upstream u-boot with additional patches for our devices/boards:
https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ;
Gbit ethernet patch for some LIME2 revisions ;
with SPI flash support
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
996 lines
24 KiB
996 lines
24 KiB
/*
|
|
* SPI flash driver
|
|
*
|
|
* Enter bugs at http://blackfin.uclinux.org/
|
|
*
|
|
* Copyright (c) 2005-2008 Analog Devices Inc.
|
|
*
|
|
* Licensed under the GPL-2 or later.
|
|
*/
|
|
|
|
/* Configuration options:
|
|
* CONFIG_SPI_BAUD - value to load into SPI_BAUD (divisor of SCLK to get SPI CLK)
|
|
* CONFIG_SPI_FLASH_SLOW_READ - force usage of the slower read
|
|
* WARNING: make sure your SCLK + SPI_BAUD is slow enough
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <malloc.h>
|
|
#include <asm/io.h>
|
|
#include <asm/mach-common/bits/spi.h>
|
|
#include <asm/mach-common/bits/dma.h>
|
|
|
|
/* Forcibly phase out these */
|
|
#ifdef CONFIG_SPI_FLASH_NUM_SECTORS
|
|
# error do not set CONFIG_SPI_FLASH_NUM_SECTORS
|
|
#endif
|
|
#ifdef CONFIG_SPI_FLASH_SECTOR_SIZE
|
|
# error do not set CONFIG_SPI_FLASH_SECTOR_SIZE
|
|
#endif
|
|
|
|
#if defined(CONFIG_SPI)
|
|
|
|
struct flash_info {
|
|
char *name;
|
|
uint16_t id;
|
|
uint16_t ext_id;
|
|
unsigned sector_size;
|
|
unsigned num_sectors;
|
|
};
|
|
|
|
/* SPI Speeds: 50 MHz / 33 MHz */
|
|
static struct flash_info flash_spansion_serial_flash[] = {
|
|
{ "S25FL016", 0x0215, 0, 64 * 1024, 32 },
|
|
{ "S25FL032", 0x0216, 0, 64 * 1024, 64 },
|
|
{ "S25FL064", 0x0217, 0, 64 * 1024, 128 },
|
|
{ "S25FL128-00", 0x2018, 0x0301, 64 * 1024, 256 }, /* Package marking FL128PIF */
|
|
{ "S25FL128-01", 0x2018, 0x0300, 128 * 1024, 64 }, /* Package marking FL128PIFL */
|
|
{ NULL, 0, 0, 0, 0 }
|
|
};
|
|
|
|
/* SPI Speeds: 50 MHz / 20 MHz */
|
|
static struct flash_info flash_st_serial_flash[] = {
|
|
{ "m25p05", 0x2010, 0, 32 * 1024, 2 },
|
|
{ "m25p10", 0x2011, 0, 32 * 1024, 4 },
|
|
{ "m25p20", 0x2012, 0, 64 * 1024, 4 },
|
|
{ "m25p40", 0x2013, 0, 64 * 1024, 8 },
|
|
{ "m25p80", 0x20FF, 0, 64 * 1024, 16 },
|
|
{ "m25p16", 0x2015, 0, 64 * 1024, 32 },
|
|
{ "m25p32", 0x2016, 0, 64 * 1024, 64 },
|
|
{ "m25p64", 0x2017, 0, 64 * 1024, 128 },
|
|
{ "m25p128", 0x2018, 0, 256 * 1024, 64 },
|
|
{ NULL, 0, 0, 0, 0 }
|
|
};
|
|
|
|
/* SPI Speeds: 20 MHz / 40 MHz */
|
|
static struct flash_info flash_sst_serial_flash[] = {
|
|
{ "SST25WF512", 0x2501, 0, 4 * 1024, 128 },
|
|
{ "SST25WF010", 0x2502, 0, 4 * 1024, 256 },
|
|
{ "SST25WF020", 0x2503, 0, 4 * 1024, 512 },
|
|
{ "SST25WF040", 0x2504, 0, 4 * 1024, 1024 },
|
|
{ NULL, 0, 0, 0, 0 }
|
|
};
|
|
|
|
/* SPI Speeds: 66 MHz / 33 MHz */
|
|
static struct flash_info flash_atmel_dataflash[] = {
|
|
{ "AT45DB011x", 0x0c, 0, 264, 512 },
|
|
{ "AT45DB021x", 0x14, 0, 264, 1025 },
|
|
{ "AT45DB041x", 0x1c, 0, 264, 2048 },
|
|
{ "AT45DB081x", 0x24, 0, 264, 4096 },
|
|
{ "AT45DB161x", 0x2c, 0, 528, 4096 },
|
|
{ "AT45DB321x", 0x34, 0, 528, 8192 },
|
|
{ "AT45DB642x", 0x3c, 0, 1056, 8192 },
|
|
{ NULL, 0, 0, 0, 0 }
|
|
};
|
|
|
|
/* SPI Speed: 50 MHz / 25 MHz or 40 MHz / 20 MHz */
|
|
static struct flash_info flash_winbond_serial_flash[] = {
|
|
{ "W25X10", 0x3011, 0, 16 * 256, 32 },
|
|
{ "W25X20", 0x3012, 0, 16 * 256, 64 },
|
|
{ "W25X40", 0x3013, 0, 16 * 256, 128 },
|
|
{ "W25X80", 0x3014, 0, 16 * 256, 256 },
|
|
{ "W25P80", 0x2014, 0, 256 * 256, 16 },
|
|
{ "W25P16", 0x2015, 0, 256 * 256, 32 },
|
|
{ NULL, 0, 0, 0, 0 }
|
|
};
|
|
|
|
struct flash_ops {
|
|
uint8_t read, write, erase, status;
|
|
};
|
|
|
|
#ifdef CONFIG_SPI_FLASH_SLOW_READ
|
|
# define OP_READ 0x03
|
|
#else
|
|
# define OP_READ 0x0B
|
|
#endif
|
|
static struct flash_ops flash_st_ops = {
|
|
.read = OP_READ,
|
|
.write = 0x02,
|
|
.erase = 0xD8,
|
|
.status = 0x05,
|
|
};
|
|
|
|
static struct flash_ops flash_sst_ops = {
|
|
.read = OP_READ,
|
|
.write = 0x02,
|
|
.erase = 0x20,
|
|
.status = 0x05,
|
|
};
|
|
|
|
static struct flash_ops flash_atmel_ops = {
|
|
.read = OP_READ,
|
|
.write = 0x82,
|
|
.erase = 0x81,
|
|
.status = 0xD7,
|
|
};
|
|
|
|
static struct flash_ops flash_winbond_ops = {
|
|
.read = OP_READ,
|
|
.write = 0x02,
|
|
.erase = 0x20,
|
|
.status = 0x05,
|
|
};
|
|
|
|
struct manufacturer_info {
|
|
const char *name;
|
|
uint8_t id;
|
|
struct flash_info *flashes;
|
|
struct flash_ops *ops;
|
|
};
|
|
|
|
static struct {
|
|
struct manufacturer_info *manufacturer;
|
|
struct flash_info *flash;
|
|
struct flash_ops *ops;
|
|
uint8_t manufacturer_id, device_id1, device_id2, device_extid1, device_extid2;
|
|
unsigned int write_length;
|
|
unsigned long sector_size, num_sectors;
|
|
} flash;
|
|
|
|
enum {
|
|
JED_MANU_SPANSION = 0x01,
|
|
JED_MANU_ST = 0x20,
|
|
JED_MANU_SST = 0xBF,
|
|
JED_MANU_ATMEL = 0x1F,
|
|
JED_MANU_WINBOND = 0xEF,
|
|
};
|
|
|
|
static struct manufacturer_info flash_manufacturers[] = {
|
|
{
|
|
.name = "Spansion",
|
|
.id = JED_MANU_SPANSION,
|
|
.flashes = flash_spansion_serial_flash,
|
|
.ops = &flash_st_ops,
|
|
},
|
|
{
|
|
.name = "ST",
|
|
.id = JED_MANU_ST,
|
|
.flashes = flash_st_serial_flash,
|
|
.ops = &flash_st_ops,
|
|
},
|
|
{
|
|
.name = "SST",
|
|
.id = JED_MANU_SST,
|
|
.flashes = flash_sst_serial_flash,
|
|
.ops = &flash_sst_ops,
|
|
},
|
|
{
|
|
.name = "Atmel",
|
|
.id = JED_MANU_ATMEL,
|
|
.flashes = flash_atmel_dataflash,
|
|
.ops = &flash_atmel_ops,
|
|
},
|
|
{
|
|
.name = "Winbond",
|
|
.id = JED_MANU_WINBOND,
|
|
.flashes = flash_winbond_serial_flash,
|
|
.ops = &flash_winbond_ops,
|
|
},
|
|
};
|
|
|
|
#define TIMEOUT 5000 /* timeout of 5 seconds */
|
|
|
|
/* If part has multiple SPI flashes, assume SPI0 as that is
|
|
* the one we can boot off of ...
|
|
*/
|
|
#ifndef pSPI_CTL
|
|
# define pSPI_CTL pSPI0_CTL
|
|
# define pSPI_BAUD pSPI0_BAUD
|
|
# define pSPI_FLG pSPI0_FLG
|
|
# define pSPI_RDBR pSPI0_RDBR
|
|
# define pSPI_STAT pSPI0_STAT
|
|
# define pSPI_TDBR pSPI0_TDBR
|
|
#endif
|
|
|
|
/* Default to the SPI SSEL that we boot off of:
|
|
* BF54x, BF537, (everything new?): SSEL1
|
|
* BF51x, BF533, BF561: SSEL2
|
|
*/
|
|
#ifndef CONFIG_SPI_FLASH_SSEL
|
|
# define CONFIG_SPI_FLASH_SSEL BFIN_BOOT_SPI_SSEL
|
|
#endif
|
|
#define SSEL_MASK (1 << CONFIG_SPI_FLASH_SSEL)
|
|
|
|
static void SPI_INIT(void)
|
|
{
|
|
/* [#3541] This delay appears to be necessary, but not sure
|
|
* exactly why as the history behind it is non-existant.
|
|
*/
|
|
*pSPI_CTL = 0;
|
|
udelay(CONFIG_CCLK_HZ / 25000000);
|
|
|
|
/* enable SPI pins: SSEL, MOSI, MISO, SCK */
|
|
#ifdef __ADSPBF54x__
|
|
*pPORTE_FER |= (PE0 | PE1 | PE2 | PE4);
|
|
#elif defined(__ADSPBF534__) || defined(__ADSPBF536__) || defined(__ADSPBF537__)
|
|
*pPORTF_FER |= (PF10 | PF11 | PF12 | PF13);
|
|
#elif defined(__ADSPBF52x__)
|
|
bfin_write_PORTG_MUX((bfin_read_PORTG_MUX() & ~PORT_x_MUX_0_MASK) | PORT_x_MUX_0_FUNC_3);
|
|
bfin_write_PORTG_FER(bfin_read_PORTG_FER() | PG1 | PG2 | PG3 | PG4);
|
|
#elif defined(__ADSPBF51x__)
|
|
bfin_write_PORTG_MUX((bfin_read_PORTG_MUX() & ~PORT_x_MUX_7_MASK) | PORT_x_MUX_7_FUNC_1);
|
|
bfin_write_PORTG_FER(bfin_read_PORTG_FER() | PG12 | PG13 | PG14 | PG15);
|
|
#endif
|
|
|
|
/* initate communication upon write of TDBR */
|
|
*pSPI_CTL = (SPE | MSTR | CPHA | CPOL | TDBR_CORE);
|
|
*pSPI_BAUD = CONFIG_SPI_BAUD;
|
|
}
|
|
|
|
static void SPI_DEINIT(void)
|
|
{
|
|
*pSPI_CTL = 0;
|
|
*pSPI_BAUD = 0;
|
|
SSYNC();
|
|
}
|
|
|
|
static void SPI_ON(void)
|
|
{
|
|
/* toggle SSEL to reset the device so it'll take a new command */
|
|
*pSPI_FLG = 0xFF00 | SSEL_MASK;
|
|
SSYNC();
|
|
|
|
*pSPI_FLG = ((0xFF & ~SSEL_MASK) << 8) | SSEL_MASK;
|
|
SSYNC();
|
|
}
|
|
|
|
static void SPI_OFF(void)
|
|
{
|
|
/* put SPI settings back to reset state */
|
|
*pSPI_FLG = 0xFF00;
|
|
SSYNC();
|
|
}
|
|
|
|
static uint8_t spi_write_read_byte(uint8_t transmit)
|
|
{
|
|
*pSPI_TDBR = transmit;
|
|
SSYNC();
|
|
|
|
while ((*pSPI_STAT & TXS))
|
|
if (ctrlc())
|
|
break;
|
|
while (!(*pSPI_STAT & SPIF))
|
|
if (ctrlc())
|
|
break;
|
|
while (!(*pSPI_STAT & RXS))
|
|
if (ctrlc())
|
|
break;
|
|
|
|
/* Read dummy to empty the receive register */
|
|
return *pSPI_RDBR;
|
|
}
|
|
|
|
static uint8_t read_status_register(void)
|
|
{
|
|
uint8_t status_register;
|
|
|
|
/* send instruction to read status register */
|
|
SPI_ON();
|
|
spi_write_read_byte(flash.ops->status);
|
|
/* send dummy to receive the status register */
|
|
status_register = spi_write_read_byte(0);
|
|
SPI_OFF();
|
|
|
|
return status_register;
|
|
}
|
|
|
|
static int wait_for_ready_status(void)
|
|
{
|
|
ulong start = get_timer(0);
|
|
|
|
while (get_timer(0) - start < TIMEOUT) {
|
|
switch (flash.manufacturer_id) {
|
|
case JED_MANU_SPANSION:
|
|
case JED_MANU_ST:
|
|
case JED_MANU_SST:
|
|
case JED_MANU_WINBOND:
|
|
if (!(read_status_register() & 0x01))
|
|
return 0;
|
|
break;
|
|
|
|
case JED_MANU_ATMEL:
|
|
if (read_status_register() & 0x80)
|
|
return 0;
|
|
break;
|
|
}
|
|
|
|
if (ctrlc()) {
|
|
puts("\nAbort\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
puts("Timeout\n");
|
|
return -1;
|
|
}
|
|
|
|
static int enable_writing(void)
|
|
{
|
|
ulong start;
|
|
|
|
if (flash.manufacturer_id == JED_MANU_ATMEL)
|
|
return 0;
|
|
|
|
/* A write enable instruction must previously have been executed */
|
|
SPI_ON();
|
|
spi_write_read_byte(0x06);
|
|
SPI_OFF();
|
|
|
|
/* The status register will be polled to check the write enable latch "WREN" */
|
|
start = get_timer(0);
|
|
while (get_timer(0) - start < TIMEOUT) {
|
|
if (read_status_register() & 0x02)
|
|
return 0;
|
|
|
|
if (ctrlc()) {
|
|
puts("\nAbort\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
puts("Timeout\n");
|
|
return -1;
|
|
}
|
|
|
|
static void write_status_register(uint8_t val)
|
|
{
|
|
if (flash.manufacturer_id != JED_MANU_SST)
|
|
hang();
|
|
|
|
if (enable_writing())
|
|
return;
|
|
|
|
/* send instruction to write status register */
|
|
SPI_ON();
|
|
spi_write_read_byte(0x01);
|
|
/* and clear it! */
|
|
spi_write_read_byte(val);
|
|
SPI_OFF();
|
|
}
|
|
|
|
/* Request and read the manufacturer and device id of parts which
|
|
* are compatible with the JEDEC standard (JEP106) and use that to
|
|
* setup other operating conditions.
|
|
*/
|
|
static int spi_detect_part(void)
|
|
{
|
|
uint16_t dev_id, dev_extid;
|
|
size_t i;
|
|
|
|
static char called_init;
|
|
if (called_init)
|
|
return 0;
|
|
|
|
#ifdef CONFIG_SPI_FLASH_M25P80
|
|
flash.manufacturer_id = JED_MANU_ST;
|
|
flash.device_id1 = 0x20;
|
|
flash.device_id2 = 0xFF;
|
|
#else
|
|
SPI_ON();
|
|
|
|
/* Send the request for the part identification */
|
|
spi_write_read_byte(0x9F);
|
|
|
|
/* Now read in the manufacturer id bytes */
|
|
do {
|
|
flash.manufacturer_id = spi_write_read_byte(0);
|
|
if (flash.manufacturer_id == 0x7F)
|
|
puts("Warning: unhandled manufacturer continuation byte!\n");
|
|
} while (flash.manufacturer_id == 0x7F);
|
|
|
|
/* Now read in the first device id byte */
|
|
flash.device_id1 = spi_write_read_byte(0);
|
|
|
|
/* Now read in the second device id byte */
|
|
flash.device_id2 = spi_write_read_byte(0);
|
|
|
|
/* Read extended device ids */
|
|
flash.device_extid1 = spi_write_read_byte(0);
|
|
flash.device_extid2 = spi_write_read_byte(0);
|
|
|
|
SPI_OFF();
|
|
#endif
|
|
|
|
dev_id = (flash.device_id1 << 8) | flash.device_id2;
|
|
dev_extid = (flash.device_extid1 << 8) | flash.device_extid2;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(flash_manufacturers); ++i) {
|
|
if (flash.manufacturer_id == flash_manufacturers[i].id)
|
|
break;
|
|
}
|
|
if (i == ARRAY_SIZE(flash_manufacturers))
|
|
goto unknown;
|
|
|
|
flash.manufacturer = &flash_manufacturers[i];
|
|
flash.ops = flash_manufacturers[i].ops;
|
|
|
|
switch (flash.manufacturer_id) {
|
|
case JED_MANU_SPANSION:
|
|
case JED_MANU_ST:
|
|
case JED_MANU_SST:
|
|
case JED_MANU_WINBOND:
|
|
for (i = 0; flash.manufacturer->flashes[i].name; ++i) {
|
|
if (dev_id == flash.manufacturer->flashes[i].id &&
|
|
(flash.manufacturer->flashes[i].ext_id == 0 ||
|
|
flash.manufacturer->flashes[i].ext_id == dev_extid))
|
|
break;
|
|
}
|
|
if (!flash.manufacturer->flashes[i].name)
|
|
goto unknown;
|
|
|
|
flash.flash = &flash.manufacturer->flashes[i];
|
|
flash.sector_size = flash.flash->sector_size;
|
|
flash.num_sectors = flash.flash->num_sectors;
|
|
|
|
if (flash.manufacturer_id == JED_MANU_SST)
|
|
flash.write_length = 1; /* pwnt :( */
|
|
else
|
|
flash.write_length = 256;
|
|
break;
|
|
|
|
case JED_MANU_ATMEL: {
|
|
uint8_t status = read_status_register();
|
|
|
|
for (i = 0; flash.manufacturer->flashes[i].name; ++i) {
|
|
if ((status & 0x3c) == flash.manufacturer->flashes[i].id)
|
|
break;
|
|
}
|
|
if (!flash.manufacturer->flashes[i].name)
|
|
goto unknown;
|
|
|
|
flash.flash = &flash.manufacturer->flashes[i];
|
|
flash.sector_size = flash.flash->sector_size;
|
|
flash.num_sectors = flash.flash->num_sectors;
|
|
|
|
/* see if flash is in "power of 2" mode */
|
|
if (status & 0x1)
|
|
flash.sector_size &= ~(1 << (ffs(flash.sector_size) - 1));
|
|
|
|
flash.write_length = flash.sector_size;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* the SST parts power up with software protection enabled by default */
|
|
if (flash.manufacturer_id == JED_MANU_SST)
|
|
write_status_register(0);
|
|
|
|
called_init = 1;
|
|
return 0;
|
|
|
|
unknown:
|
|
printf("Unknown SPI device: 0x%02X 0x%02X 0x%02X\n",
|
|
flash.manufacturer_id, flash.device_id1, flash.device_id2);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Function: spi_init_f
|
|
* Description: Init SPI-Controller (ROM part)
|
|
* return: ---
|
|
*/
|
|
void spi_init_f(void)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Function: spi_init_r
|
|
* Description: Init SPI-Controller (RAM part) -
|
|
* The malloc engine is ready and we can move our buffers to
|
|
* normal RAM
|
|
* return: ---
|
|
*/
|
|
void spi_init_r(void)
|
|
{
|
|
#if defined(CONFIG_POST) && (CONFIG_POST & CONFIG_SYS_POST_SPI)
|
|
/* Our testing strategy here is pretty basic:
|
|
* - fill src memory with an 8-bit pattern
|
|
* - write the src memory to the SPI flash
|
|
* - read the SPI flash into the dst memory
|
|
* - compare src and dst memory regions
|
|
* - repeat a few times
|
|
* The variations we test for:
|
|
* - change the 8-bit pattern a bit
|
|
* - change the read/write block size so we know:
|
|
* - writes smaller/equal/larger than the buffer work
|
|
* - writes smaller/equal/larger than the sector work
|
|
* - change the SPI offsets so we know:
|
|
* - writing partial sectors works
|
|
*/
|
|
uint8_t *mem_src, *mem_dst;
|
|
size_t i, c, l, o;
|
|
size_t test_count, errors;
|
|
uint8_t pattern;
|
|
|
|
SPI_INIT();
|
|
|
|
if (spi_detect_part())
|
|
goto out;
|
|
eeprom_info();
|
|
|
|
ulong lengths[] = {
|
|
flash.write_length,
|
|
flash.write_length * 2,
|
|
flash.write_length / 2,
|
|
flash.sector_size,
|
|
flash.sector_size * 2,
|
|
flash.sector_size / 2
|
|
};
|
|
ulong offsets[] = {
|
|
0,
|
|
flash.write_length,
|
|
flash.write_length * 2,
|
|
flash.write_length / 2,
|
|
flash.write_length / 4,
|
|
flash.sector_size,
|
|
flash.sector_size * 2,
|
|
flash.sector_size / 2,
|
|
flash.sector_size / 4,
|
|
};
|
|
|
|
/* the exact addresses are arbitrary ... they just need to not overlap */
|
|
mem_src = (void *)(0);
|
|
mem_dst = (void *)(max(flash.write_length, flash.sector_size) * 2);
|
|
|
|
test_count = 0;
|
|
errors = 0;
|
|
pattern = 0x00;
|
|
|
|
for (i = 0; i < 16; ++i) { /* 16 = 8 bits * 2 iterations */
|
|
for (l = 0; l < ARRAY_SIZE(lengths); ++l) {
|
|
for (o = 0; o < ARRAY_SIZE(offsets); ++o) {
|
|
ulong len = lengths[l];
|
|
ulong off = offsets[o];
|
|
|
|
printf("Testing pattern 0x%02X of length %5lu and offset %5lu: ", pattern, len, off);
|
|
|
|
/* setup the source memory region */
|
|
memset(mem_src, pattern, len);
|
|
|
|
test_count += 4;
|
|
for (c = 0; c < 4; ++c) { /* 4 is just a random repeat count */
|
|
if (ctrlc()) {
|
|
puts("\nAbort\n");
|
|
goto out;
|
|
}
|
|
|
|
/* make sure background fill pattern != pattern */
|
|
memset(mem_dst, pattern ^ 0xFF, len);
|
|
|
|
/* write out the source memory and then read it back and compare */
|
|
eeprom_write(0, off, mem_src, len);
|
|
eeprom_read(0, off, mem_dst, len);
|
|
|
|
if (memcmp(mem_src, mem_dst, len)) {
|
|
for (c = 0; c < len; ++c)
|
|
if (mem_src[c] != mem_dst[c])
|
|
break;
|
|
printf(" FAIL @ offset %u, skipping repeats ", c);
|
|
++errors;
|
|
break;
|
|
}
|
|
|
|
/* XXX: should shrink write region here to test with
|
|
* leading/trailing canaries so we know surrounding
|
|
* bytes don't get screwed.
|
|
*/
|
|
}
|
|
puts("\n");
|
|
}
|
|
}
|
|
|
|
/* invert the pattern every other run and shift out bits slowly */
|
|
pattern ^= 0xFF;
|
|
if (i % 2)
|
|
pattern = (pattern | 0x01) << 1;
|
|
}
|
|
|
|
if (errors)
|
|
printf("SPI FAIL: Out of %i tests, there were %i errors ;(\n", test_count, errors);
|
|
else
|
|
printf("SPI PASS: %i tests worked!\n", test_count);
|
|
|
|
out:
|
|
SPI_DEINIT();
|
|
|
|
#endif
|
|
}
|
|
|
|
static void transmit_address(uint32_t addr)
|
|
{
|
|
/* Send the highest byte of the 24 bit address at first */
|
|
spi_write_read_byte(addr >> 16);
|
|
/* Send the middle byte of the 24 bit address at second */
|
|
spi_write_read_byte(addr >> 8);
|
|
/* Send the lowest byte of the 24 bit address finally */
|
|
spi_write_read_byte(addr);
|
|
}
|
|
|
|
/*
|
|
* Read a value from flash for verify purpose
|
|
* Inputs: unsigned long ulStart - holds the SPI start address
|
|
* int pnData - pointer to store value read from flash
|
|
* long lCount - number of elements to read
|
|
*/
|
|
#ifdef CONFIG_SPI_READFLASH_NODMA
|
|
static int read_flash(unsigned long address, long count, uchar *buffer)
|
|
{
|
|
size_t i, j;
|
|
|
|
/* Send the read command to SPI device */
|
|
SPI_ON();
|
|
spi_write_read_byte(flash.ops->read);
|
|
transmit_address(address);
|
|
|
|
#ifndef CONFIG_SPI_FLASH_SLOW_READ
|
|
/* Send dummy byte when doing SPI fast reads */
|
|
spi_write_read_byte(0);
|
|
#endif
|
|
|
|
/* After the SPI device address has been placed on the MOSI pin the data can be */
|
|
/* received on the MISO pin. */
|
|
j = flash.sector_size << 1;
|
|
for (i = 1; i <= count; ++i) {
|
|
*buffer++ = spi_write_read_byte(0);
|
|
if (!j--) {
|
|
puts(".");
|
|
j = flash.sector_size;
|
|
}
|
|
}
|
|
|
|
SPI_OFF();
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
|
|
#ifdef __ADSPBF54x__
|
|
#define bfin_write_DMA_SPI_IRQ_STATUS bfin_write_DMA4_IRQ_STATUS
|
|
#define bfin_read_DMA_SPI_IRQ_STATUS bfin_read_DMA4_IRQ_STATUS
|
|
#define bfin_write_DMA_SPI_CURR_DESC_PTR bfin_write_DMA4_CURR_DESC_PTR
|
|
#define bfin_write_DMA_SPI_CONFIG bfin_write_DMA4_CONFIG
|
|
#elif defined(__ADSPBF533__) || defined(__ADSPBF532__) || defined(__ADSPBF531__) || \
|
|
defined(__ADSPBF538__) || defined(__ADSPBF539__)
|
|
#define bfin_write_DMA_SPI_IRQ_STATUS bfin_write_DMA5_IRQ_STATUS
|
|
#define bfin_read_DMA_SPI_IRQ_STATUS bfin_read_DMA5_IRQ_STATUS
|
|
#define bfin_write_DMA_SPI_CURR_DESC_PTR bfin_write_DMA5_CURR_DESC_PTR
|
|
#define bfin_write_DMA_SPI_CONFIG bfin_write_DMA5_CONFIG
|
|
#elif defined(__ADSPBF561__)
|
|
#define bfin_write_DMA_SPI_IRQ_STATUS bfin_write_DMA16_IRQ_STATUS
|
|
#define bfin_read_DMA_SPI_IRQ_STATUS bfin_read_DMA16_IRQ_STATUS
|
|
#define bfin_write_DMA_SPI_CURR_DESC_PTR bfin_write_DMA16_CURR_DESC_PTR
|
|
#define bfin_write_DMA_SPI_CONFIG bfin_write_DMA16_CONFIG
|
|
#elif defined(__ADSPBF537__) || defined(__ADSPBF536__) || defined(__ADSPBF534__) || \
|
|
defined(__ADSPBF52x__) || defined(__ADSPBF51x__)
|
|
#define bfin_write_DMA_SPI_IRQ_STATUS bfin_write_DMA7_IRQ_STATUS
|
|
#define bfin_read_DMA_SPI_IRQ_STATUS bfin_read_DMA7_IRQ_STATUS
|
|
#define bfin_write_DMA_SPI_CURR_DESC_PTR bfin_write_DMA7_CURR_DESC_PTR
|
|
#define bfin_write_DMA_SPI_CONFIG bfin_write_DMA7_CONFIG
|
|
#else
|
|
#error "Please provide SPI DMA channel defines"
|
|
#endif
|
|
|
|
struct dmadesc_array {
|
|
unsigned long start_addr;
|
|
unsigned short cfg;
|
|
unsigned short x_count;
|
|
short x_modify;
|
|
unsigned short y_count;
|
|
short y_modify;
|
|
} __attribute__((packed));
|
|
|
|
/*
|
|
* Read a value from flash for verify purpose
|
|
* Inputs: unsigned long ulStart - holds the SPI start address
|
|
* int pnData - pointer to store value read from flash
|
|
* long lCount - number of elements to read
|
|
*/
|
|
|
|
static int read_flash(unsigned long address, long count, uchar *buffer)
|
|
{
|
|
unsigned int ndsize;
|
|
struct dmadesc_array dma[2];
|
|
/* Send the read command to SPI device */
|
|
|
|
if (!count)
|
|
return 0;
|
|
|
|
dma[0].start_addr = (unsigned long)buffer;
|
|
dma[0].x_modify = 1;
|
|
if (count <= 65536) {
|
|
blackfin_dcache_flush_invalidate_range(buffer, buffer + count);
|
|
ndsize = NDSIZE_5;
|
|
dma[0].cfg = NDSIZE_0 | WNR | WDSIZE_8 | FLOW_STOP | DMAEN | DI_EN;
|
|
dma[0].x_count = count;
|
|
} else {
|
|
blackfin_dcache_flush_invalidate_range(buffer, buffer + 65536 - 1);
|
|
ndsize = NDSIZE_7;
|
|
dma[0].cfg = NDSIZE_5 | WNR | WDSIZE_8 | FLOW_ARRAY | DMAEN | DMA2D;
|
|
dma[0].x_count = 0; /* 2^16 */
|
|
dma[0].y_count = count >> 16; /* count / 2^16 */
|
|
dma[0].y_modify = 1;
|
|
dma[1].start_addr = (unsigned long)(buffer + (count & ~0xFFFF));
|
|
dma[1].cfg = NDSIZE_0 | WNR | WDSIZE_8 | FLOW_STOP | DMAEN | DI_EN;
|
|
dma[1].x_count = count & 0xFFFF; /* count % 2^16 */
|
|
dma[1].x_modify = 1;
|
|
}
|
|
|
|
bfin_write_DMA_SPI_CONFIG(0);
|
|
bfin_write_DMA_SPI_IRQ_STATUS(DMA_DONE | DMA_ERR);
|
|
bfin_write_DMA_SPI_CURR_DESC_PTR(dma);
|
|
|
|
SPI_ON();
|
|
|
|
spi_write_read_byte(flash.ops->read);
|
|
transmit_address(address);
|
|
|
|
#ifndef CONFIG_SPI_FLASH_SLOW_READ
|
|
/* Send dummy byte when doing SPI fast reads */
|
|
spi_write_read_byte(0);
|
|
#endif
|
|
|
|
bfin_write_DMA_SPI_CONFIG(ndsize | FLOW_ARRAY | DMAEN);
|
|
*pSPI_CTL = (MSTR | CPHA | CPOL | RDBR_DMA | SPE | SZ);
|
|
SSYNC();
|
|
|
|
/*
|
|
* We already invalidated the first 64k,
|
|
* now while we just wait invalidate the remaining part.
|
|
* Its not likely that the DMA is going to overtake
|
|
*/
|
|
if (count > 65536)
|
|
blackfin_dcache_flush_invalidate_range(buffer + 65536,
|
|
buffer + count);
|
|
|
|
while (!(bfin_read_DMA_SPI_IRQ_STATUS() & DMA_DONE))
|
|
if (ctrlc())
|
|
break;
|
|
|
|
SPI_OFF();
|
|
|
|
*pSPI_CTL = 0;
|
|
|
|
bfin_write_DMA_SPI_CONFIG(0);
|
|
|
|
*pSPI_CTL = (SPE | MSTR | CPHA | CPOL | TDBR_CORE);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static long address_to_sector(unsigned long address)
|
|
{
|
|
if (address > (flash.num_sectors * flash.sector_size) - 1)
|
|
return -1;
|
|
return address / flash.sector_size;
|
|
}
|
|
|
|
static int erase_sector(int address)
|
|
{
|
|
/* sector gets checked in higher function, so assume it's valid
|
|
* here and figure out the offset of the sector in flash
|
|
*/
|
|
if (enable_writing())
|
|
return -1;
|
|
|
|
/*
|
|
* Send the erase block command to the flash followed by the 24 address
|
|
* to point to the start of a sector
|
|
*/
|
|
SPI_ON();
|
|
spi_write_read_byte(flash.ops->erase);
|
|
transmit_address(address);
|
|
SPI_OFF();
|
|
|
|
return wait_for_ready_status();
|
|
}
|
|
|
|
/* Write [count] bytes out of [buffer] into the given SPI [address] */
|
|
static long write_flash(unsigned long address, long count, uchar *buffer)
|
|
{
|
|
long i, write_buffer_size;
|
|
|
|
if (enable_writing())
|
|
return -1;
|
|
|
|
/* Send write command followed by the 24 bit address */
|
|
SPI_ON();
|
|
spi_write_read_byte(flash.ops->write);
|
|
transmit_address(address);
|
|
|
|
/* Shoot out a single write buffer */
|
|
write_buffer_size = min(count, flash.write_length);
|
|
for (i = 0; i < write_buffer_size; ++i)
|
|
spi_write_read_byte(buffer[i]);
|
|
|
|
SPI_OFF();
|
|
|
|
/* Wait for the flash to do its thing */
|
|
if (wait_for_ready_status()) {
|
|
puts("SPI Program Time out! ");
|
|
return -1;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
/* Write [count] bytes out of [buffer] into the given SPI [address] */
|
|
static int write_sector(unsigned long address, long count, uchar *buffer)
|
|
{
|
|
long write_cnt;
|
|
|
|
while (count != 0) {
|
|
write_cnt = write_flash(address, count, buffer);
|
|
if (write_cnt == -1)
|
|
return -1;
|
|
|
|
/* Now that we've sent some bytes out to the flash, update
|
|
* our counters a bit
|
|
*/
|
|
count -= write_cnt;
|
|
address += write_cnt;
|
|
buffer += write_cnt;
|
|
}
|
|
|
|
/* return the appropriate error code */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function: spi_write
|
|
*/
|
|
ssize_t spi_write(uchar *addr, int alen, uchar *buffer, int len)
|
|
{
|
|
unsigned long offset;
|
|
int start_sector, end_sector;
|
|
int start_byte, end_byte;
|
|
uchar *temp = NULL;
|
|
int num, ret = 0;
|
|
|
|
SPI_INIT();
|
|
|
|
if (spi_detect_part())
|
|
goto out;
|
|
|
|
offset = addr[0] << 16 | addr[1] << 8 | addr[2];
|
|
|
|
/* Get the start block number */
|
|
start_sector = address_to_sector(offset);
|
|
if (start_sector == -1) {
|
|
puts("Invalid sector! ");
|
|
goto out;
|
|
}
|
|
end_sector = address_to_sector(offset + len - 1);
|
|
if (end_sector == -1) {
|
|
puts("Invalid sector! ");
|
|
goto out;
|
|
}
|
|
|
|
/* Since flashes operate in sector units but the eeprom command
|
|
* operates as a continuous stream of bytes, we need to emulate
|
|
* the eeprom behavior. So here we read in the sector, overlay
|
|
* any bytes we're actually modifying, erase the sector, and
|
|
* then write back out the new sector.
|
|
*/
|
|
temp = malloc(flash.sector_size);
|
|
if (!temp) {
|
|
puts("Malloc for sector failed! ");
|
|
goto out;
|
|
}
|
|
|
|
for (num = start_sector; num <= end_sector; num++) {
|
|
unsigned long address = num * flash.sector_size;
|
|
|
|
/* XXX: should add an optimization when spanning sectors:
|
|
* No point in reading in a sector if we're going to be
|
|
* clobbering the whole thing. Need to also add a test
|
|
* case to make sure the optimization is correct.
|
|
*/
|
|
if (read_flash(address, flash.sector_size, temp)) {
|
|
puts("Read sector failed! ");
|
|
len = 0;
|
|
break;
|
|
}
|
|
|
|
start_byte = max(address, offset);
|
|
end_byte = address + flash.sector_size - 1;
|
|
if (end_byte > (offset + len))
|
|
end_byte = (offset + len - 1);
|
|
|
|
memcpy(temp + start_byte - address,
|
|
buffer + start_byte - offset,
|
|
end_byte - start_byte + 1);
|
|
|
|
if (erase_sector(address)) {
|
|
puts("Erase sector failed! ");
|
|
goto out;
|
|
}
|
|
|
|
if (write_sector(address, flash.sector_size, temp)) {
|
|
puts("Write sector failed! ");
|
|
goto out;
|
|
}
|
|
|
|
puts(".");
|
|
}
|
|
|
|
ret = len;
|
|
|
|
out:
|
|
free(temp);
|
|
|
|
SPI_DEINIT();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Function: spi_read
|
|
*/
|
|
ssize_t spi_read(uchar *addr, int alen, uchar *buffer, int len)
|
|
{
|
|
unsigned long offset;
|
|
|
|
SPI_INIT();
|
|
|
|
if (spi_detect_part())
|
|
len = 0;
|
|
else {
|
|
offset = addr[0] << 16 | addr[1] << 8 | addr[2];
|
|
read_flash(offset, len, buffer);
|
|
}
|
|
|
|
SPI_DEINIT();
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Spit out some useful information about the SPI eeprom
|
|
*/
|
|
int eeprom_info(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
SPI_INIT();
|
|
|
|
if (spi_detect_part())
|
|
ret = 1;
|
|
else
|
|
printf("SPI Device: %s 0x%02X (%s) 0x%02X 0x%02X\n"
|
|
"Parameters: num sectors = %lu, sector size = %lu, write size = %i\n"
|
|
"Flash Size: %lu mbit (%lu mbyte)\n"
|
|
"Status: 0x%02X\n",
|
|
flash.flash->name, flash.manufacturer_id, flash.manufacturer->name,
|
|
flash.device_id1, flash.device_id2, flash.num_sectors,
|
|
flash.sector_size, flash.write_length,
|
|
(flash.num_sectors * flash.sector_size) >> 17,
|
|
(flash.num_sectors * flash.sector_size) >> 20,
|
|
read_status_register());
|
|
|
|
SPI_DEINIT();
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|