upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
u-boot/common/fb_mmc.c

220 lines
5.7 KiB

/*
* Copyright 2014 Broadcom Corporation.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <config.h>
#include <common.h>
#include <blk.h>
#include <errno.h>
#include <fastboot.h>
#include <fb_mmc.h>
#include <image-sparse.h>
#include <part.h>
#include <sparse_format.h>
#include <mmc.h>
#include <div64.h>
#ifndef CONFIG_FASTBOOT_GPT_NAME
#define CONFIG_FASTBOOT_GPT_NAME GPT_ENTRY_NAME
#endif
static char *response_str;
struct fb_mmc_sparse {
struct blk_desc *dev_desc;
};
static int part_get_info_efi_by_name_or_alias(struct blk_desc *dev_desc,
const char *name, disk_partition_t *info)
{
int ret;
ret = part_get_info_efi_by_name(dev_desc, name, info);
if (ret) {
/* strlen("fastboot_partition_alias_") + 32(part_name) + 1 */
char env_alias_name[25 + 32 + 1];
char *aliased_part_name;
/* check for alias */
strcpy(env_alias_name, "fastboot_partition_alias_");
strncat(env_alias_name, name, 32);
aliased_part_name = getenv(env_alias_name);
if (aliased_part_name != NULL)
ret = part_get_info_efi_by_name(dev_desc,
aliased_part_name, info);
}
return ret;
}
static int fb_mmc_sparse_write(struct sparse_storage *storage,
void *priv,
unsigned int offset,
unsigned int size,
char *data)
{
struct fb_mmc_sparse *sparse = priv;
struct blk_desc *dev_desc = sparse->dev_desc;
int ret;
ret = blk_dwrite(dev_desc, offset, size, data);
if (!ret)
return -EIO;
return ret;
}
static void write_raw_image(struct blk_desc *dev_desc, disk_partition_t *info,
const char *part_name, void *buffer,
unsigned int download_bytes)
{
lbaint_t blkcnt;
lbaint_t blks;
/* determine number of blocks to write */
blkcnt = ((download_bytes + (info->blksz - 1)) & ~(info->blksz - 1));
blkcnt = lldiv(blkcnt, info->blksz);
if (blkcnt > info->size) {
error("too large for partition: '%s'\n", part_name);
fastboot_fail(response_str, "too large for partition");
return;
}
puts("Flashing Raw Image\n");
blks = blk_dwrite(dev_desc, info->start, blkcnt, buffer);
if (blks != blkcnt) {
error("failed writing to device %d\n", dev_desc->devnum);
fastboot_fail(response_str, "failed writing to device");
return;
}
printf("........ wrote " LBAFU " bytes to '%s'\n", blkcnt * info->blksz,
part_name);
fastboot_okay(response_str, "");
}
fastboot: Implement flashing session counter The fastboot flash command that writes an image to a partition works in several steps: 1 - Retrieve the maximum size the device can download through the "max-download-size" variable 2 - Retrieve the partition type through the "partition-type:%s" variable, that indicates whether or not the partition needs to be erased (even though the fastboot client has minimal support for that) 3a - If the image is smaller than what the device can handle, send the image and flash it. 3b - If the image is larger than what the device can handle, create a sparse image, and split it in several chunks that would fit. Send the chunk, flash it, repeat until we have no more data to send. However, in the 3b case, the subsequent transfers have no particular identifiers, the protocol just assumes that you would resume the writes where you left it. While doing so works well, it also means that flashing two subsequent images on the same partition (for example because the user made a mistake) would not work withouth flashing another partition or rebooting the board, which is not really intuitive. Since we have always the same pattern, we can however maintain a counter that will be reset every time the client will retrieve max-download-size, and incremented after each buffer will be flashed, that will allow us to tell whether we should simply resume the flashing where we were, or start back at the beginning of the partition. Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Reviewed-by: Tom Rini <trini@konsulko.com>
9 years ago
void fb_mmc_flash_write(const char *cmd, unsigned int session_id,
void *download_buffer, unsigned int download_bytes,
char *response)
{
struct blk_desc *dev_desc;
disk_partition_t info;
/* initialize the response buffer */
response_str = response;
dev_desc = blk_get_dev("mmc", CONFIG_FASTBOOT_FLASH_MMC_DEV);
if (!dev_desc || dev_desc->type == DEV_TYPE_UNKNOWN) {
error("invalid mmc device\n");
fastboot_fail(response_str, "invalid mmc device");
return;
}
if (strcmp(cmd, CONFIG_FASTBOOT_GPT_NAME) == 0) {
printf("%s: updating MBR, Primary and Backup GPT(s)\n",
__func__);
if (is_valid_gpt_buf(dev_desc, download_buffer)) {
printf("%s: invalid GPT - refusing to write to flash\n",
__func__);
fastboot_fail(response_str, "invalid GPT partition");
return;
}
if (write_mbr_and_gpt_partitions(dev_desc, download_buffer)) {
printf("%s: writing GPT partitions failed\n", __func__);
fastboot_fail(response_str,
"writing GPT partitions failed");
return;
}
printf("........ success\n");
fastboot_okay(response_str, "");
return;
} else if (part_get_info_efi_by_name_or_alias(dev_desc, cmd, &info)) {
error("cannot find partition: '%s'\n", cmd);
fastboot_fail(response_str, "cannot find partition");
return;
}
if (is_sparse_image(download_buffer)) {
struct fb_mmc_sparse sparse_priv;
sparse_storage_t sparse;
sparse_priv.dev_desc = dev_desc;
sparse.block_sz = info.blksz;
sparse.start = info.start;
sparse.size = info.size;
sparse.name = cmd;
sparse.write = fb_mmc_sparse_write;
printf("Flashing sparse image at offset " LBAFU "\n",
info.start);
fastboot: Implement flashing session counter The fastboot flash command that writes an image to a partition works in several steps: 1 - Retrieve the maximum size the device can download through the "max-download-size" variable 2 - Retrieve the partition type through the "partition-type:%s" variable, that indicates whether or not the partition needs to be erased (even though the fastboot client has minimal support for that) 3a - If the image is smaller than what the device can handle, send the image and flash it. 3b - If the image is larger than what the device can handle, create a sparse image, and split it in several chunks that would fit. Send the chunk, flash it, repeat until we have no more data to send. However, in the 3b case, the subsequent transfers have no particular identifiers, the protocol just assumes that you would resume the writes where you left it. While doing so works well, it also means that flashing two subsequent images on the same partition (for example because the user made a mistake) would not work withouth flashing another partition or rebooting the board, which is not really intuitive. Since we have always the same pattern, we can however maintain a counter that will be reset every time the client will retrieve max-download-size, and incremented after each buffer will be flashed, that will allow us to tell whether we should simply resume the flashing where we were, or start back at the beginning of the partition. Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Reviewed-by: Tom Rini <trini@konsulko.com>
9 years ago
store_sparse_image(&sparse, &sparse_priv, session_id,
download_buffer);
} else {
write_raw_image(dev_desc, &info, cmd, download_buffer,
download_bytes);
}
fastboot_okay(response_str, "");
}
void fb_mmc_erase(const char *cmd, char *response)
{
int ret;
struct blk_desc *dev_desc;
disk_partition_t info;
lbaint_t blks, blks_start, blks_size, grp_size;
struct mmc *mmc = find_mmc_device(CONFIG_FASTBOOT_FLASH_MMC_DEV);
if (mmc == NULL) {
error("invalid mmc device");
fastboot_fail(response_str, "invalid mmc device");
return;
}
/* initialize the response buffer */
response_str = response;
dev_desc = blk_get_dev("mmc", CONFIG_FASTBOOT_FLASH_MMC_DEV);
if (!dev_desc || dev_desc->type == DEV_TYPE_UNKNOWN) {
error("invalid mmc device");
fastboot_fail(response_str, "invalid mmc device");
return;
}
ret = part_get_info_efi_by_name_or_alias(dev_desc, cmd, &info);
if (ret) {
error("cannot find partition: '%s'", cmd);
fastboot_fail(response_str, "cannot find partition");
return;
}
/* Align blocks to erase group size to avoid erasing other partitions */
grp_size = mmc->erase_grp_size;
blks_start = (info.start + grp_size - 1) & ~(grp_size - 1);
if (info.size >= grp_size)
blks_size = (info.size - (blks_start - info.start)) &
(~(grp_size - 1));
else
blks_size = 0;
printf("Erasing blocks " LBAFU " to " LBAFU " due to alignment\n",
blks_start, blks_start + blks_size);
blks = dev_desc->block_erase(dev_desc, blks_start, blks_size);
if (blks != blks_size) {
error("failed erasing from device %d", dev_desc->devnum);
fastboot_fail(response_str, "failed erasing from device");
return;
}
printf("........ erased " LBAFU " bytes from '%s'\n",
blks_size * info.blksz, cmd);
fastboot_okay(response_str, "");
}