (eir_reg & ENC_EIR_RXERIF) {
printf("%s: rx error\n", enc->dev->name);
enc_bclr(enc, CTL_REG_EIR, ENC_EIR_RXERIF);
}
if (eir_reg & ENC_EIR_TXERIF) {
printf("%s: tx error\n", enc->dev->name);
enc_bclr(enc, CTL_REG_EIR, ENC_EIR_TXERIF);
}
#ifdef CONFIG_USE_IRQ
/* set global interrupt enable bit in enc28j60 */
enc_bset(enc, CTL_REG_EIE, ENC_EIE_INTIE);
#endif
}
/*
* Completely Reset the ENC
*/
static void enc_reset(enc_dev_t *enc)
{
u8 dout[1];
dout[0] = CMD_SRC;
spi_xfer(enc->slave, 8, dout, NULL,
SPI_XFER_BEGIN | SPI_XFER_END);
/* sleep 1 ms. See errata pt. 2 */
udelay(1000);
}
/*
* Initialisation data for most of the ENC registers
*/
static const u16 enc_initdata[] = {
/*
* Setup the buffer space. The reset values are valid for the
* other pointers.
*
* We shall not write to ERXST, see errata pt. 5. Instead we
* have to make sure that ENC_RX_BUS_START is 0.
*/
CTL_REG_ERXSTL, ENC_RX_BUF_START,
CTL_REG_ERXSTH, ENC_RX_BUF_START >> 8,
CTL_REG_ERXNDL, ENC_RX_BUF_END,
CTL_REG_ERXNDH, ENC_RX_BUF_END >> 8,
CTL_REG_ERDPTL, ENC_RX_BUF_START,
CTL_REG_ERDPTH, ENC_RX_BUF_START >> 8,
/*
* Set the filter to receive only good-CRC, unicast and broadcast
* frames.
* Note: some DHCP servers return their answers as broadcasts!
* So its unwise to remove broadcast from this. This driver
* might incur receiver overruns with packet loss on a broadcast
* flooded network.
*/
CTL_REG_ERXFCON, ENC_RFR_BCEN | ENC_RFR_UCEN | ENC_RFR_CRCEN,
/* enable MAC to receive frames */
CTL_REG_MACON1,
ENC_MACON1_MARXEN | ENC_MACON1_TXPAUS | ENC_MACON1_RXPAUS,
/* configure pad, tx-crc and duplex */
CTL_REG_MACON3,
ENC_MACON3_PADCFG0 | ENC_MACON3_TXCRCEN |
ENC_MACON3_FRMLNEN,
/* Allow infinite deferals if the medium is continously busy */
CTL_REG_MACON4, ENC_MACON4_DEFER,
/* Late collisions occur beyond 63 bytes */
CTL_REG_MACLCON2, 63,
/*
* Set (low byte) Non-Back-to_Back Inter-Packet Gap.
* Recommended 0x12
*/
CTL_REG_MAIPGL, 0x12,
/*
* Set (high byte) Non-Back-to_Back Inter-Packet Gap.
* Recommended 0x0c for half-duplex. Nothing for full-duplex
*/
CTL_REG_MAIPGH, 0x0C,
/* set maximum frame length */
CTL_REG_MAMXFLL, ENC_MAX_FRM_LEN,
CTL_REG_MAMXFLH, ENC_MAX_FRM_LEN >> 8,
/*
* Set MAC back-to-back inter-packet gap.
* Recommended 0x12 for half duplex
* and 0x15 for full duplex.
*/
CTL_REG_MABBIPG, 0x12,
/* end of table */
0xffff
};
/*
* Wait for the XTAL oscillator to become ready
*/
static int enc_clock_wait(enc_dev_t *enc)
{
uint64_t etime;
/* one second timeout */
etime = get_ticks() + get_tbclk();
/*
* Wait for CLKRDY to become set (i.e., check that we can
* communicate with the ENC)
*/
do
{
if (enc_r8(enc, CTL_REG_ESTAT) & ENC_ESTAT_CLKRDY)
return 0;
} while (get_ticks() <= etime);
printf("%s: timeout waiting for CLKRDY\n", enc->dev->name);
return -1;
}
/*
* Write the MAC address into the ENC
*/
static int enc_write_macaddr(enc_dev_t *enc)
{
unsigned char *p = enc->dev->enetaddr;
enc_w8_retry(enc, CTL_REG_MAADR5, *p++, 5);
enc_w8_retry(enc, CTL_REG_MAADR4, *p++, 5);
enc_w8_retry(enc, CTL_REG_MAADR3, *p++, 5);
enc_w8_retry(enc, CTL_REG_MAADR2, *p++, 5);
enc_w8_retry(enc, CTL_REG_MAADR1, *p++, 5);
enc_w8_retry(enc, CTL_REG_MAADR0, *p, 5);
return 0;
}
/*
* Setup most of the ENC registers
*/
static int enc_setup(enc_dev_t *enc)
{
u16 phid1 = 0;
u16 phid2 = 0;
const u16 *tp;
/* reset enc struct values */
enc->next_pointer = ENC_RX_BUF_START;
enc->rx_reset_counter = RX_RESET_COUNTER;
enc->bank = 0xff; /* invalidate current bank in enc28j60 */
/* verify PHY identification */
phid1 = enc_phy_read(enc, PHY_REG_PHID1);
phid2 = enc_phy_read(enc, PHY_REG_PHID2) & ENC_PHID2_MASK;
if (phid1 != ENC_PHID1_VALUE || phid2 != ENC_PHID2_VALUE) {
printf("%s: failed to identify PHY. Found %04x:%04x\n",
enc->dev->name, phid1, phid2);
return -1;
}
/* now program registers */
for (tp = enc_initdata; *tp != 0xffff; tp += 2)
enc_w8_retry(enc, tp[0], tp[1], 10);
/*
* Prevent automatic loopback of data beeing transmitted by setting
* ENC_PHCON2_HDLDIS
*/
enc_phy_write(enc, PHY_REG_PHCON2, (1<<8));
/*
* LEDs configuration
* LEDA: LACFG = 0100 -> display link status
* LEDB: LBCFG = 0111 -> display TX & RX activity
* STRCH = 1 -> LED pulses
*/
enc_phy_write(enc, PHY_REG_PHLCON, 0x0472);
/* Reset PDPXMD-bit => half duplex */
enc_phy_write(enc, PHY_REG_PHCON1, 0);
#ifdef CONFIG_USE_IRQ
/* enable interrupts */
enc_bset(enc, CTL_REG_EIE, ENC_EIE_PKTIE);
enc_bset(enc, CTL_REG_EIE, ENC_EIE_TXIE);
enc_bset(enc, CTL_REG_EIE, ENC_EIE_RXERIE);
enc_bset(enc, CTL_REG_EIE, ENC_EIE_TXERIE);
enc_bset(enc, CTL_REG_EIE, ENC_EIE_INTIE);
#endif
return 0;
}
/*
* Check if ENC has been initialized.
* If not, try to initialize it.
* Remember initialized state in struct.
*/
static int enc_initcheck(enc_dev_t *enc, const enum enc_initstate requiredstate)
{
if (enc->initstate >= requiredstate)
return 0;
if (enc->initstate < setupdone) {
/* Initialize the ENC only */
enc_reset(enc);
/* if any of functions fails, skip the rest and return an error */
if (enc_clock_wait(enc) || enc_setup(enc) || enc_write_macaddr(enc)) {
return -1;
}
enc->initstate = setupdone;
}
/* if that's all we need, return here */
if (enc->initstate >= requiredstate)
return 0;
/* now wait for link ready condition */
if (enc_phy_link_wait(enc)) {
return -1;
}
enc->initstate = linkready;
return 0;
}
#if defined(CONFIG_CMD_MII)
/*
* Read a PHY register.
*
* This function is registered with miiphy_register().
*/
int enc_miiphy_read(const char *devname, u8 phy_adr, u8 reg, u16 *value)
{
struct eth_device *dev = eth_get_dev_by_name(devname);
enc_dev_t *enc;
if (!dev || phy_adr != 0)
return -1;
enc = dev->priv;
if (enc_claim_bus(enc))
return -1;
if (enc_initcheck(enc, setupdone)) {
enc_release_bus(enc);
return -1;
}
*value = enc_phy_read(enc, reg);
enc_release_bus(enc);
return 0;
}
/*
* Write a PHY register.
*
* This function is registered with miiphy_register().
*/
int enc_miiphy_write(const char *devname, u8 phy_adr, u8 reg, u16 value)
{
struct eth_device *dev = eth_get_dev_by_name(devname);
enc_dev_t *enc;
if (!dev || phy_adr != 0)
return -1;
enc = dev->priv;
if (enc_claim_bus(enc))
return -1;
if (enc_initcheck(enc, setupdone)) {
enc_release_bus(enc);
return -1;
}
enc_phy_write(enc, reg, value);
enc_release_bus(enc);
return 0;
}
#endif
/*
* Write hardware (MAC) address.
*
* This function entered into eth_device structure.
*/
static int enc_write_hwaddr(struct eth_device *dev)
{
enc_dev_t *enc = dev->priv;
if (enc_claim_bus(enc))
return -1;
if (enc_initcheck(enc, setupdone)) {
enc_release_bus(enc);
return -1;
}
enc_release_bus(enc);
return 0;
}
/*
* Initialize ENC28J60 for use.
*
* This function entered into eth_device structure.
*/
static int enc_init(struct eth_device *dev, bd_t *bis)
{
enc_dev_t *enc = dev->priv;
if (enc_claim_bus(enc))
return -1;
if (enc_initcheck(enc, linkready)) {
enc_release_bus(enc);
return -1;
}
/* enable receive */
enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_RXEN);
enc_release_bus(enc);
return 0;
}
/*
* Check for received packets.
*
* This function entered into eth_device structure.
*/
static int enc_recv(struct eth_device *dev)
{
enc_dev_t *enc = dev->priv;
if (enc_claim_bus(enc))
return -1;
if (enc_initcheck(enc, linkready)) {
enc_release_bus(enc);
return -1;
}
/* Check for dead receiver */
if (enc->rx_reset_counter > 0)
enc->rx_reset_counter--;
else
enc_reset_rx_call(enc);
enc_poll(enc);
enc_release_bus(enc);
return 0;
}
/*
* Send a packet.
*
* This function entered into eth_device structure.
*
* Should we wait here until we have a Link? Or shall we leave that to
* protocol retries?
*/
static int enc_send(
struct eth_device *dev,
void *packet,
int length)
{
enc_dev_t *enc = dev->priv;
if (enc_claim_bus(enc))
return -1;
if (enc_initcheck(enc, linkready)) {
enc_release_bus(enc);
return -1;
}
/* setup transmit pointers */
enc_w16(enc, CTL_REG_EWRPTL, ENC_TX_BUF_START);
enc_w16(enc, CTL_REG_ETXNDL, length + ENC_TX_BUF_START);
enc_w16(enc, CTL_REG_ETXSTL, ENC_TX_BUF_START);
/* write packet to ENC */
enc_wbuf(enc, length, (u8 *) packet, 0x00);
/*
* Check that the internal transmit logic has not been altered
* by excessive collisions. Reset transmitter if so.
* See Errata B4 12 and 14.
*/
if (enc_r8(enc, CTL_REG_EIR) & ENC_EIR_TXERIF) {
enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_TXRST);
enc_bclr(enc, CTL_REG_ECON1, ENC_ECON1_TXRST);
}
enc_bclr(enc, CTL_REG_EIR, (ENC_EIR_TXERIF | ENC_EIR_TXIF));
/* start transmitting */
enc_bset(enc, CTL_REG_ECON1, ENC_ECON1_TXRTS);
enc_release_bus(enc);
return 0;
}
/*
* Finish use of ENC.
*
* This function entered into eth_device structure.
*/
static void enc_halt(struct eth_device *dev)
{
enc_dev_t *enc = dev->priv;
if (enc_claim_bus(enc))
return;
/* Just disable receiver */
enc_bclr(enc, CTL_REG_ECON1, ENC_ECON1_RXEN);
enc_release_bus(enc);
}
/*
* This is the only exported function.
*
* It may be called several times with different bus:cs combinations.
*/
int enc28j60_initialize(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct eth_device *dev;
enc_dev_t *enc;
/* try to allocate, check and clear eth_device object */
dev = malloc(sizeof(*dev));
if (!dev) {
return -1;
}
memset(dev, 0, sizeof(*dev));
/* try to allocate, check and clear enc_dev_t object */
enc = malloc(sizeof(*enc));
if (!enc) {
free(dev);
return -1;
}
memset(enc, 0, sizeof(*enc));
/* try to setup the SPI slave */
enc->slave = spi_setup_slave(bus, cs, max_hz, mode);
if (!enc->slave) {
printf("enc28j60: invalid SPI device %i:%i\n", bus, cs);
free(enc);
free(dev);
return -1;
}
enc->dev = dev;
/* now fill the eth_device object */
dev->priv = enc;
dev->init = enc_init;
dev->halt = enc_halt;
dev->send = enc_send;
dev->recv = enc_recv;
dev->write_hwaddr = enc_write_hwaddr;
sprintf(dev->name, "enc%i.%i", bus, cs);
eth_register(dev);
#if defined(CONFIG_CMD_MII)
miiphy_register(dev->name, enc_miiphy_read, enc_miiphy_write);
#endif
return 0;
}