upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
u-boot/drivers/usb/eth/lan7x.c

498 lines
12 KiB

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2017 Microchip Technology Inc. All rights reserved.
*/
#include <dm.h>
#include <malloc.h>
#include <miiphy.h>
#include <memalign.h>
#include <usb.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include "usb_ether.h"
#include "lan7x.h"
/*
* Lan7x infrastructure commands
*/
int lan7x_write_reg(struct usb_device *udev, u32 index, u32 data)
{
int len;
ALLOC_CACHE_ALIGN_BUFFER(u32, tmpbuf, 1);
cpu_to_le32s(&data);
tmpbuf[0] = data;
len = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
USB_VENDOR_REQUEST_WRITE_REGISTER,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, index, tmpbuf, sizeof(data),
USB_CTRL_SET_TIMEOUT_MS);
if (len != sizeof(data)) {
debug("%s failed: index=%d, data=%d, len=%d",
__func__, index, data, len);
return -EIO;
}
return 0;
}
int lan7x_read_reg(struct usb_device *udev, u32 index, u32 *data)
{
int len;
ALLOC_CACHE_ALIGN_BUFFER(u32, tmpbuf, 1);
len = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
USB_VENDOR_REQUEST_READ_REGISTER,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, index, tmpbuf, sizeof(*data),
USB_CTRL_GET_TIMEOUT_MS);
*data = tmpbuf[0];
if (len != sizeof(*data)) {
debug("%s failed: index=%d, len=%d", __func__, index, len);
return -EIO;
}
le32_to_cpus(data);
return 0;
}
static int lan7x_phy_wait_not_busy(struct usb_device *udev)
{
return lan7x_wait_for_bit(udev, __func__,
MII_ACC, MII_ACC_MII_BUSY,
false, 100, 0);
}
int lan7x_mdio_read(struct usb_device *udev, int phy_id, int idx)
{
u32 val, addr;
/* confirm MII not busy */
if (lan7x_phy_wait_not_busy(udev)) {
debug("MII is busy in %s\n", __func__);
return -ETIMEDOUT;
}
/* set the address, index & direction (read from PHY) */
addr = (phy_id << 11) | (idx << 6) |
MII_ACC_MII_READ | MII_ACC_MII_BUSY;
lan7x_write_reg(udev, MII_ACC, addr);
if (lan7x_phy_wait_not_busy(udev)) {
debug("Timed out reading MII reg %02X\n", idx);
return -ETIMEDOUT;
}
lan7x_read_reg(udev, MII_DATA, &val);
return val & 0xFFFF;
}
void lan7x_mdio_write(struct usb_device *udev, int phy_id, int idx, int regval)
{
u32 addr;
/* confirm MII not busy */
if (lan7x_phy_wait_not_busy(udev)) {
debug("MII is busy in %s\n", __func__);
return;
}
lan7x_write_reg(udev, MII_DATA, regval);
/* set the address, index & direction (write to PHY) */
addr = (phy_id << 11) | (idx << 6) |
MII_ACC_MII_WRITE | MII_ACC_MII_BUSY;
lan7x_write_reg(udev, MII_ACC, addr);
if (lan7x_phy_wait_not_busy(udev))
debug("Timed out writing MII reg %02X\n", idx);
}
/*
* Lan7x phylib wrappers
*/
static int lan7x_phylib_mdio_read(struct mii_dev *bus,
int addr, int devad, int reg)
{
struct usb_device *udev = dev_get_parent_priv(bus->priv);
return lan7x_mdio_read(udev, addr, reg);
}
static int lan7x_phylib_mdio_write(struct mii_dev *bus,
int addr, int devad, int reg, u16 val)
{
struct usb_device *udev = dev_get_parent_priv(bus->priv);
lan7x_mdio_write(udev, addr, reg, (int)val);
return 0;
}
/*
* Lan7x eeprom functions
*/
static int lan7x_eeprom_confirm_not_busy(struct usb_device *udev)
{
return lan7x_wait_for_bit(udev, __func__,
E2P_CMD, E2P_CMD_EPC_BUSY,
false, 100, 0);
}
static int lan7x_wait_eeprom(struct usb_device *udev)
{
return lan7x_wait_for_bit(udev, __func__,
E2P_CMD,
(E2P_CMD_EPC_BUSY | E2P_CMD_EPC_TIMEOUT),
false, 100, 0);
}
static int lan7x_read_eeprom(struct usb_device *udev,
u32 offset, u32 length, u8 *data)
{
u32 val;
int i, ret;
ret = lan7x_eeprom_confirm_not_busy(udev);
if (ret)
return ret;
for (i = 0; i < length; i++) {
val = E2P_CMD_EPC_BUSY | E2P_CMD_EPC_CMD_READ |
(offset & E2P_CMD_EPC_ADDR_MASK);
lan7x_write_reg(udev, E2P_CMD, val);
ret = lan7x_wait_eeprom(udev);
if (ret)
return ret;
lan7x_read_reg(udev, E2P_DATA, &val);
data[i] = val & 0xFF;
offset++;
}
return ret;
}
/*
* Lan7x phylib functions
*/
int lan7x_phylib_register(struct udevice *udev)
{
struct usb_device *usbdev = dev_get_parent_priv(udev);
struct lan7x_private *priv = dev_get_priv(udev);
int ret;
priv->mdiobus = mdio_alloc();
if (!priv->mdiobus) {
printf("mdio_alloc failed\n");
return -ENOMEM;
}
priv->mdiobus->read = lan7x_phylib_mdio_read;
priv->mdiobus->write = lan7x_phylib_mdio_write;
sprintf(priv->mdiobus->name,
"lan7x_mdiobus-d%hu-p%hu", usbdev->devnum, usbdev->portnr);
priv->mdiobus->priv = (void *)udev;
ret = mdio_register(priv->mdiobus);
if (ret) {
printf("mdio_register failed\n");
free(priv->mdiobus);
return -ENOMEM;
}
return 0;
}
int lan7x_eth_phylib_connect(struct udevice *udev, struct ueth_data *dev)
{
struct lan7x_private *priv = dev_get_priv(udev);
priv->phydev = phy_connect(priv->mdiobus, dev->phy_id,
udev, PHY_INTERFACE_MODE_MII);
if (!priv->phydev) {
printf("phy_connect failed\n");
return -ENODEV;
}
return 0;
}
int lan7x_eth_phylib_config_start(struct udevice *udev)
{
struct lan7x_private *priv = dev_get_priv(udev);
int ret;
/* configure supported modes */
priv->phydev->supported = PHY_BASIC_FEATURES |
SUPPORTED_1000baseT_Full |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause;
priv->phydev->advertising = ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_1000baseT_Full |
ADVERTISED_Pause |
ADVERTISED_Asym_Pause |
ADVERTISED_Autoneg;
priv->phydev->autoneg = AUTONEG_ENABLE;
ret = genphy_config_aneg(priv->phydev);
if (ret) {
printf("genphy_config_aneg failed\n");
return ret;
}
ret = phy_startup(priv->phydev);
if (ret) {
printf("phy_startup failed\n");
return ret;
}
debug("** %s() speed %i duplex %i adv %X supp %X\n", __func__,
priv->phydev->speed, priv->phydev->duplex,
priv->phydev->advertising, priv->phydev->supported);
return 0;
}
int lan7x_update_flowcontrol(struct usb_device *udev,
struct ueth_data *dev,
uint32_t *flow, uint32_t *fct_flow)
{
uint32_t lcladv, rmtadv;
u8 cap = 0;
struct lan7x_private *priv = dev_get_priv(udev->dev);
debug("** %s()\n", __func__);
debug("** %s() priv->phydev->speed %i duplex %i\n", __func__,
priv->phydev->speed, priv->phydev->duplex);
if (priv->phydev->duplex == DUPLEX_FULL) {
lcladv = lan7x_mdio_read(udev, dev->phy_id, MII_ADVERTISE);
rmtadv = lan7x_mdio_read(udev, dev->phy_id, MII_LPA);
cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
debug("TX Flow ");
if (cap & FLOW_CTRL_TX) {
*flow = (FLOW_CR_TX_FCEN | 0xFFFF);
/* set fct_flow thresholds to 20% and 80% */
*fct_flow = ((MAX_RX_FIFO_SIZE * 2) / (10 * 512))
& 0x7FUL;
*fct_flow <<= 8UL;
*fct_flow |= ((MAX_RX_FIFO_SIZE * 8) / (10 * 512))
& 0x7FUL;
debug("EN ");
} else {
debug("DIS ");
}
debug("RX Flow ");
if (cap & FLOW_CTRL_RX) {
*flow |= FLOW_CR_RX_FCEN;
debug("EN");
} else {
debug("DIS");
}
}
debug("\n");
return 0;
}
int lan7x_read_eeprom_mac(unsigned char *enetaddr, struct usb_device *udev)
{
int ret;
memset(enetaddr, 0, 6);
ret = lan7x_read_eeprom(udev, 0, 1, enetaddr);
if ((ret == 0) && (enetaddr[0] == EEPROM_INDICATOR)) {
ret = lan7x_read_eeprom(udev,
EEPROM_MAC_OFFSET, ETH_ALEN,
enetaddr);
if ((ret == 0) && is_valid_ethaddr(enetaddr)) {
/* eeprom values are valid so use them */
debug("MAC address read from EEPROM %pM\n",
enetaddr);
return 0;
}
}
debug("MAC address read from EEPROM invalid %pM\n", enetaddr);
memset(enetaddr, 0, 6);
return -EINVAL;
}
int lan7x_pmt_phy_reset(struct usb_device *udev,
struct ueth_data *dev)
{
int ret;
u32 data;
ret = lan7x_read_reg(udev, PMT_CTL, &data);
if (ret)
return ret;
ret = lan7x_write_reg(udev, PMT_CTL, data | PMT_CTL_PHY_RST);
if (ret)
return ret;
/* for LAN7x, we need to check PMT_CTL_READY asserted */
ret = lan7x_wait_for_bit(udev, "PMT_CTL_PHY_RST",
PMT_CTL, PMT_CTL_PHY_RST,
false, 1000, 0); /* could take over 125mS */
if (ret)
return ret;
return lan7x_wait_for_bit(udev, "PMT_CTL_READY",
PMT_CTL, PMT_CTL_READY,
true, 1000, 0);
}
int lan7x_basic_reset(struct usb_device *udev,
struct ueth_data *dev)
{
int ret;
dev->phy_id = LAN7X_INTERNAL_PHY_ID; /* fixed phy id */
ret = lan7x_write_reg(udev, HW_CFG, HW_CFG_LRST);
if (ret)
return ret;
ret = lan7x_wait_for_bit(udev, "HW_CFG_LRST",
HW_CFG, HW_CFG_LRST,
false, 1000, 0);
if (ret)
return ret;
debug("USB devnum %d portnr %d\n", udev->devnum, udev->portnr);
return lan7x_pmt_phy_reset(udev, dev);
}
void lan7x_eth_stop(struct udevice *dev)
{
debug("** %s()\n", __func__);
}
int lan7x_eth_send(struct udevice *dev, void *packet, int length)
{
struct lan7x_private *priv = dev_get_priv(dev);
struct ueth_data *ueth = &priv->ueth;
int err;
int actual_len;
u32 tx_cmd_a;
u32 tx_cmd_b;
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, msg,
PKTSIZE + sizeof(tx_cmd_a) + sizeof(tx_cmd_b));
debug("** %s(), len %d, buf %#x\n", __func__, length,
(unsigned int)(ulong) msg);
if (length > PKTSIZE)
return -ENOSPC;
/* LAN7x disable all TX offload features for u-boot */
tx_cmd_a = (u32) (length & TX_CMD_A_LEN_MASK) | TX_CMD_A_FCS;
tx_cmd_b = 0;
cpu_to_le32s(&tx_cmd_a);
cpu_to_le32s(&tx_cmd_b);
/* prepend cmd_a and cmd_b */
memcpy(msg, &tx_cmd_a, sizeof(tx_cmd_a));
memcpy(msg + sizeof(tx_cmd_a), &tx_cmd_b, sizeof(tx_cmd_b));
memcpy(msg + sizeof(tx_cmd_a) + sizeof(tx_cmd_b), (void *)packet,
length);
err = usb_bulk_msg(ueth->pusb_dev,
usb_sndbulkpipe(ueth->pusb_dev, ueth->ep_out),
(void *)msg,
length + sizeof(tx_cmd_a) +
sizeof(tx_cmd_b),
&actual_len, USB_BULK_SEND_TIMEOUT_MS);
debug("Tx: len = %u, actual = %u, err = %d\n",
(unsigned int)(length + sizeof(tx_cmd_a) + sizeof(tx_cmd_b)),
(unsigned int)actual_len, err);
return err;
}
int lan7x_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct lan7x_private *priv = dev_get_priv(dev);
struct ueth_data *ueth = &priv->ueth;
uint8_t *ptr;
int ret, len;
u32 packet_len = 0;
u32 rx_cmd_a = 0;
len = usb_ether_get_rx_bytes(ueth, &ptr);
debug("%s: first try, len=%d\n", __func__, len);
if (!len) {
if (!(flags & ETH_RECV_CHECK_DEVICE))
return -EAGAIN;
ret = usb_ether_receive(ueth, RX_URB_SIZE);
if (ret == -EAGAIN)
return ret;
len = usb_ether_get_rx_bytes(ueth, &ptr);
debug("%s: second try, len=%d\n", __func__, len);
}
/*
* 1st 4 bytes contain the length of the actual data plus error info.
* Extract data length.
*/
if (len < sizeof(packet_len)) {
debug("Rx: incomplete packet length\n");
goto err;
}
memcpy(&rx_cmd_a, ptr, sizeof(rx_cmd_a));
le32_to_cpus(&rx_cmd_a);
if (rx_cmd_a & RX_CMD_A_RXE) {
debug("Rx: Error header=%#x", rx_cmd_a);
goto err;
}
packet_len = (u16) (rx_cmd_a & RX_CMD_A_LEN_MASK);
if (packet_len > len - sizeof(packet_len)) {
debug("Rx: too large packet: %d\n", packet_len);
goto err;
}
/*
* For LAN7x, the length in command A does not
* include command A, B, and C length.
* So use it as is.
*/
*packetp = ptr + 10;
return packet_len;
err:
usb_ether_advance_rxbuf(ueth, -1);
return -EINVAL;
}
int lan7x_free_pkt(struct udevice *dev, uchar *packet, int packet_len)
{
struct lan7x_private *priv = dev_get_priv(dev);
packet_len = ALIGN(packet_len, 4);
usb_ether_advance_rxbuf(&priv->ueth, sizeof(u32) + packet_len);
return 0;
}
int lan7x_eth_remove(struct udevice *dev)
{
struct lan7x_private *priv = dev_get_priv(dev);
debug("** %s()\n", __func__);
free(priv->phydev);
mdio_unregister(priv->mdiobus);
mdio_free(priv->mdiobus);
return 0;
}