upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
u-boot/arch/arc/include/asm/io.h

283 lines
8.1 KiB

/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Copyright (C) 2013-2014 Synopsys, Inc. All rights reserved.
*/
#ifndef __ASM_ARC_IO_H
#define __ASM_ARC_IO_H
#include <linux/types.h>
#include <asm/byteorder.h>
#ifdef __ARCHS__
/*
* ARCv2 based HS38 cores are in-order issue, but still weakly ordered
* due to micro-arch buffering/queuing of load/store, cache hit vs. miss ...
*
* Explicit barrier provided by DMB instruction
* - Operand supports fine grained load/store/load+store semantics
* - Ensures that selected memory operation issued before it will complete
* before any subsequent memory operation of same type
* - DMB guarantees SMP as well as local barrier semantics
* (asm-generic/barrier.h ensures sane smp_*mb if not defined here, i.e.
* UP: barrier(), SMP: smp_*mb == *mb)
* - DSYNC provides DMB+completion_of_cache_bpu_maintenance_ops hence not needed
* in the general case. Plus it only provides full barrier.
*/
#define mb() asm volatile("dmb 3\n" : : : "memory")
#define rmb() asm volatile("dmb 1\n" : : : "memory")
#define wmb() asm volatile("dmb 2\n" : : : "memory")
#else
/*
* ARCompact based cores (ARC700) only have SYNC instruction which is super
* heavy weight as it flushes the pipeline as well.
* There are no real SMP implementations of such cores.
*/
#define mb() asm volatile("sync\n" : : : "memory")
#endif
#ifdef __ARCHS__
#define __iormb() rmb()
#define __iowmb() wmb()
#else
#define __iormb() asm volatile("" : : : "memory")
#define __iowmb() asm volatile("" : : : "memory")
#endif
static inline void sync(void)
{
/* Not yet implemented */
}
static inline u8 __raw_readb(const volatile void __iomem *addr)
{
u8 b;
__asm__ __volatile__("ldb%U1 %0, %1\n"
: "=r" (b)
: "m" (*(volatile u8 __force *)addr)
: "memory");
return b;
}
static inline u16 __raw_readw(const volatile void __iomem *addr)
{
u16 s;
__asm__ __volatile__("ldw%U1 %0, %1\n"
: "=r" (s)
: "m" (*(volatile u16 __force *)addr)
: "memory");
return s;
}
static inline u32 __raw_readl(const volatile void __iomem *addr)
{
u32 w;
__asm__ __volatile__("ld%U1 %0, %1\n"
: "=r" (w)
: "m" (*(volatile u32 __force *)addr)
: "memory");
return w;
}
static inline void __raw_writeb(u8 b, volatile void __iomem *addr)
{
__asm__ __volatile__("stb%U1 %0, %1\n"
:
: "r" (b), "m" (*(volatile u8 __force *)addr)
: "memory");
}
static inline void __raw_writew(u16 s, volatile void __iomem *addr)
{
__asm__ __volatile__("stw%U1 %0, %1\n"
:
: "r" (s), "m" (*(volatile u16 __force *)addr)
: "memory");
}
static inline void __raw_writel(u32 w, volatile void __iomem *addr)
{
__asm__ __volatile__("st%U1 %0, %1\n"
:
: "r" (w), "m" (*(volatile u32 __force *)addr)
: "memory");
}
static inline int __raw_readsb(unsigned int addr, void *data, int bytelen)
{
__asm__ __volatile__ ("1:ld.di r8, [r0]\n"
"sub.f r2, r2, 1\n"
"bnz.d 1b\n"
"stb.ab r8, [r1, 1]\n"
:
: "r" (addr), "r" (data), "r" (bytelen)
: "r8");
return bytelen;
}
static inline int __raw_readsw(unsigned int addr, void *data, int wordlen)
{
__asm__ __volatile__ ("1:ld.di r8, [r0]\n"
"sub.f r2, r2, 1\n"
"bnz.d 1b\n"
"stw.ab r8, [r1, 2]\n"
:
: "r" (addr), "r" (data), "r" (wordlen)
: "r8");
return wordlen;
}
static inline int __raw_readsl(unsigned int addr, void *data, int longlen)
{
__asm__ __volatile__ ("1:ld.di r8, [r0]\n"
"sub.f r2, r2, 1\n"
"bnz.d 1b\n"
"st.ab r8, [r1, 4]\n"
:
: "r" (addr), "r" (data), "r" (longlen)
: "r8");
return longlen;
}
static inline int __raw_writesb(unsigned int addr, void *data, int bytelen)
{
__asm__ __volatile__ ("1:ldb.ab r8, [r1, 1]\n"
"sub.f r2, r2, 1\n"
"bnz.d 1b\n"
"st.di r8, [r0, 0]\n"
:
: "r" (addr), "r" (data), "r" (bytelen)
: "r8");
return bytelen;
}
static inline int __raw_writesw(unsigned int addr, void *data, int wordlen)
{
__asm__ __volatile__ ("1:ldw.ab r8, [r1, 2]\n"
"sub.f r2, r2, 1\n"
"bnz.d 1b\n"
"st.ab.di r8, [r0, 0]\n"
:
: "r" (addr), "r" (data), "r" (wordlen)
: "r8");
return wordlen;
}
static inline int __raw_writesl(unsigned int addr, void *data, int longlen)
{
__asm__ __volatile__ ("1:ld.ab r8, [r1, 4]\n"
"sub.f r2, r2, 1\n"
"bnz.d 1b\n"
"st.ab.di r8, [r0, 0]\n"
:
: "r" (addr), "r" (data), "r" (longlen)
: "r8");
return longlen;
}
/*
* MMIO can also get buffered/optimized in micro-arch, so barriers needed
* Based on ARM model for the typical use case
*
* <ST [DMA buffer]>
* <writel MMIO "go" reg>
* or:
* <readl MMIO "status" reg>
* <LD [DMA buffer]>
*
* http://lkml.kernel.org/r/20150622133656.GG1583@arm.com
*/
#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
#define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); })
#define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); })
#define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); })
/*
* Relaxed API for drivers which can handle barrier ordering themselves
*
* Also these are defined to perform little endian accesses.
* To provide the typical device register semantics of fixed endian,
* swap the byte order for Big Endian
*
* http://lkml.kernel.org/r/201603100845.30602.arnd@arndb.de
*/
#define readb_relaxed(c) __raw_readb(c)
#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
__raw_readw(c)); __r; })
#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
__raw_readl(c)); __r; })
#define writeb_relaxed(v,c) __raw_writeb(v,c)
#define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c)
#define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c)
#define out_arch(type, endian, a, v) __raw_write##type(cpu_to_##endian(v), a)
#define in_arch(type, endian, a) endian##_to_cpu(__raw_read##type(a))
#define out_le32(a, v) out_arch(l, le32, a, v)
#define out_le16(a, v) out_arch(w, le16, a, v)
#define in_le32(a) in_arch(l, le32, a)
#define in_le16(a) in_arch(w, le16, a)
#define out_be32(a, v) out_arch(l, be32, a, v)
#define out_be16(a, v) out_arch(w, be16, a, v)
#define in_be32(a) in_arch(l, be32, a)
#define in_be16(a) in_arch(w, be16, a)
#define out_8(a, v) __raw_writeb(v, a)
#define in_8(a) __raw_readb(a)
/*
* Clear and set bits in one shot. These macros can be used to clear and
* set multiple bits in a register using a single call. These macros can
* also be used to set a multiple-bit bit pattern using a mask, by
* specifying the mask in the 'clear' parameter and the new bit pattern
* in the 'set' parameter.
*/
#define clrbits(type, addr, clear) \
out_##type((addr), in_##type(addr) & ~(clear))
#define setbits(type, addr, set) \
out_##type((addr), in_##type(addr) | (set))
#define clrsetbits(type, addr, clear, set) \
out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
#define clrbits_be32(addr, clear) clrbits(be32, addr, clear)
#define setbits_be32(addr, set) setbits(be32, addr, set)
#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
#define clrbits_le32(addr, clear) clrbits(le32, addr, clear)
#define setbits_le32(addr, set) setbits(le32, addr, set)
#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
#define clrbits_be16(addr, clear) clrbits(be16, addr, clear)
#define setbits_be16(addr, set) setbits(be16, addr, set)
#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
#define clrbits_le16(addr, clear) clrbits(le16, addr, clear)
#define setbits_le16(addr, set) setbits(le16, addr, set)
#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
#define clrbits_8(addr, clear) clrbits(8, addr, clear)
#define setbits_8(addr, set) setbits(8, addr, set)
#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
#include <asm-generic/io.h>
#endif /* __ASM_ARC_IO_H */