|
|
|
/*
|
|
|
|
* (C) Copyright 2000-2004
|
|
|
|
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <common.h>
|
|
|
|
#include <mpc8xx.h>
|
|
|
|
#include <asm/processor.h>
|
|
|
|
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
|
|
|
|
#if !defined(CONFIG_8xx_CPUCLK_DEFAULT) || defined(CONFIG_SYS_MEASURE_CPUCLK) || defined(DEBUG)
|
|
|
|
|
|
|
|
#define PITC_SHIFT 16
|
|
|
|
#define PITR_SHIFT 16
|
|
|
|
/* pitc values to time for 58/8192 seconds (about 70.8 milliseconds) */
|
|
|
|
#define SPEED_PIT_COUNTS 58
|
|
|
|
#define SPEED_PITC ((SPEED_PIT_COUNTS - 1) << PITC_SHIFT)
|
|
|
|
#define SPEED_PITC_INIT ((SPEED_PIT_COUNTS + 1) << PITC_SHIFT)
|
|
|
|
|
|
|
|
/* Access functions for the Machine State Register */
|
|
|
|
static __inline__ unsigned long get_msr(void)
|
|
|
|
{
|
|
|
|
unsigned long msr;
|
|
|
|
|
|
|
|
asm volatile("mfmsr %0" : "=r" (msr) :);
|
|
|
|
return msr;
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline__ void set_msr(unsigned long msr)
|
|
|
|
{
|
|
|
|
asm volatile("mtmsr %0" : : "r" (msr));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Measure CPU clock speed (core clock GCLK1, GCLK2),
|
|
|
|
* also determine bus clock speed (checking bus divider factor)
|
|
|
|
*
|
|
|
|
* (Approx. GCLK frequency in Hz)
|
|
|
|
*
|
|
|
|
* Initializes timer 2 and PIT, but disables them before return.
|
|
|
|
* [Use timer 2, because MPC823 CPUs mask 0.x do not have timers 3 and 4]
|
|
|
|
*
|
|
|
|
* When measuring the CPU clock against the PIT, we count cpu clocks
|
|
|
|
* for 58/8192 seconds with a prescale divide by 177 for the cpu clock.
|
|
|
|
* These strange values for the timing interval and prescaling are used
|
|
|
|
* because the formula for the CPU clock is:
|
|
|
|
*
|
|
|
|
* CPU clock = count * (177 * (8192 / 58))
|
|
|
|
*
|
|
|
|
* = count * 24999.7241
|
|
|
|
*
|
|
|
|
* which is very close to
|
|
|
|
*
|
|
|
|
* = count * 25000
|
|
|
|
*
|
|
|
|
* Since the count gives the CPU clock divided by 25000, we can get
|
|
|
|
* the CPU clock rounded to the nearest 0.1 MHz by
|
|
|
|
*
|
|
|
|
* CPU clock = ((count + 2) / 4) * 100000;
|
|
|
|
*
|
|
|
|
* The rounding is important since the measurement is sometimes going
|
|
|
|
* to be high or low by 0.025 MHz, depending on exactly how the clocks
|
|
|
|
* and counters interact. By rounding we get the exact answer for any
|
|
|
|
* CPU clock that is an even multiple of 0.1 MHz.
|
|
|
|
*/
|
|
|
|
|
|
|
|
unsigned long measure_gclk(void)
|
|
|
|
{
|
|
|
|
volatile immap_t *immr = (immap_t *) CONFIG_SYS_IMMR;
|
|
|
|
volatile cpmtimer8xx_t *timerp = &immr->im_cpmtimer;
|
|
|
|
ulong timer2_val;
|
|
|
|
ulong msr_val;
|
|
|
|
|
|
|
|
#ifdef CONFIG_SYS_8XX_XIN
|
|
|
|
/* dont use OSCM, only use EXTCLK/512 */
|
|
|
|
immr->im_clkrst.car_sccr |= SCCR_RTSEL | SCCR_RTDIV;
|
|
|
|
#else
|
|
|
|
immr->im_clkrst.car_sccr &= ~(SCCR_RTSEL | SCCR_RTDIV);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Reset + Stop Timer 2, no cascading
|
|
|
|
*/
|
|
|
|
timerp->cpmt_tgcr &= ~(TGCR_CAS2 | TGCR_RST2);
|
|
|
|
|
|
|
|
/* Keep stopped, halt in debug mode
|
|
|
|
*/
|
|
|
|
timerp->cpmt_tgcr |= (TGCR_FRZ2 | TGCR_STP2);
|
|
|
|
|
|
|
|
/* Timer 2 setup:
|
|
|
|
* Output ref. interrupt disable, int. clock
|
|
|
|
* Prescale by 177. Note that prescaler divides by value + 1
|
|
|
|
* so we must subtract 1 here.
|
|
|
|
*/
|
|
|
|
timerp->cpmt_tmr2 = ((177 - 1) << TMR_PS_SHIFT) | TMR_ICLK_IN_GEN;
|
|
|
|
|
|
|
|
timerp->cpmt_tcn2 = 0; /* reset state */
|
|
|
|
timerp->cpmt_tgcr |= TGCR_RST2; /* enable timer 2 */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* PIT setup:
|
|
|
|
*
|
|
|
|
* We want to time for SPEED_PITC_COUNTS counts (of 8192 Hz),
|
|
|
|
* so the count value would be SPEED_PITC_COUNTS - 1.
|
|
|
|
* But there would be an uncertainty in the start time of 1/4
|
|
|
|
* count since when we enable the PIT the count is not
|
|
|
|
* synchronized to the 32768 Hz oscillator. The trick here is
|
|
|
|
* to start the count higher and wait until the PIT count
|
|
|
|
* changes to the required value before starting timer 2.
|
|
|
|
*
|
|
|
|
* One count high should be enough, but occasionally the start
|
|
|
|
* is off by 1 or 2 counts of 32768 Hz. With the start value
|
|
|
|
* set two counts high it seems very reliable.
|
|
|
|
*/
|
|
|
|
|
|
|
|
immr->im_sitk.sitk_pitck = KAPWR_KEY; /* PIT initialization */
|
|
|
|
immr->im_sit.sit_pitc = SPEED_PITC_INIT;
|
|
|
|
|
|
|
|
immr->im_sitk.sitk_piscrk = KAPWR_KEY;
|
|
|
|
immr->im_sit.sit_piscr = CONFIG_SYS_PISCR;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Start measurement - disable interrupts, just in case
|
|
|
|
*/
|
|
|
|
msr_val = get_msr ();
|
|
|
|
set_msr (msr_val & ~MSR_EE);
|
|
|
|
|
|
|
|
immr->im_sit.sit_piscr |= PISCR_PTE;
|
|
|
|
|
|
|
|
/* spin until get exact count when we want to start */
|
|
|
|
while (immr->im_sit.sit_pitr > SPEED_PITC);
|
|
|
|
|
|
|
|
timerp->cpmt_tgcr &= ~TGCR_STP2; /* Start Timer 2 */
|
|
|
|
while ((immr->im_sit.sit_piscr & PISCR_PS) == 0);
|
|
|
|
timerp->cpmt_tgcr |= TGCR_STP2; /* Stop Timer 2 */
|
|
|
|
|
|
|
|
/* re-enable external interrupts if they were on */
|
|
|
|
set_msr (msr_val);
|
|
|
|
|
|
|
|
/* Disable timer and PIT
|
|
|
|
*/
|
|
|
|
timer2_val = timerp->cpmt_tcn2; /* save before reset timer */
|
|
|
|
|
|
|
|
timerp->cpmt_tgcr &= ~(TGCR_RST2 | TGCR_FRZ2 | TGCR_STP2);
|
|
|
|
immr->im_sit.sit_piscr &= ~PISCR_PTE;
|
|
|
|
|
|
|
|
#if defined(CONFIG_SYS_8XX_XIN)
|
|
|
|
/* not using OSCM, using XIN, so scale appropriately */
|
|
|
|
return (((timer2_val + 2) / 4) * (CONFIG_SYS_8XX_XIN/512))/8192 * 100000L;
|
|
|
|
#else
|
|
|
|
return ((timer2_val + 2) / 4) * 100000L; /* convert to Hz */
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void get_brgclk(uint sccr)
|
|
|
|
{
|
|
|
|
uint divider = 0;
|
|
|
|
|
|
|
|
switch((sccr&SCCR_DFBRG11)>>11){
|
|
|
|
case 0:
|
|
|
|
divider = 1;
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
divider = 4;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
divider = 16;
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
divider = 64;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
gd->arch.brg_clk = gd->cpu_clk/divider;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if !defined(CONFIG_8xx_CPUCLK_DEFAULT)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* get_clocks() fills in gd->cpu_clock depending on CONFIG_8xx_GCLK_FREQ
|
|
|
|
* or (if it is not defined) measure_gclk() (which uses the ref clock)
|
|
|
|
* from above.
|
|
|
|
*/
|
|
|
|
int get_clocks (void)
|
|
|
|
{
|
|
|
|
uint immr = get_immr (0); /* Return full IMMR contents */
|
|
|
|
volatile immap_t *immap = (immap_t *) (immr & 0xFFFF0000);
|
|
|
|
uint sccr = immap->im_clkrst.car_sccr;
|
|
|
|
/*
|
|
|
|
* If for some reason measuring the gclk frequency won't
|
|
|
|
* work, we return the hardwired value.
|
|
|
|
* (For example, the cogent CMA286-60 CPU module has no
|
|
|
|
* separate oscillator for PITRTCLK)
|
|
|
|
*/
|
|
|
|
#if defined(CONFIG_8xx_GCLK_FREQ)
|
|
|
|
gd->cpu_clk = CONFIG_8xx_GCLK_FREQ;
|
|
|
|
#elif defined(CONFIG_8xx_OSCLK)
|
|
|
|
#define PLPRCR_val(a) ((pll & PLPRCR_ ## a ## _MSK) >> PLPRCR_ ## a ## _SHIFT)
|
|
|
|
uint pll = immap->im_clkrst.car_plprcr;
|
|
|
|
uint clk;
|
|
|
|
|
|
|
|
if ((immr & 0x0FFF) >= MPC8xx_NEW_CLK) { /* MPC866/87x/88x series */
|
|
|
|
clk = ((CONFIG_8xx_OSCLK / (PLPRCR_val(PDF)+1)) *
|
|
|
|
(PLPRCR_val(MFI) + PLPRCR_val(MFN) / (PLPRCR_val(MFD)+1))) /
|
|
|
|
(1<<PLPRCR_val(S));
|
|
|
|
} else {
|
|
|
|
clk = CONFIG_8xx_OSCLK * (PLPRCR_val(MF)+1);
|
|
|
|
}
|
|
|
|
if (pll & PLPRCR_CSRC) { /* Low frequency division factor is used */
|
|
|
|
gd->cpu_clk = clk / (2 << ((sccr >> 8) & 7));
|
|
|
|
} else { /* High frequency division factor is used */
|
|
|
|
gd->cpu_clk = clk / (1 << ((sccr >> 5) & 7));
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
gd->cpu_clk = measure_gclk();
|
|
|
|
#endif /* CONFIG_8xx_GCLK_FREQ */
|
|
|
|
|
|
|
|
if ((sccr & SCCR_EBDF11) == 0) {
|
|
|
|
/* No Bus Divider active */
|
|
|
|
gd->bus_clk = gd->cpu_clk;
|
|
|
|
} else {
|
|
|
|
/* The MPC8xx has only one BDF: half clock speed */
|
|
|
|
gd->bus_clk = gd->cpu_clk / 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
get_brgclk(sccr);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
#else /* CONFIG_8xx_CPUCLK_DEFAULT defined, use dynamic clock setting */
|
|
|
|
|
|
|
|
static long init_pll_866 (long clk);
|
|
|
|
|
|
|
|
/* This function sets up PLL (init_pll_866() is called) and
|
|
|
|
* fills gd->cpu_clk and gd->bus_clk according to the environment
|
|
|
|
* variable 'cpuclk' or to CONFIG_8xx_CPUCLK_DEFAULT (if 'cpuclk'
|
|
|
|
* contains invalid value).
|
|
|
|
* This functions requires an MPC866 or newer series CPU.
|
|
|
|
*/
|
|
|
|
int get_clocks_866 (void)
|
|
|
|
{
|
|
|
|
volatile immap_t *immr = (immap_t *) CONFIG_SYS_IMMR;
|
|
|
|
char tmp[64];
|
|
|
|
long cpuclk = 0;
|
|
|
|
long sccr_reg;
|
|
|
|
|
Rename getenv_r() into getenv_f()
While running from flash, i. e. before relocation, we have only a
limited C runtime environment without writable data segment. In this
phase, some configurations (for example with environment in EEPROM)
must not use the normal getenv(), but a special function. This
function had been called getenv_r(), with the idea that the "_r"
suffix would mean the same as in the _r_eentrant versions of some of
the C library functions (for example getdate vs. getdate_r, getgrent
vs. getgrent_r, etc.).
Unfortunately this was a misleading name, as in U-Boot the "_r"
generally means "running from RAM", i. e. _after_ relocation.
To avoid confusion, rename into getenv_f() [as "running from flash"]
Signed-off-by: Wolfgang Denk <wd@denx.de>
Acked-by: Detlev Zundel <dzu@denx.de>
15 years ago
|
|
|
if (getenv_f("cpuclk", tmp, sizeof (tmp)) > 0)
|
|
|
|
cpuclk = simple_strtoul (tmp, NULL, 10) * 1000000;
|
|
|
|
|
|
|
|
if ((CONFIG_SYS_8xx_CPUCLK_MIN > cpuclk) || (CONFIG_SYS_8xx_CPUCLK_MAX < cpuclk))
|
|
|
|
cpuclk = CONFIG_8xx_CPUCLK_DEFAULT;
|
|
|
|
|
|
|
|
gd->cpu_clk = init_pll_866 (cpuclk);
|
|
|
|
#if defined(CONFIG_SYS_MEASURE_CPUCLK)
|
|
|
|
gd->cpu_clk = measure_gclk ();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
get_brgclk(immr->im_clkrst.car_sccr);
|
|
|
|
|
|
|
|
/* if cpu clock <= 66 MHz then set bus division factor to 1,
|
|
|
|
* otherwise set it to 2
|
|
|
|
*/
|
|
|
|
sccr_reg = immr->im_clkrst.car_sccr;
|
|
|
|
sccr_reg &= ~SCCR_EBDF11;
|
|
|
|
|
|
|
|
if (gd->cpu_clk <= 66000000) {
|
|
|
|
sccr_reg |= SCCR_EBDF00; /* bus division factor = 1 */
|
|
|
|
gd->bus_clk = gd->cpu_clk;
|
|
|
|
} else {
|
|
|
|
sccr_reg |= SCCR_EBDF01; /* bus division factor = 2 */
|
|
|
|
gd->bus_clk = gd->cpu_clk / 2;
|
|
|
|
}
|
|
|
|
immr->im_clkrst.car_sccr = sccr_reg;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Adjust sdram refresh rate to actual CPU clock.
|
|
|
|
*/
|
|
|
|
int sdram_adjust_866 (void)
|
|
|
|
{
|
|
|
|
volatile immap_t *immr = (immap_t *) CONFIG_SYS_IMMR;
|
|
|
|
long mamr;
|
|
|
|
|
|
|
|
mamr = immr->im_memctl.memc_mamr;
|
|
|
|
mamr &= ~MAMR_PTA_MSK;
|
|
|
|
mamr |= ((gd->cpu_clk / CONFIG_SYS_PTA_PER_CLK) << MAMR_PTA_SHIFT);
|
|
|
|
immr->im_memctl.memc_mamr = mamr;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Configure PLL for MPC866/859/885 CPU series
|
|
|
|
* PLL multiplication factor is set to the value nearest to the desired clk,
|
|
|
|
* assuming a oscclk of 10 MHz.
|
|
|
|
*/
|
|
|
|
static long init_pll_866 (long clk)
|
|
|
|
{
|
|
|
|
extern void plprcr_write_866 (long);
|
|
|
|
|
|
|
|
volatile immap_t *immr = (immap_t *) CONFIG_SYS_IMMR;
|
|
|
|
long n, plprcr;
|
|
|
|
char mfi, mfn, mfd, s, pdf;
|
|
|
|
long step_mfi, step_mfn;
|
|
|
|
|
|
|
|
if (clk < 20000000) {
|
|
|
|
clk *= 2;
|
|
|
|
pdf = 1;
|
|
|
|
} else {
|
|
|
|
pdf = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (clk < 40000000) {
|
|
|
|
s = 2;
|
|
|
|
step_mfi = CONFIG_8xx_OSCLK / 4;
|
|
|
|
mfd = 7;
|
|
|
|
step_mfn = CONFIG_8xx_OSCLK / 30;
|
|
|
|
} else if (clk < 80000000) {
|
|
|
|
s = 1;
|
|
|
|
step_mfi = CONFIG_8xx_OSCLK / 2;
|
|
|
|
mfd = 14;
|
|
|
|
step_mfn = CONFIG_8xx_OSCLK / 30;
|
|
|
|
} else {
|
|
|
|
s = 0;
|
|
|
|
step_mfi = CONFIG_8xx_OSCLK;
|
|
|
|
mfd = 29;
|
|
|
|
step_mfn = CONFIG_8xx_OSCLK / 30;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Calculate integer part of multiplication factor
|
|
|
|
*/
|
|
|
|
n = clk / step_mfi;
|
|
|
|
mfi = (char)n;
|
|
|
|
|
|
|
|
/* Calculate numerator of fractional part of multiplication factor
|
|
|
|
*/
|
|
|
|
n = clk - (n * step_mfi);
|
|
|
|
mfn = (char)(n / step_mfn);
|
|
|
|
|
|
|
|
/* Calculate effective clk
|
|
|
|
*/
|
|
|
|
n = ((mfi * step_mfi) + (mfn * step_mfn)) / (pdf + 1);
|
|
|
|
|
|
|
|
immr->im_clkrstk.cark_plprcrk = KAPWR_KEY;
|
|
|
|
|
|
|
|
plprcr = (immr->im_clkrst.car_plprcr & ~(PLPRCR_MFN_MSK
|
|
|
|
| PLPRCR_MFD_MSK | PLPRCR_S_MSK
|
|
|
|
| PLPRCR_MFI_MSK | PLPRCR_DBRMO
|
|
|
|
| PLPRCR_PDF_MSK))
|
|
|
|
| (mfn << PLPRCR_MFN_SHIFT)
|
|
|
|
| (mfd << PLPRCR_MFD_SHIFT)
|
|
|
|
| (s << PLPRCR_S_SHIFT)
|
|
|
|
| (mfi << PLPRCR_MFI_SHIFT)
|
|
|
|
| (pdf << PLPRCR_PDF_SHIFT);
|
|
|
|
|
|
|
|
if( (mfn > 0) && ((mfd / mfn) > 10) )
|
|
|
|
plprcr |= PLPRCR_DBRMO;
|
|
|
|
|
|
|
|
plprcr_write_866 (plprcr); /* set value using SIU4/9 workaround */
|
|
|
|
immr->im_clkrstk.cark_plprcrk = 0x00000000;
|
|
|
|
|
|
|
|
return (n);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* CONFIG_8xx_CPUCLK_DEFAULT */
|
|
|
|
|
|
|
|
#if defined(CONFIG_TQM8xxL) && !defined(CONFIG_TQM866M) \
|
|
|
|
&& !defined(CONFIG_TQM885D)
|
|
|
|
/*
|
|
|
|
* Adjust sdram refresh rate to actual CPU clock
|
|
|
|
* and set timebase source according to actual CPU clock
|
|
|
|
*/
|
|
|
|
int adjust_sdram_tbs_8xx (void)
|
|
|
|
{
|
|
|
|
volatile immap_t *immr = (immap_t *) CONFIG_SYS_IMMR;
|
|
|
|
long mamr;
|
|
|
|
long sccr;
|
|
|
|
|
|
|
|
mamr = immr->im_memctl.memc_mamr;
|
|
|
|
mamr &= ~MAMR_PTA_MSK;
|
|
|
|
mamr |= ((gd->cpu_clk / CONFIG_SYS_PTA_PER_CLK) << MAMR_PTA_SHIFT);
|
|
|
|
immr->im_memctl.memc_mamr = mamr;
|
|
|
|
|
|
|
|
if (gd->cpu_clk < 67000000) {
|
|
|
|
sccr = immr->im_clkrst.car_sccr;
|
|
|
|
sccr |= SCCR_TBS;
|
|
|
|
immr->im_clkrst.car_sccr = sccr;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_TQM8xxL/M, !TQM866M, !TQM885D */
|
|
|
|
|
|
|
|
/* ------------------------------------------------------------------------- */
|