upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/arch/arm/mach-socfpga/clock_manager.c

560 lines
16 KiB

/*
* Copyright (C) 2013 Altera Corporation <www.altera.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock_manager.h>
DECLARE_GLOBAL_DATA_PTR;
static const struct socfpga_clock_manager *clock_manager_base =
(struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS;
static void cm_wait_for_lock(uint32_t mask)
{
register uint32_t inter_val;
uint32_t retry = 0;
do {
inter_val = readl(&clock_manager_base->inter) & mask;
if (inter_val == mask)
retry++;
else
retry = 0;
if (retry >= 10)
break;
} while (1);
}
/* function to poll in the fsm busy bit */
static void cm_wait_for_fsm(void)
{
while (readl(&clock_manager_base->stat) & CLKMGR_STAT_BUSY)
;
}
/*
* function to write the bypass register which requires a poll of the
* busy bit
*/
static void cm_write_bypass(uint32_t val)
{
writel(val, &clock_manager_base->bypass);
cm_wait_for_fsm();
}
/* function to write the ctrl register which requires a poll of the busy bit */
static void cm_write_ctrl(uint32_t val)
{
writel(val, &clock_manager_base->ctrl);
cm_wait_for_fsm();
}
/* function to write a clock register that has phase information */
static void cm_write_with_phase(uint32_t value,
uint32_t reg_address, uint32_t mask)
{
/* poll until phase is zero */
while (readl(reg_address) & mask)
;
writel(value, reg_address);
while (readl(reg_address) & mask)
;
}
/*
* Setup clocks while making no assumptions about previous state of the clocks.
*
* Start by being paranoid and gate all sw managed clocks
* Put all plls in bypass
* Put all plls VCO registers back to reset value (bandgap power down).
* Put peripheral and main pll src to reset value to avoid glitch.
* Delay 5 us.
* Deassert bandgap power down and set numerator and denominator
* Start 7 us timer.
* set internal dividers
* Wait for 7 us timer.
* Enable plls
* Set external dividers while plls are locking
* Wait for pll lock
* Assert/deassert outreset all.
* Take all pll's out of bypass
* Clear safe mode
* set source main and peripheral clocks
* Ungate clocks
*/
void cm_basic_init(const struct cm_config * const cfg)
{
uint32_t start, timeout;
/* Start by being paranoid and gate all sw managed clocks */
/*
* We need to disable nandclk
* and then do another apb access before disabling
* gatting off the rest of the periperal clocks.
*/
writel(~CLKMGR_PERPLLGRP_EN_NANDCLK_MASK &
readl(&clock_manager_base->per_pll.en),
&clock_manager_base->per_pll.en);
/* DO NOT GATE OFF DEBUG CLOCKS & BRIDGE CLOCKS */
writel(CLKMGR_MAINPLLGRP_EN_DBGTIMERCLK_MASK |
CLKMGR_MAINPLLGRP_EN_DBGTRACECLK_MASK |
CLKMGR_MAINPLLGRP_EN_DBGCLK_MASK |
CLKMGR_MAINPLLGRP_EN_DBGATCLK_MASK |
CLKMGR_MAINPLLGRP_EN_S2FUSER0CLK_MASK |
CLKMGR_MAINPLLGRP_EN_L4MPCLK_MASK,
&clock_manager_base->main_pll.en);
writel(0, &clock_manager_base->sdr_pll.en);
/* now we can gate off the rest of the peripheral clocks */
writel(0, &clock_manager_base->per_pll.en);
/* Put all plls in bypass */
cm_write_bypass(CLKMGR_BYPASS_PERPLL | CLKMGR_BYPASS_SDRPLL |
CLKMGR_BYPASS_MAINPLL);
/* Put all plls VCO registers back to reset value. */
writel(CLKMGR_MAINPLLGRP_VCO_RESET_VALUE &
~CLKMGR_MAINPLLGRP_VCO_REGEXTSEL_MASK,
&clock_manager_base->main_pll.vco);
writel(CLKMGR_PERPLLGRP_VCO_RESET_VALUE &
~CLKMGR_PERPLLGRP_VCO_REGEXTSEL_MASK,
&clock_manager_base->per_pll.vco);
writel(CLKMGR_SDRPLLGRP_VCO_RESET_VALUE &
~CLKMGR_SDRPLLGRP_VCO_REGEXTSEL_MASK,
&clock_manager_base->sdr_pll.vco);
/*
* The clocks to the flash devices and the L4_MAIN clocks can
* glitch when coming out of safe mode if their source values
* are different from their reset value. So the trick it to
* put them back to their reset state, and change input
* after exiting safe mode but before ungating the clocks.
*/
writel(CLKMGR_PERPLLGRP_SRC_RESET_VALUE,
&clock_manager_base->per_pll.src);
writel(CLKMGR_MAINPLLGRP_L4SRC_RESET_VALUE,
&clock_manager_base->main_pll.l4src);
/* read back for the required 5 us delay. */
readl(&clock_manager_base->main_pll.vco);
readl(&clock_manager_base->per_pll.vco);
readl(&clock_manager_base->sdr_pll.vco);
/*
* We made sure bgpwr down was assert for 5 us. Now deassert BG PWR DN
* with numerator and denominator.
*/
writel(cfg->main_vco_base, &clock_manager_base->main_pll.vco);
writel(cfg->peri_vco_base, &clock_manager_base->per_pll.vco);
writel(cfg->sdram_vco_base, &clock_manager_base->sdr_pll.vco);
/*
* Time starts here
* must wait 7 us from BGPWRDN_SET(0) to VCO_ENABLE_SET(1)
*/
start = get_timer(0);
/* timeout in unit of us as CONFIG_SYS_HZ = 1000*1000 */
timeout = 7;
/* main mpu */
writel(cfg->mpuclk, &clock_manager_base->main_pll.mpuclk);
/* main main clock */
writel(cfg->mainclk, &clock_manager_base->main_pll.mainclk);
/* main for dbg */
writel(cfg->dbgatclk, &clock_manager_base->main_pll.dbgatclk);
/* main for cfgs2fuser0clk */
writel(cfg->cfg2fuser0clk,
&clock_manager_base->main_pll.cfgs2fuser0clk);
/* Peri emac0 50 MHz default to RMII */
writel(cfg->emac0clk, &clock_manager_base->per_pll.emac0clk);
/* Peri emac1 50 MHz default to RMII */
writel(cfg->emac1clk, &clock_manager_base->per_pll.emac1clk);
/* Peri QSPI */
writel(cfg->mainqspiclk, &clock_manager_base->main_pll.mainqspiclk);
writel(cfg->perqspiclk, &clock_manager_base->per_pll.perqspiclk);
/* Peri pernandsdmmcclk */
writel(cfg->mainnandsdmmcclk,
&clock_manager_base->main_pll.mainnandsdmmcclk);
writel(cfg->pernandsdmmcclk,
&clock_manager_base->per_pll.pernandsdmmcclk);
/* Peri perbaseclk */
writel(cfg->perbaseclk, &clock_manager_base->per_pll.perbaseclk);
/* Peri s2fuser1clk */
writel(cfg->s2fuser1clk, &clock_manager_base->per_pll.s2fuser1clk);
/* 7 us must have elapsed before we can enable the VCO */
while (get_timer(start) < timeout)
;
/* Enable vco */
/* main pll vco */
writel(cfg->main_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
&clock_manager_base->main_pll.vco);
/* periferal pll */
writel(cfg->peri_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
&clock_manager_base->per_pll.vco);
/* sdram pll vco */
writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
&clock_manager_base->sdr_pll.vco);
/* L3 MP and L3 SP */
writel(cfg->maindiv, &clock_manager_base->main_pll.maindiv);
writel(cfg->dbgdiv, &clock_manager_base->main_pll.dbgdiv);
writel(cfg->tracediv, &clock_manager_base->main_pll.tracediv);
/* L4 MP, L4 SP, can0, and can1 */
writel(cfg->perdiv, &clock_manager_base->per_pll.div);
writel(cfg->gpiodiv, &clock_manager_base->per_pll.gpiodiv);
#define LOCKED_MASK \
(CLKMGR_INTER_SDRPLLLOCKED_MASK | \
CLKMGR_INTER_PERPLLLOCKED_MASK | \
CLKMGR_INTER_MAINPLLLOCKED_MASK)
cm_wait_for_lock(LOCKED_MASK);
/* write the sdram clock counters before toggling outreset all */
writel(cfg->ddrdqsclk & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK,
&clock_manager_base->sdr_pll.ddrdqsclk);
writel(cfg->ddr2xdqsclk & CLKMGR_SDRPLLGRP_DDR2XDQSCLK_CNT_MASK,
&clock_manager_base->sdr_pll.ddr2xdqsclk);
writel(cfg->ddrdqclk & CLKMGR_SDRPLLGRP_DDRDQCLK_CNT_MASK,
&clock_manager_base->sdr_pll.ddrdqclk);
writel(cfg->s2fuser2clk & CLKMGR_SDRPLLGRP_S2FUSER2CLK_CNT_MASK,
&clock_manager_base->sdr_pll.s2fuser2clk);
/*
* after locking, but before taking out of bypass
* assert/deassert outresetall
*/
uint32_t mainvco = readl(&clock_manager_base->main_pll.vco);
/* assert main outresetall */
writel(mainvco | CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK,
&clock_manager_base->main_pll.vco);
uint32_t periphvco = readl(&clock_manager_base->per_pll.vco);
/* assert pheriph outresetall */
writel(periphvco | CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK,
&clock_manager_base->per_pll.vco);
/* assert sdram outresetall */
writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN|
CLKMGR_SDRPLLGRP_VCO_OUTRESETALL,
&clock_manager_base->sdr_pll.vco);
/* deassert main outresetall */
writel(mainvco & ~CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK,
&clock_manager_base->main_pll.vco);
/* deassert pheriph outresetall */
writel(periphvco & ~CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK,
&clock_manager_base->per_pll.vco);
/* deassert sdram outresetall */
writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
&clock_manager_base->sdr_pll.vco);
/*
* now that we've toggled outreset all, all the clocks
* are aligned nicely; so we can change any phase.
*/
cm_write_with_phase(cfg->ddrdqsclk,
(uint32_t)&clock_manager_base->sdr_pll.ddrdqsclk,
CLKMGR_SDRPLLGRP_DDRDQSCLK_PHASE_MASK);
/* SDRAM DDR2XDQSCLK */
cm_write_with_phase(cfg->ddr2xdqsclk,
(uint32_t)&clock_manager_base->sdr_pll.ddr2xdqsclk,
CLKMGR_SDRPLLGRP_DDR2XDQSCLK_PHASE_MASK);
cm_write_with_phase(cfg->ddrdqclk,
(uint32_t)&clock_manager_base->sdr_pll.ddrdqclk,
CLKMGR_SDRPLLGRP_DDRDQCLK_PHASE_MASK);
cm_write_with_phase(cfg->s2fuser2clk,
(uint32_t)&clock_manager_base->sdr_pll.s2fuser2clk,
CLKMGR_SDRPLLGRP_S2FUSER2CLK_PHASE_MASK);
/* Take all three PLLs out of bypass when safe mode is cleared. */
cm_write_bypass(0);
/* clear safe mode */
cm_write_ctrl(readl(&clock_manager_base->ctrl) | CLKMGR_CTRL_SAFEMODE);
/*
* now that safe mode is clear with clocks gated
* it safe to change the source mux for the flashes the the L4_MAIN
*/
writel(cfg->persrc, &clock_manager_base->per_pll.src);
writel(cfg->l4src, &clock_manager_base->main_pll.l4src);
/* Now ungate non-hw-managed clocks */
writel(~0, &clock_manager_base->main_pll.en);
writel(~0, &clock_manager_base->per_pll.en);
writel(~0, &clock_manager_base->sdr_pll.en);
/* Clear the loss of lock bits (write 1 to clear) */
writel(CLKMGR_INTER_SDRPLLLOST_MASK | CLKMGR_INTER_PERPLLLOST_MASK |
CLKMGR_INTER_MAINPLLLOST_MASK,
&clock_manager_base->inter);
}
static unsigned int cm_get_main_vco_clk_hz(void)
{
uint32_t reg, clock;
/* get the main VCO clock */
reg = readl(&clock_manager_base->main_pll.vco);
clock = cm_get_osc_clk_hz(1);
clock /= ((reg & CLKMGR_MAINPLLGRP_VCO_DENOM_MASK) >>
CLKMGR_MAINPLLGRP_VCO_DENOM_OFFSET) + 1;
clock *= ((reg & CLKMGR_MAINPLLGRP_VCO_NUMER_MASK) >>
CLKMGR_MAINPLLGRP_VCO_NUMER_OFFSET) + 1;
return clock;
}
static unsigned int cm_get_per_vco_clk_hz(void)
{
uint32_t reg, clock = 0;
/* identify PER PLL clock source */
reg = readl(&clock_manager_base->per_pll.vco);
reg = (reg & CLKMGR_PERPLLGRP_VCO_SSRC_MASK) >>
CLKMGR_PERPLLGRP_VCO_SSRC_OFFSET;
if (reg == CLKMGR_VCO_SSRC_EOSC1)
clock = cm_get_osc_clk_hz(1);
else if (reg == CLKMGR_VCO_SSRC_EOSC2)
clock = cm_get_osc_clk_hz(2);
else if (reg == CLKMGR_VCO_SSRC_F2S)
clock = cm_get_f2s_per_ref_clk_hz();
/* get the PER VCO clock */
reg = readl(&clock_manager_base->per_pll.vco);
clock /= ((reg & CLKMGR_PERPLLGRP_VCO_DENOM_MASK) >>
CLKMGR_PERPLLGRP_VCO_DENOM_OFFSET) + 1;
clock *= ((reg & CLKMGR_PERPLLGRP_VCO_NUMER_MASK) >>
CLKMGR_PERPLLGRP_VCO_NUMER_OFFSET) + 1;
return clock;
}
unsigned long cm_get_mpu_clk_hz(void)
{
uint32_t reg, clock;
clock = cm_get_main_vco_clk_hz();
/* get the MPU clock */
reg = readl(&clock_manager_base->altera.mpuclk);
clock /= (reg + 1);
reg = readl(&clock_manager_base->main_pll.mpuclk);
clock /= (reg + 1);
return clock;
}
unsigned long cm_get_sdram_clk_hz(void)
{
uint32_t reg, clock = 0;
/* identify SDRAM PLL clock source */
reg = readl(&clock_manager_base->sdr_pll.vco);
reg = (reg & CLKMGR_SDRPLLGRP_VCO_SSRC_MASK) >>
CLKMGR_SDRPLLGRP_VCO_SSRC_OFFSET;
if (reg == CLKMGR_VCO_SSRC_EOSC1)
clock = cm_get_osc_clk_hz(1);
else if (reg == CLKMGR_VCO_SSRC_EOSC2)
clock = cm_get_osc_clk_hz(2);
else if (reg == CLKMGR_VCO_SSRC_F2S)
clock = cm_get_f2s_sdr_ref_clk_hz();
/* get the SDRAM VCO clock */
reg = readl(&clock_manager_base->sdr_pll.vco);
clock /= ((reg & CLKMGR_SDRPLLGRP_VCO_DENOM_MASK) >>
CLKMGR_SDRPLLGRP_VCO_DENOM_OFFSET) + 1;
clock *= ((reg & CLKMGR_SDRPLLGRP_VCO_NUMER_MASK) >>
CLKMGR_SDRPLLGRP_VCO_NUMER_OFFSET) + 1;
/* get the SDRAM (DDR_DQS) clock */
reg = readl(&clock_manager_base->sdr_pll.ddrdqsclk);
reg = (reg & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK) >>
CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_OFFSET;
clock /= (reg + 1);
return clock;
}
unsigned int cm_get_l4_sp_clk_hz(void)
{
uint32_t reg, clock = 0;
/* identify the source of L4 SP clock */
reg = readl(&clock_manager_base->main_pll.l4src);
reg = (reg & CLKMGR_MAINPLLGRP_L4SRC_L4SP) >>
CLKMGR_MAINPLLGRP_L4SRC_L4SP_OFFSET;
if (reg == CLKMGR_L4_SP_CLK_SRC_MAINPLL) {
clock = cm_get_main_vco_clk_hz();
/* get the clock prior L4 SP divider (main clk) */
reg = readl(&clock_manager_base->altera.mainclk);
clock /= (reg + 1);
reg = readl(&clock_manager_base->main_pll.mainclk);
clock /= (reg + 1);
} else if (reg == CLKMGR_L4_SP_CLK_SRC_PERPLL) {
clock = cm_get_per_vco_clk_hz();
/* get the clock prior L4 SP divider (periph_base_clk) */
reg = readl(&clock_manager_base->per_pll.perbaseclk);
clock /= (reg + 1);
}
/* get the L4 SP clock which supplied to UART */
reg = readl(&clock_manager_base->main_pll.maindiv);
reg = (reg & CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_MASK) >>
CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_OFFSET;
clock = clock / (1 << reg);
return clock;
}
unsigned int cm_get_mmc_controller_clk_hz(void)
{
uint32_t reg, clock = 0;
/* identify the source of MMC clock */
reg = readl(&clock_manager_base->per_pll.src);
reg = (reg & CLKMGR_PERPLLGRP_SRC_SDMMC_MASK) >>
CLKMGR_PERPLLGRP_SRC_SDMMC_OFFSET;
if (reg == CLKMGR_SDMMC_CLK_SRC_F2S) {
clock = cm_get_f2s_per_ref_clk_hz();
} else if (reg == CLKMGR_SDMMC_CLK_SRC_MAIN) {
clock = cm_get_main_vco_clk_hz();
/* get the SDMMC clock */
reg = readl(&clock_manager_base->main_pll.mainnandsdmmcclk);
clock /= (reg + 1);
} else if (reg == CLKMGR_SDMMC_CLK_SRC_PER) {
clock = cm_get_per_vco_clk_hz();
/* get the SDMMC clock */
reg = readl(&clock_manager_base->per_pll.pernandsdmmcclk);
clock /= (reg + 1);
}
/* further divide by 4 as we have fixed divider at wrapper */
clock /= 4;
return clock;
}
unsigned int cm_get_qspi_controller_clk_hz(void)
{
uint32_t reg, clock = 0;
/* identify the source of QSPI clock */
reg = readl(&clock_manager_base->per_pll.src);
reg = (reg & CLKMGR_PERPLLGRP_SRC_QSPI_MASK) >>
CLKMGR_PERPLLGRP_SRC_QSPI_OFFSET;
if (reg == CLKMGR_QSPI_CLK_SRC_F2S) {
clock = cm_get_f2s_per_ref_clk_hz();
} else if (reg == CLKMGR_QSPI_CLK_SRC_MAIN) {
clock = cm_get_main_vco_clk_hz();
/* get the qspi clock */
reg = readl(&clock_manager_base->main_pll.mainqspiclk);
clock /= (reg + 1);
} else if (reg == CLKMGR_QSPI_CLK_SRC_PER) {
clock = cm_get_per_vco_clk_hz();
/* get the qspi clock */
reg = readl(&clock_manager_base->per_pll.perqspiclk);
clock /= (reg + 1);
}
return clock;
}
unsigned int cm_get_spi_controller_clk_hz(void)
{
uint32_t reg, clock = 0;
clock = cm_get_per_vco_clk_hz();
/* get the clock prior L4 SP divider (periph_base_clk) */
reg = readl(&clock_manager_base->per_pll.perbaseclk);
clock /= (reg + 1);
return clock;
}
static void cm_print_clock_quick_summary(void)
{
printf("MPU %10ld kHz\n", cm_get_mpu_clk_hz() / 1000);
printf("DDR %10ld kHz\n", cm_get_sdram_clk_hz() / 1000);
printf("EOSC1 %8d kHz\n", cm_get_osc_clk_hz(1) / 1000);
printf("EOSC2 %8d kHz\n", cm_get_osc_clk_hz(2) / 1000);
printf("F2S_SDR_REF %8d kHz\n", cm_get_f2s_sdr_ref_clk_hz() / 1000);
printf("F2S_PER_REF %8d kHz\n", cm_get_f2s_per_ref_clk_hz() / 1000);
printf("MMC %8d kHz\n", cm_get_mmc_controller_clk_hz() / 1000);
printf("QSPI %8d kHz\n", cm_get_qspi_controller_clk_hz() / 1000);
printf("UART %8d kHz\n", cm_get_l4_sp_clk_hz() / 1000);
printf("SPI %8d kHz\n", cm_get_spi_controller_clk_hz() / 1000);
}
int set_cpu_clk_info(void)
{
/* Calculate the clock frequencies required for drivers */
cm_get_l4_sp_clk_hz();
cm_get_mmc_controller_clk_hz();
gd->bd->bi_arm_freq = cm_get_mpu_clk_hz() / 1000000;
gd->bd->bi_dsp_freq = 0;
gd->bd->bi_ddr_freq = cm_get_sdram_clk_hz() / 1000000;
return 0;
}
int do_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
cm_print_clock_quick_summary();
return 0;
}
U_BOOT_CMD(
clocks, CONFIG_SYS_MAXARGS, 1, do_showclocks,
"display clocks",
""
);