upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
u-boot/arch/arm/mach-sunxi/dram_sun9i.c

962 lines
30 KiB

/*
* sun9i dram controller initialisation
*
* (C) Copyright 2007-2015
* Allwinner Technology Co., Ltd. <www.allwinnertech.com>
* Jerry Wang <wangflord@allwinnertech.com>
*
* (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
* Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <ram.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/dram.h>
#include <asm/arch/sys_proto.h>
DECLARE_GLOBAL_DATA_PTR;
#define DRAM_CLK (CONFIG_DRAM_CLK * 1000000)
/*
* The following amounts to an extensive rewrite of the code received from
* Allwinner as part of the open-source bootloader release (refer to
* https://github.com/allwinner-zh/bootloader.git) and augments the upstream
* sources (which act as the primary reference point for the inner workings
* of the 'underdocumented' DRAM controller in the A80) using the following
* documentation for other memory controllers based on the (Synopsys)
* Designware IP (DDR memory protocol controller and DDR PHY)
* * TI Keystone II Architecture: DDR3 Memory Controller, User's Guide
* Document 'SPRUHN7C', Oct 2013 (revised March 2015)
* * Xilinx Zynq UltraScale+ MPSoC Register Reference
* document ug1087 (v1.0)
* Note that the Zynq-documentation provides a very close match for the DDR
* memory protocol controller (and provides a very good guide to the rounding
* rules for various timings), whereas the TI Keystone II document should be
* referred to for DDR PHY specifics only.
*
* The DRAM controller in the A80 runs at half the frequency of the DDR PHY
* (i.e. the rules for MEMC_FREQ_RATIO=2 from the Zynq-documentation apply).
*
* Known limitations
* =================
* In the current state, the following features are not fully supported and
* a number of simplifying assumptions have been made:
* 1) Only DDR3 support is implemented, as our test platform (the A80-Q7
* module) is designed to accomodate DDR3/DDR3L.
* 2) Only 2T-mode has been implemented and tested.
* 3) The controller supports two different clocking strategies (PLL6 can
* either be 2*CK or CK/2)... we only support the 2*CK clock at this
* time and haven't verified whether the alternative clocking strategy
* works. If you are interested in porting this over/testing this,
* please refer to cases where bit 0 of 'dram_tpr8' is tested in the
* original code from Allwinner.
* 4) Support for 2 ranks per controller is not implemented (as we don't
* the hardware to test it).
*
* Future directions
* =================
* The driver should be driven from a device-tree based configuration that
* can dynamically provide the necessary timing parameters (i.e. target
* frequency and speed-bin information)---the data structures used in the
* calculation of the timing parameters are already designed to capture
* similar information as the device tree would provide.
*
* To enable a device-tree based configuration of the sun9i platform, we
* will need to enable CONFIG_TPL and bootstrap in 3 stages: initially
* into SRAM A1 (40KB) and next into SRAM A2 (160KB)---which would be the
* stage to initialise the platform via the device-tree---before having
* the full U-Boot run from DDR.
*/
/*
* A number of DDR3 timings are given as "the greater of a fixed number of
* clock cycles (CK) or nanoseconds. We express these using a structure
* that holds a cycle count and a duration in picoseconds (so we can model
* sub-ns timings, such as 7.5ns without losing precision or resorting to
* rounding up early.
*/
struct dram_sun9i_timing {
u32 ck;
u32 ps;
};
/* */
struct dram_sun9i_cl_cwl_timing {
u32 CL;
u32 CWL;
u32 tCKmin; /* in ps */
u32 tCKmax; /* in ps */
};
struct dram_sun9i_para {
u32 dram_type;
u8 bus_width;
u8 chan;
u8 rank;
u8 rows;
u16 page_size;
/* Timing information for each speed-bin */
struct dram_sun9i_cl_cwl_timing *cl_cwl_table;
u32 cl_cwl_numentries;
/*
* For the timings, we try to keep the order and grouping used in
* JEDEC Standard No. 79-3F
*/
/* timings */
u32 tREFI; /* in ns */
u32 tRFC; /* in ns */
u32 tRAS; /* in ps */
/* command and address timing */
u32 tDLLK; /* in nCK */
struct dram_sun9i_timing tRTP;
struct dram_sun9i_timing tWTR;
u32 tWR; /* in nCK */
u32 tMRD; /* in nCK */
struct dram_sun9i_timing tMOD;
u32 tRCD; /* in ps */
u32 tRP; /* in ps */
u32 tRC; /* in ps */
u32 tCCD; /* in nCK */
struct dram_sun9i_timing tRRD;
u32 tFAW; /* in ps */
/* calibration timing */
/* struct dram_sun9i_timing tZQinit; */
struct dram_sun9i_timing tZQoper;
struct dram_sun9i_timing tZQCS;
/* reset timing */
/* struct dram_sun9i_timing tXPR; */
/* self-refresh timings */
struct dram_sun9i_timing tXS;
u32 tXSDLL; /* in nCK */
/* struct dram_sun9i_timing tCKESR; */
struct dram_sun9i_timing tCKSRE;
struct dram_sun9i_timing tCKSRX;
/* power-down timings */
struct dram_sun9i_timing tXP;
struct dram_sun9i_timing tXPDLL;
struct dram_sun9i_timing tCKE;
/* write leveling timings */
u32 tWLMRD; /* min, in nCK */
/* u32 tWLDQSEN; min, in nCK */
u32 tWLO; /* max, in ns */
/* u32 tWLOE; max, in ns */
/* u32 tCKDPX; in nCK */
/* u32 tCKCSX; in nCK */
};
static void mctl_sys_init(void);
#define SCHED_RDWR_IDLE_GAP(n) ((n & 0xff) << 24)
#define SCHED_GO2CRITICAL_HYSTERESIS(n) ((n & 0xff) << 16)
#define SCHED_LPR_NUM_ENTRIES(n) ((n & 0xff) << 8)
#define SCHED_PAGECLOSE (1 << 2)
#define SCHED_PREFER_WRITE (1 << 1)
#define SCHED_FORCE_LOW_PRI_N (1 << 0)
#define SCHED_CONFIG (SCHED_RDWR_IDLE_GAP(0xf) | \
SCHED_GO2CRITICAL_HYSTERESIS(0x80) | \
SCHED_LPR_NUM_ENTRIES(0x20) | \
SCHED_FORCE_LOW_PRI_N)
#define PERFHPR0_CONFIG 0x0000001f
#define PERFHPR1_CONFIG 0x1f00001f
#define PERFLPR0_CONFIG 0x000000ff
#define PERFLPR1_CONFIG 0x0f0000ff
#define PERFWR0_CONFIG 0x000000ff
#define PERFWR1_CONFIG 0x0f0001ff
static void mctl_ctl_sched_init(unsigned long base)
{
struct sunxi_mctl_ctl_reg *mctl_ctl =
(struct sunxi_mctl_ctl_reg *)base;
/* Needs to be done before the global clk enable... */
writel(SCHED_CONFIG, &mctl_ctl->sched);
writel(PERFHPR0_CONFIG, &mctl_ctl->perfhpr0);
writel(PERFHPR1_CONFIG, &mctl_ctl->perfhpr1);
writel(PERFLPR0_CONFIG, &mctl_ctl->perflpr0);
writel(PERFLPR1_CONFIG, &mctl_ctl->perflpr1);
writel(PERFWR0_CONFIG, &mctl_ctl->perfwr0);
writel(PERFWR1_CONFIG, &mctl_ctl->perfwr1);
}
static void mctl_sys_init(void)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
debug("Setting PLL6 to %d\n", DRAM_CLK * 2);
clock_set_pll6(DRAM_CLK * 2);
/* Original dram init code which may come in handy later
********************************************************
clock_set_pll6(use_2channelPLL ? (DRAM_CLK * 2) :
(DRAM_CLK / 2), false);
if ((para->dram_clk <= 400)|((para->dram_tpr8 & 0x1)==0)) {
* PLL6 should be 2*CK *
* ccm_setup_pll6_ddr_clk(PLL6_DDR_CLK); *
ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) * 2), 0);
} else {
* PLL6 should be CK/2 *
ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) / 2), 1);
}
if (para->dram_tpr13 & (0xf<<18)) {
*
* bit21:bit18=0001:pll swing 0.4
* bit21:bit18=0010:pll swing 0.3
* bit21:bit18=0100:pll swing 0.2
* bit21:bit18=1000:pll swing 0.1
*
dram_dbg("DRAM fre extend open !\n");
reg_val=mctl_read_w(CCM_PLL6_DDR_REG);
reg_val&=(0x1<<16);
reg_val=reg_val>>16;
if(para->dram_tpr13 & (0x1<<18))
{
mctl_write_w(CCM_PLL_BASE + 0x114,
(0x3333U|(0x3<<17)|(reg_val<<19)|(0x120U<<20)|
(0x2U<<29)|(0x1U<<31)));
}
else if(para->dram_tpr13 & (0x1<<19))
{
mctl_write_w(CCM_PLL_BASE + 0x114,
(0x6666U|(0x3U<<17)|(reg_val<<19)|(0xD8U<<20)|
(0x2U<<29)|(0x1U<<31)));
}
else if(para->dram_tpr13 & (0x1<<20))
{
mctl_write_w(CCM_PLL_BASE + 0x114,
(0x9999U|(0x3U<<17)|(reg_val<<19)|(0x90U<<20)|
(0x2U<<29)|(0x1U<<31)));
}
else if(para->dram_tpr13 & (0x1<<21))
{
mctl_write_w(CCM_PLL_BASE + 0x114,
(0xccccU|(0x3U<<17)|(reg_val<<19)|(0x48U<<20)|
(0x2U<<29)|(0x1U<<31)));
}
//frequency extend open
reg_val = mctl_read_w(CCM_PLL6_DDR_REG);
reg_val |= ((0x1<<24)|(0x1<<30));
mctl_write_w(CCM_PLL6_DDR_REG, reg_val);
while(mctl_read_w(CCM_PLL6_DDR_REG) & (0x1<<30));
}
aw_delay(0x20000); //make some delay
********************************************************
*/
/* assert mctl reset */
clrbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
/* stop mctl clock */
clrbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
sdelay(2000);
/* deassert mctl reset */
setbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
/* enable mctl clock */
setbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
/* set up the transactions scheduling before enabling the global clk */
mctl_ctl_sched_init(SUNXI_DRAM_CTL0_BASE);
mctl_ctl_sched_init(SUNXI_DRAM_CTL1_BASE);
sdelay(1000);
debug("2\n");
/* (3 << 12): PLL_DDR */
writel((3 << 12) | (1 << 16), &ccm->dram_clk_cfg);
do {
debug("Waiting for DRAM_CLK_CFG\n");
sdelay(10000);
} while (readl(&ccm->dram_clk_cfg) & (1 << 16));
setbits_le32(&ccm->dram_clk_cfg, (1 << 31));
/* TODO: we only support the common case ... i.e. 2*CK */
setbits_le32(&mctl_com->ccr, (1 << 14) | (1 << 30));
writel(2, &mctl_com->rmcr); /* controller clock is PLL6/4 */
sdelay(2000);
/* Original dram init code which may come in handy later
********************************************************
if ((para->dram_clk <= 400) | ((para->dram_tpr8 & 0x1) == 0)) {
* PLL6 should be 2*CK *
* gating 2 channel pll *
reg_val = mctl_read_w(MC_CCR);
reg_val |= ((0x1 << 14) | (0x1U << 30));
mctl_write_w(MC_CCR, reg_val);
mctl_write_w(MC_RMCR, 0x2); * controller clock use pll6/4 *
} else {
* enable 2 channel pll *
reg_val = mctl_read_w(MC_CCR);
reg_val &= ~((0x1 << 14) | (0x1U << 30));
mctl_write_w(MC_CCR, reg_val);
mctl_write_w(MC_RMCR, 0x0); * controller clock use pll6 *
}
reg_val = mctl_read_w(MC_CCR);
reg_val &= ~((0x1<<15)|(0x1U<<31));
mctl_write_w(MC_CCR, reg_val);
aw_delay(20);
//aw_delay(0x10);
********************************************************
*/
clrbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN | MCTL_CCR_CH1_CLK_EN);
sdelay(1000);
setbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN);
/* TODO if (para->chan == 2) */
setbits_le32(&mctl_com->ccr, MCTL_CCR_CH1_CLK_EN);
}
static void mctl_com_init(struct dram_sun9i_para *para)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
/* TODO: hard-wired for DDR3 now */
writel(((para->chan == 2) ? MCTL_CR_CHANNEL_DUAL :
MCTL_CR_CHANNEL_SINGLE)
| MCTL_CR_DRAMTYPE_DDR3 | MCTL_CR_BANK(1)
| MCTL_CR_ROW(para->rows)
| ((para->bus_width == 32) ? MCTL_CR_BUSW32 : MCTL_CR_BUSW16)
| MCTL_CR_PAGE_SIZE(para->page_size) | MCTL_CR_RANK(para->rank),
&mctl_com->cr);
debug("CR: %d\n", readl(&mctl_com->cr));
}
static u32 mctl_channel_init(u32 ch_index, struct dram_sun9i_para *para)
{
struct sunxi_mctl_ctl_reg *mctl_ctl;
struct sunxi_mctl_phy_reg *mctl_phy;
u32 CL = 0;
u32 CWL = 0;
u16 mr[4] = { 0, };
#define PS2CYCLES_FLOOR(n) ((n * CONFIG_DRAM_CLK) / 1000000)
#define PS2CYCLES_ROUNDUP(n) ((n * CONFIG_DRAM_CLK + 999999) / 1000000)
#define NS2CYCLES_FLOOR(n) ((n * CONFIG_DRAM_CLK) / 1000)
#define NS2CYCLES_ROUNDUP(n) ((n * CONFIG_DRAM_CLK + 999) / 1000)
#define MAX(a, b) ((a) > (b) ? (a) : (b))
/*
* Convert the values to cycle counts (nCK) from what is provided
* by the definition of each speed bin.
*/
/* const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI); */
const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI);
const u32 tRFC = NS2CYCLES_ROUNDUP(para->tRFC);
const u32 tRCD = PS2CYCLES_ROUNDUP(para->tRCD);
const u32 tRP = PS2CYCLES_ROUNDUP(para->tRP);
const u32 tRC = PS2CYCLES_ROUNDUP(para->tRC);
const u32 tRAS = PS2CYCLES_ROUNDUP(para->tRAS);
/* command and address timing */
const u32 tDLLK = para->tDLLK;
const u32 tRTP = MAX(para->tRTP.ck, PS2CYCLES_ROUNDUP(para->tRTP.ps));
const u32 tWTR = MAX(para->tWTR.ck, PS2CYCLES_ROUNDUP(para->tWTR.ps));
const u32 tWR = NS2CYCLES_FLOOR(para->tWR);
const u32 tMRD = para->tMRD;
const u32 tMOD = MAX(para->tMOD.ck, PS2CYCLES_ROUNDUP(para->tMOD.ps));
const u32 tCCD = para->tCCD;
const u32 tRRD = MAX(para->tRRD.ck, PS2CYCLES_ROUNDUP(para->tRRD.ps));
const u32 tFAW = PS2CYCLES_ROUNDUP(para->tFAW);
/* calibration timings */
/* const u32 tZQinit = MAX(para->tZQinit.ck,
PS2CYCLES_ROUNDUP(para->tZQinit.ps)); */
const u32 tZQoper = MAX(para->tZQoper.ck,
PS2CYCLES_ROUNDUP(para->tZQoper.ps));
const u32 tZQCS = MAX(para->tZQCS.ck,
PS2CYCLES_ROUNDUP(para->tZQCS.ps));
/* reset timing */
/* const u32 tXPR = MAX(para->tXPR.ck,
PS2CYCLES_ROUNDUP(para->tXPR.ps)); */
/* power-down timings */
const u32 tXP = MAX(para->tXP.ck, PS2CYCLES_ROUNDUP(para->tXP.ps));
const u32 tXPDLL = MAX(para->tXPDLL.ck,
PS2CYCLES_ROUNDUP(para->tXPDLL.ps));
const u32 tCKE = MAX(para->tCKE.ck, PS2CYCLES_ROUNDUP(para->tCKE.ps));
/*
* self-refresh timings (keep below power-down timings, as tCKESR
* needs to be calculated based on the nCK value of tCKE)
*/
const u32 tXS = MAX(para->tXS.ck, PS2CYCLES_ROUNDUP(para->tXS.ps));
const u32 tXSDLL = para->tXSDLL;
const u32 tCKSRE = MAX(para->tCKSRE.ck,
PS2CYCLES_ROUNDUP(para->tCKSRE.ps));
const u32 tCKESR = tCKE + 1;
const u32 tCKSRX = MAX(para->tCKSRX.ck,
PS2CYCLES_ROUNDUP(para->tCKSRX.ps));
/* write leveling timings */
const u32 tWLMRD = para->tWLMRD;
/* const u32 tWLDQSEN = para->tWLDQSEN; */
const u32 tWLO = PS2CYCLES_FLOOR(para->tWLO);
/* const u32 tWLOE = PS2CYCLES_FLOOR(para->tWLOE); */
const u32 tRASmax = tREFI * 9;
int i;
for (i = 0; i < para->cl_cwl_numentries; ++i) {
const u32 tCK = 1000000 / CONFIG_DRAM_CLK;
if ((para->cl_cwl_table[i].tCKmin <= tCK) &&
(tCK < para->cl_cwl_table[i].tCKmax)) {
CL = para->cl_cwl_table[i].CL;
CWL = para->cl_cwl_table[i].CWL;
debug("found CL/CWL: CL = %d, CWL = %d\n", CL, CWL);
break;
}
}
if ((CL == 0) && (CWL == 0)) {
printf("failed to find valid CL/CWL for operating point %d MHz\n",
CONFIG_DRAM_CLK);
return 0;
}
if (ch_index == 0) {
mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
} else {
mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL1_BASE;
mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY1_BASE;
}
if (para->dram_type == DRAM_TYPE_DDR3) {
mr[0] = DDR3_MR0_PPD_FAST_EXIT | DDR3_MR0_WR(tWR) |
DDR3_MR0_CL(CL);
mr[1] = DDR3_MR1_RTT120OHM;
mr[2] = DDR3_MR2_TWL(CWL);
mr[3] = 0;
/*
* DRAM3 initialisation requires holding CKE LOW for
* at least 500us prior to starting the initialisation
* sequence and at least 10ns after driving CKE HIGH
* before the initialisation sequence may be started).
*
* Refer to Micron document "TN-41-07: DDR3 Power-Up,
* Initialization, and Reset DDR3 Initialization
* Routine" for details).
*/
writel(MCTL_INIT0_POST_CKE_x1024(1) |
MCTL_INIT0_PRE_CKE_x1024(
(500 * CONFIG_DRAM_CLK + 1023) / 1024), /* 500us */
&mctl_ctl->init[0]);
writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
&mctl_ctl->init[1]);
/* INIT2 is not used for DDR3 */
writel(MCTL_INIT3_MR(mr[0]) | MCTL_INIT3_EMR(mr[1]),
&mctl_ctl->init[3]);
writel(MCTL_INIT4_EMR2(mr[2]) | MCTL_INIT4_EMR3(mr[3]),
&mctl_ctl->init[4]);
writel(MCTL_INIT5_DEV_ZQINIT_x32(512 / 32), /* 512 cycles */
&mctl_ctl->init[5]);
} else {
/* !!! UNTESTED !!! */
/*
* LPDDR2 and/or LPDDR3 require a 200us minimum delay
* after driving CKE HIGH in the initialisation sequence.
*/
writel(MCTL_INIT0_POST_CKE_x1024(
(200 * CONFIG_DRAM_CLK + 1023) / 1024),
&mctl_ctl->init[0]);
writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
&mctl_ctl->init[1]);
writel(MCTL_INIT2_IDLE_AFTER_RESET_x32(
(CONFIG_DRAM_CLK + 31) / 32) /* 1us */
| MCTL_INIT2_MIN_STABLE_CLOCK_x1(5), /* 5 cycles */
&mctl_ctl->init[2]);
writel(MCTL_INIT3_MR(mr[1]) | MCTL_INIT3_EMR(mr[2]),
&mctl_ctl->init[3]);
writel(MCTL_INIT4_EMR2(mr[3]),
&mctl_ctl->init[4]);
writel(MCTL_INIT5_DEV_ZQINIT_x32(
(CONFIG_DRAM_CLK + 31) / 32) /* 1us */
| MCTL_INIT5_MAX_AUTO_INIT_x1024(
(10 * CONFIG_DRAM_CLK + 1023) / 1024),
&mctl_ctl->init[5]);
}
/* (DDR3) We always use a burst-length of 8. */
#define MCTL_BL 8
/* wr2pre: WL + BL/2 + tWR */
#define WR2PRE (MCTL_BL/2 + CWL + tWTR)
/* wr2rd = CWL + BL/2 + tWTR */
#define WR2RD (MCTL_BL/2 + CWL + tWTR)
/*
* rd2wr = RL + BL/2 + 2 - WL (for DDR3)
* rd2wr = RL + BL/2 + RU(tDQSCKmax/tCK) + 1 - WL (for LPDDR2/LPDDR3)
*/
#define RD2WR (CL + MCTL_BL/2 + 2 - CWL)
#define MCTL_PHY_TRTW 0
#define MCTL_PHY_TRTODT 0
#define MCTL_DIV2(n) ((n + 1)/2)
#define MCTL_DIV32(n) (n/32)
#define MCTL_DIV1024(n) (n/1024)
writel((MCTL_DIV2(WR2PRE) << 24) | (MCTL_DIV2(tFAW) << 16) |
(MCTL_DIV1024(tRASmax) << 8) | (MCTL_DIV2(tRAS) << 0),
&mctl_ctl->dramtmg[0]);
writel((MCTL_DIV2(tXP) << 16) | (MCTL_DIV2(tRTP) << 8) |
(MCTL_DIV2(tRC) << 0),
&mctl_ctl->dramtmg[1]);
writel((MCTL_DIV2(CWL) << 24) | (MCTL_DIV2(CL) << 16) |
(MCTL_DIV2(RD2WR) << 8) | (MCTL_DIV2(WR2RD) << 0),
&mctl_ctl->dramtmg[2]);
/*
* Note: tMRW is located at bit 16 (and up) in DRAMTMG3...
* this is only relevant for LPDDR2/LPDDR3
*/
writel((MCTL_DIV2(tMRD) << 12) | (MCTL_DIV2(tMOD) << 0),
&mctl_ctl->dramtmg[3]);
writel((MCTL_DIV2(tRCD) << 24) | (MCTL_DIV2(tCCD) << 16) |
(MCTL_DIV2(tRRD) << 8) | (MCTL_DIV2(tRP) << 0),
&mctl_ctl->dramtmg[4]);
writel((MCTL_DIV2(tCKSRX) << 24) | (MCTL_DIV2(tCKSRE) << 16) |
(MCTL_DIV2(tCKESR) << 8) | (MCTL_DIV2(tCKE) << 0),
&mctl_ctl->dramtmg[5]);
/* These timings are relevant for LPDDR2/LPDDR3 only */
/* writel((MCTL_TCKDPDE << 24) | (MCTL_TCKDPX << 16) |
(MCTL_TCKCSX << 0), &mctl_ctl->dramtmg[6]); */
/* printf("DRAMTMG7 reset value: 0x%x\n",
readl(&mctl_ctl->dramtmg[7])); */
/* DRAMTMG7 reset value: 0x202 */
/* DRAMTMG7 should contain t_ckpde and t_ckpdx: check reset values!!! */
/* printf("DRAMTMG8 reset value: 0x%x\n",
readl(&mctl_ctl->dramtmg[8])); */
/* DRAMTMG8 reset value: 0x44 */
writel((MCTL_DIV32(tXSDLL) << 0), &mctl_ctl->dramtmg[8]);
writel((MCTL_DIV32(tREFI) << 16) | (MCTL_DIV2(tRFC) << 0),
&mctl_ctl->rfshtmg);
if (para->dram_type == DRAM_TYPE_DDR3) {
writel((2 << 24) | ((MCTL_DIV2(CL) - 2) << 16) |
(1 << 8) | ((MCTL_DIV2(CWL) - 2) << 0),
&mctl_ctl->dfitmg[0]);
} else {
/* TODO */
}
/* TODO: handle the case of the write latency domain going to 0 ... */
/*
* Disable dfi_init_complete_en (the triggering of the SDRAM
* initialisation when the PHY initialisation completes).
*/
clrbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
/* Disable the automatic generation of DLL calibration requests */
setbits_le32(&mctl_ctl->dfiupd[0], MCTL_DFIUPD0_DIS_AUTO_CTRLUPD);
/* A80-Q7: 2T, 1 rank, DDR3, full-32bit-DQ */
/* TODO: make 2T and BUSWIDTH configurable */
writel(MCTL_MSTR_DEVICETYPE(para->dram_type) |
MCTL_MSTR_BURSTLENGTH(para->dram_type) |
MCTL_MSTR_ACTIVERANKS(para->rank) |
MCTL_MSTR_2TMODE | MCTL_MSTR_BUSWIDTH32,
&mctl_ctl->mstr);
if (para->dram_type == DRAM_TYPE_DDR3) {
writel(MCTL_ZQCTRL0_TZQCL(MCTL_DIV2(tZQoper)) |
(MCTL_DIV2(tZQCS)), &mctl_ctl->zqctrl[0]);
/*
* TODO: is the following really necessary as the bottom
* half should already be 0x100 and the upper half should
* be ignored for a DDR3 device???
*/
writel(MCTL_ZQCTRL1_TZQSI_x1024(0x100),
&mctl_ctl->zqctrl[1]);
} else {
writel(MCTL_ZQCTRL0_TZQCL(0x200) | MCTL_ZQCTRL0_TZQCS(0x40),
&mctl_ctl->zqctrl[0]);
writel(MCTL_ZQCTRL1_TZQRESET(0x28) |
MCTL_ZQCTRL1_TZQSI_x1024(0x100),
&mctl_ctl->zqctrl[1]);
}
/* Assert dfi_init_complete signal */
setbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
/* Disable auto-refresh */
setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
/* PHY initialisation */
/* TODO: make 2T and 8-bank mode configurable */
writel(MCTL_PHY_DCR_BYTEMASK | MCTL_PHY_DCR_2TMODE |
MCTL_PHY_DCR_DDR8BNK | MCTL_PHY_DRAMMODE_DDR3,
&mctl_phy->dcr);
/* For LPDDR2 or LPDDR3, set DQSGX to 0 before training. */
if (para->dram_type != DRAM_TYPE_DDR3)
clrbits_le32(&mctl_phy->dsgcr, (3 << 6));
writel(mr[0], &mctl_phy->mr0);
writel(mr[1], &mctl_phy->mr1);
writel(mr[2], &mctl_phy->mr2);
writel(mr[3], &mctl_phy->mr3);
/*
* The DFI PHY is running at full rate. We thus use the actual
* timings in clock cycles here.
*/
writel((tRC << 26) | (tRRD << 22) | (tRAS << 16) |
(tRCD << 12) | (tRP << 8) | (tWTR << 4) | (tRTP << 0),
&mctl_phy->dtpr[0]);
writel((tMRD << 0) | ((tMOD - 12) << 2) | (tFAW << 5) |
(tRFC << 11) | (tWLMRD << 20) | (tWLO << 26),
&mctl_phy->dtpr[1]);
writel((tXS << 0) | (MAX(tXP, tXPDLL) << 10) |
(tCKE << 15) | (tDLLK << 19) |
(MCTL_PHY_TRTODT << 29) | (MCTL_PHY_TRTW << 30) |
(((tCCD - 4) & 0x1) << 31),
&mctl_phy->dtpr[2]);
/* tDQSCK and tDQSCKmax are used LPDDR2/LPDDR3 */
/* writel((tDQSCK << 0) | (tDQSCKMAX << 3), &mctl_phy->dtpr[3]); */
/*
* We use the same values used by Allwinner's Boot0 for the PTR
* (PHY timing register) configuration that is tied to the PHY
* implementation.
*/
writel(0x42C21590, &mctl_phy->ptr[0]);
writel(0xD05612C0, &mctl_phy->ptr[1]);
if (para->dram_type == DRAM_TYPE_DDR3) {
const unsigned int tdinit0 = 500 * CONFIG_DRAM_CLK; /* 500us */
const unsigned int tdinit1 = (360 * CONFIG_DRAM_CLK + 999) /
1000; /* 360ns */
const unsigned int tdinit2 = 200 * CONFIG_DRAM_CLK; /* 200us */
const unsigned int tdinit3 = CONFIG_DRAM_CLK; /* 1us */
writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
} else {
/* LPDDR2 or LPDDR3 */
const unsigned int tdinit0 = (100 * CONFIG_DRAM_CLK + 999) /
1000; /* 100ns */
const unsigned int tdinit1 = 200 * CONFIG_DRAM_CLK; /* 200us */
const unsigned int tdinit2 = 22 * CONFIG_DRAM_CLK; /* 11us */
const unsigned int tdinit3 = 2 * CONFIG_DRAM_CLK; /* 2us */
writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
}
/* TEST ME */
writel(0x00203131, &mctl_phy->acmdlr);
/* TODO: can we enable this for 2 ranks, even when we don't know yet */
writel(MCTL_DTCR_DEFAULT | MCTL_DTCR_RANKEN(para->rank),
&mctl_phy->dtcr);
/* TODO: half width */
debug("DX2GCR0 reset: 0x%x\n", readl(&mctl_phy->dx[2].gcr[0]));
writel(0x7C000285, &mctl_phy->dx[2].gcr[0]);
writel(0x7C000285, &mctl_phy->dx[3].gcr[0]);
clrsetbits_le32(&mctl_phy->zq[0].pr, 0xff,
(CONFIG_DRAM_ZQ >> 0) & 0xff); /* CK/CA */
clrsetbits_le32(&mctl_phy->zq[1].pr, 0xff,
(CONFIG_DRAM_ZQ >> 8) & 0xff); /* DX0/DX1 */
clrsetbits_le32(&mctl_phy->zq[2].pr, 0xff,
(CONFIG_DRAM_ZQ >> 16) & 0xff); /* DX2/DX3 */
/* TODO: make configurable & implement non-ODT path */
if (1) {
int lane;
for (lane = 0; lane < 4; ++lane) {
clrbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff);
clrbits_le32(&mctl_phy->dx[lane].gcr[3],
(0x3<<12) | (0x3<<4));
}
} else {
/* TODO: check */
int lane;
for (lane = 0; lane < 4; ++lane) {
clrsetbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff,
0xaaaa);
if (para->dram_type == DRAM_TYPE_DDR3)
setbits_le32(&mctl_phy->dx[lane].gcr[3],
(0x3<<12) | (0x3<<4));
else
setbits_le32(&mctl_phy->dx[lane].gcr[3],
0x00000012);
}
}
writel(0x04058D02, &mctl_phy->zq[0].cr); /* CK/CA */
writel(0x04058D02, &mctl_phy->zq[1].cr); /* DX0/DX1 */
writel(0x04058D02, &mctl_phy->zq[2].cr); /* DX2/DX3 */
/* Disable auto-refresh prior to data training */
setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
setbits_le32(&mctl_phy->dsgcr, 0xf << 24); /* unclear what this is... */
/* TODO: IODDRM (IO DDR-MODE) for DDR3L */
clrsetbits_le32(&mctl_phy->pgcr[1],
MCTL_PGCR1_ZCKSEL_MASK,
MCTL_PGCR1_IODDRM_DDR3 | MCTL_PGCR1_INHVT_EN);
setbits_le32(&mctl_phy->pllcr, 0x3 << 19); /* PLL frequency select */
/* TODO: single-channel PLL mode??? missing */
setbits_le32(&mctl_phy->pllcr,
MCTL_PLLGCR_PLL_BYPASS | MCTL_PLLGCR_PLL_POWERDOWN);
/* setbits_le32(&mctl_phy->pir, MCTL_PIR_PLL_BYPASS); included below */
/* Disable VT compensation */
clrbits_le32(&mctl_phy->pgcr[0], 0x3f);
/* TODO: "other" PLL mode ... 0x20000 seems to be the PLL Bypass */
if (para->dram_type == DRAM_TYPE_DDR3)
clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x20df3);
else
clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x2c573);
sdelay(10000); /* XXX necessary? */
/* Wait for the INIT bit to clear itself... */
while ((readl(&mctl_phy->pir) & MCTL_PIR_INIT) != MCTL_PIR_INIT) {
/* not done yet -- keep spinning */
debug("MCTL_PIR_INIT not set\n");
sdelay(1000);
/* TODO: implement timeout */
}
/* TODO: not used --- there's a "2rank debug" section here */
/* Original dram init code which may come in handy later
********************************************************
* LPDDR2 and LPDDR3 *
if ((para->dram_type) == 6 || (para->dram_type) == 7) {
reg_val = mctl_read_w(P0_DSGCR + ch_offset);
reg_val &= (~(0x3<<6)); * set DQSGX to 1 *
reg_val |= (0x1<<6); * dqs gate extend *
mctl_write_w(P0_DSGCR + ch_offset, reg_val);
dram_dbg("DQS Gate Extend Enable!\n", ch_index);
}
* Disable ZCAL after initial--for nand dma debug--20140330 by YSZ *
if (para->dram_tpr13 & (0x1<<31)) {
reg_val = mctl_read_w(P0_ZQ0CR + ch_offset);
reg_val |= (0x7<<11);
mctl_write_w(P0_ZQ0CR + ch_offset, reg_val);
}
********************************************************
*/
/*
* TODO: more 2-rank support
* (setting the "dqs gate delay to average between 2 rank")
*/
/* check if any errors are set */
if (readl(&mctl_phy->pgsr[0]) & MCTL_PGSR0_ERRORS) {
debug("Channel %d unavailable!\n", ch_index);
return 0;
} else{
/* initial OK */
debug("Channel %d OK!\n", ch_index);
/* return 1; */
}
while ((readl(&mctl_ctl->stat) & 0x1) != 0x1) {
debug("Waiting for INIT to be done (controller to come up into 'normal operating' mode\n");
sdelay(100000);
/* init not done */
/* TODO: implement time-out */
}
debug("done\n");
/* "DDR is controller by contoller" */
clrbits_le32(&mctl_phy->pgcr[3], (1 << 25));
/* TODO: is the following necessary? */
debug("DFIMISC before writing 0: 0x%x\n", readl(&mctl_ctl->dfimisc));
writel(0, &mctl_ctl->dfimisc);
/* Enable auto-refresh */
clrbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
debug("channel_init complete\n");
return 1;
}
signed int DRAMC_get_dram_size(void)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
unsigned int reg_val;
unsigned int dram_size;
unsigned int temp;
reg_val = readl(&mctl_com->cr);
temp = (reg_val >> 8) & 0xf; /* page size code */
dram_size = (temp - 6); /* (1 << dram_size) * 512Bytes */
temp = (reg_val >> 4) & 0xf; /* row width code */
dram_size += (temp + 1); /* (1 << dram_size) * 512Bytes */
temp = (reg_val >> 2) & 0x3; /* bank number code */
dram_size += (temp + 2); /* (1 << dram_size) * 512Bytes */
temp = reg_val & 0x3; /* rank number code */
dram_size += temp; /* (1 << dram_size) * 512Bytes */
temp = (reg_val >> 19) & 0x1; /* channel number code */
dram_size += temp; /* (1 << dram_size) * 512Bytes */
dram_size = dram_size - 11; /* (1 << dram_size) MBytes */
return 1 << dram_size;
}
unsigned long sunxi_dram_init(void)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
struct dram_sun9i_cl_cwl_timing cl_cwl[] = {
{ .CL = 5, .CWL = 5, .tCKmin = 3000, .tCKmax = 3300 },
{ .CL = 6, .CWL = 5, .tCKmin = 2500, .tCKmax = 3300 },
{ .CL = 8, .CWL = 6, .tCKmin = 1875, .tCKmax = 2500 },
{ .CL = 10, .CWL = 7, .tCKmin = 1500, .tCKmax = 1875 },
{ .CL = 11, .CWL = 8, .tCKmin = 1250, .tCKmax = 1500 }
};
/* Set initial parameters, these get modified by the autodetect code */
struct dram_sun9i_para para = {
.dram_type = DRAM_TYPE_DDR3,
.bus_width = 32,
.chan = 2,
.rank = 1,
/* .rank = 2, */
.page_size = 4096,
/* .rows = 16, */
.rows = 15,
/* CL/CWL table for the speed bin */
.cl_cwl_table = cl_cwl,
.cl_cwl_numentries = sizeof(cl_cwl) /
sizeof(struct dram_sun9i_cl_cwl_timing),
/* timings */
.tREFI = 7800, /* 7.8us (up to 85 degC) */
.tRFC = 260, /* 260ns for 4GBit devices */
/* 350ns @ 8GBit */
.tRCD = 13750,
.tRP = 13750,
.tRC = 48750,
.tRAS = 35000,
.tDLLK = 512,
.tRTP = { .ck = 4, .ps = 7500 },
.tWTR = { .ck = 4, .ps = 7500 },
.tWR = 15,
.tMRD = 4,
.tMOD = { .ck = 12, .ps = 15000 },
.tCCD = 4,
.tRRD = { .ck = 4, .ps = 7500 },
.tFAW = 40,
/* calibration timing */
/* .tZQinit = { .ck = 512, .ps = 640000 }, */
.tZQoper = { .ck = 256, .ps = 320000 },
.tZQCS = { .ck = 64, .ps = 80000 },
/* reset timing */
/* .tXPR = { .ck = 5, .ps = 10000 }, */
/* self-refresh timings */
.tXS = { .ck = 5, .ps = 10000 },
.tXSDLL = 512,
.tCKSRE = { .ck = 5, .ps = 10000 },
.tCKSRX = { .ck = 5, .ps = 10000 },
/* power-down timings */
.tXP = { .ck = 3, .ps = 6000 },
.tXPDLL = { .ck = 10, .ps = 24000 },
.tCKE = { .ck = 3, .ps = 5000 },
/* write leveling timings */
.tWLMRD = 40,
/* .tWLDQSEN = 25, */
.tWLO = 7500,
/* .tWLOE = 2000, */
};
/*
* Disable A80 internal 240 ohm resistor.
*
* This code sequence is adapated from Allwinner's Boot0 (see
* https://github.com/allwinner-zh/bootloader.git), as there
* is no documentation for these two registers in the R_PRCM
* block.
*/
setbits_le32(SUNXI_PRCM_BASE + 0x1e0, (0x3 << 8));
writel(0, SUNXI_PRCM_BASE + 0x1e8);
mctl_sys_init();
if (!mctl_channel_init(0, &para))
return 0;
/* dual-channel */
if (!mctl_channel_init(1, &para)) {
/* disable channel 1 */
clrsetbits_le32(&mctl_com->cr, MCTL_CR_CHANNEL_MASK,
MCTL_CR_CHANNEL_SINGLE);
/* disable channel 1 global clock */
clrbits_le32(&mctl_com->cr, MCTL_CCR_CH1_CLK_EN);
}
mctl_com_init(&para);
/* return the proper RAM size */
return DRAMC_get_dram_size() << 20;
}