upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
u-boot/tools/relocate-rela.c

159 lines
3.4 KiB

arm64: Add tool to statically apply RELA relocations ARM64 uses the newer RELA-style relocations rather than the older REL. RELA relocations have an addend in the relocation struct, rather than expecting the loader to read a value from the location to be updated. While this is beneficial for ordinary program loading, it's problematic for U-Boot because the location to be updated starts out with zero, rather than a pre-relocation value. Since we need to be able to run C code before relocation, we need a tool to apply the relocations at build time. In theory this tool is applicable to other newer architectures (mainly 64-bit), but currently the only relocations it supports are for arm64, and it assumes a 64-bit little-endian target. If the latter limitation is ever to be changed, we'll need a way to tell the tool what format the image is in. Eventually this may be replaced by a tool that uses libelf or similar and operates directly on the ELF file. I've written some code for such an approach but libelf does not make it easy to poke addresses by memory address (rather than by section), and I was hesitant to write code to manually parse the program headers and do the update outside of libelf (or to iterate over sections) -- especially since it wouldn't get test coverage on things like binaries with multiple PT_LOAD segments. This should be good enough for now to let the manual relocation stuff be removed from the arm64 patches. Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: David Feng <fenghua@phytium.com.cn>
11 years ago
/*
* Copyright 2013 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+ BSD-2-Clause
*
* 64-bit and little-endian target only until we need to support a different
* arch that needs this.
*/
#include <elf.h>
#include <errno.h>
#include <inttypes.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "compiler.h"
arm64: Add tool to statically apply RELA relocations ARM64 uses the newer RELA-style relocations rather than the older REL. RELA relocations have an addend in the relocation struct, rather than expecting the loader to read a value from the location to be updated. While this is beneficial for ordinary program loading, it's problematic for U-Boot because the location to be updated starts out with zero, rather than a pre-relocation value. Since we need to be able to run C code before relocation, we need a tool to apply the relocations at build time. In theory this tool is applicable to other newer architectures (mainly 64-bit), but currently the only relocations it supports are for arm64, and it assumes a 64-bit little-endian target. If the latter limitation is ever to be changed, we'll need a way to tell the tool what format the image is in. Eventually this may be replaced by a tool that uses libelf or similar and operates directly on the ELF file. I've written some code for such an approach but libelf does not make it easy to poke addresses by memory address (rather than by section), and I was hesitant to write code to manually parse the program headers and do the update outside of libelf (or to iterate over sections) -- especially since it wouldn't get test coverage on things like binaries with multiple PT_LOAD segments. This should be good enough for now to let the manual relocation stuff be removed from the arm64 patches. Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: David Feng <fenghua@phytium.com.cn>
11 years ago
#ifndef R_AARCH64_RELATIVE
#define R_AARCH64_RELATIVE 1027
#endif
static const bool debug_en;
static void debug(const char *fmt, ...)
{
va_list args;
if (debug_en) {
va_start(args, fmt);
arm64: Add tool to statically apply RELA relocations ARM64 uses the newer RELA-style relocations rather than the older REL. RELA relocations have an addend in the relocation struct, rather than expecting the loader to read a value from the location to be updated. While this is beneficial for ordinary program loading, it's problematic for U-Boot because the location to be updated starts out with zero, rather than a pre-relocation value. Since we need to be able to run C code before relocation, we need a tool to apply the relocations at build time. In theory this tool is applicable to other newer architectures (mainly 64-bit), but currently the only relocations it supports are for arm64, and it assumes a 64-bit little-endian target. If the latter limitation is ever to be changed, we'll need a way to tell the tool what format the image is in. Eventually this may be replaced by a tool that uses libelf or similar and operates directly on the ELF file. I've written some code for such an approach but libelf does not make it easy to poke addresses by memory address (rather than by section), and I was hesitant to write code to manually parse the program headers and do the update outside of libelf (or to iterate over sections) -- especially since it wouldn't get test coverage on things like binaries with multiple PT_LOAD segments. This should be good enough for now to let the manual relocation stuff be removed from the arm64 patches. Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: David Feng <fenghua@phytium.com.cn>
11 years ago
vprintf(fmt, args);
va_end(args);
}
arm64: Add tool to statically apply RELA relocations ARM64 uses the newer RELA-style relocations rather than the older REL. RELA relocations have an addend in the relocation struct, rather than expecting the loader to read a value from the location to be updated. While this is beneficial for ordinary program loading, it's problematic for U-Boot because the location to be updated starts out with zero, rather than a pre-relocation value. Since we need to be able to run C code before relocation, we need a tool to apply the relocations at build time. In theory this tool is applicable to other newer architectures (mainly 64-bit), but currently the only relocations it supports are for arm64, and it assumes a 64-bit little-endian target. If the latter limitation is ever to be changed, we'll need a way to tell the tool what format the image is in. Eventually this may be replaced by a tool that uses libelf or similar and operates directly on the ELF file. I've written some code for such an approach but libelf does not make it easy to poke addresses by memory address (rather than by section), and I was hesitant to write code to manually parse the program headers and do the update outside of libelf (or to iterate over sections) -- especially since it wouldn't get test coverage on things like binaries with multiple PT_LOAD segments. This should be good enough for now to let the manual relocation stuff be removed from the arm64 patches. Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: David Feng <fenghua@phytium.com.cn>
11 years ago
}
static bool supported_rela(Elf64_Rela *rela)
{
uint64_t mask = 0xffffffffULL; /* would be different on 32-bit */
uint32_t type = rela->r_info & mask;
switch (type) {
#ifdef R_AARCH64_RELATIVE
case R_AARCH64_RELATIVE:
return true;
#endif
default:
fprintf(stderr, "warning: unsupported relocation type %"
PRIu32 " at %" PRIx64 "\n",
type, rela->r_offset);
return false;
}
}
static bool read_num(const char *str, uint64_t *num)
{
char *endptr;
*num = strtoull(str, &endptr, 16);
return str[0] && !endptr[0];
}
int main(int argc, char **argv)
{
FILE *f;
int i, num;
uint64_t rela_start, rela_end, text_base;
if (argc != 5) {
fprintf(stderr, "Statically apply ELF rela relocations\n");
fprintf(stderr, "Usage: %s <bin file> <text base> " \
"<rela start> <rela end>\n", argv[0]);
fprintf(stderr, "All numbers in hex.\n");
return 1;
}
f = fopen(argv[1], "r+b");
if (!f) {
fprintf(stderr, "%s: Cannot open %s: %s\n",
argv[0], argv[1], strerror(errno));
return 2;
}
if (!read_num(argv[2], &text_base) ||
!read_num(argv[3], &rela_start) ||
!read_num(argv[4], &rela_end)) {
fprintf(stderr, "%s: bad number\n", argv[0]);
return 3;
}
if (rela_start > rela_end || rela_start < text_base ||
(rela_end - rela_start) % sizeof(Elf64_Rela)) {
arm64: Add tool to statically apply RELA relocations ARM64 uses the newer RELA-style relocations rather than the older REL. RELA relocations have an addend in the relocation struct, rather than expecting the loader to read a value from the location to be updated. While this is beneficial for ordinary program loading, it's problematic for U-Boot because the location to be updated starts out with zero, rather than a pre-relocation value. Since we need to be able to run C code before relocation, we need a tool to apply the relocations at build time. In theory this tool is applicable to other newer architectures (mainly 64-bit), but currently the only relocations it supports are for arm64, and it assumes a 64-bit little-endian target. If the latter limitation is ever to be changed, we'll need a way to tell the tool what format the image is in. Eventually this may be replaced by a tool that uses libelf or similar and operates directly on the ELF file. I've written some code for such an approach but libelf does not make it easy to poke addresses by memory address (rather than by section), and I was hesitant to write code to manually parse the program headers and do the update outside of libelf (or to iterate over sections) -- especially since it wouldn't get test coverage on things like binaries with multiple PT_LOAD segments. This should be good enough for now to let the manual relocation stuff be removed from the arm64 patches. Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: David Feng <fenghua@phytium.com.cn>
11 years ago
fprintf(stderr, "%s: bad rela bounds\n", argv[0]);
return 3;
}
rela_start -= text_base;
rela_end -= text_base;
num = (rela_end - rela_start) / sizeof(Elf64_Rela);
for (i = 0; i < num; i++) {
Elf64_Rela rela, swrela;
uint64_t pos = rela_start + sizeof(Elf64_Rela) * i;
uint64_t addr;
if (fseek(f, pos, SEEK_SET) < 0) {
fprintf(stderr, "%s: %s: seek to %" PRIx64
" failed: %s\n",
argv[0], argv[1], pos, strerror(errno));
}
if (fread(&rela, sizeof(rela), 1, f) != 1) {
fprintf(stderr, "%s: %s: read rela failed at %"
PRIx64 "\n",
argv[0], argv[1], pos);
return 4;
}
swrela.r_offset = cpu_to_le64(rela.r_offset);
swrela.r_info = cpu_to_le64(rela.r_info);
swrela.r_addend = cpu_to_le64(rela.r_addend);
arm64: Add tool to statically apply RELA relocations ARM64 uses the newer RELA-style relocations rather than the older REL. RELA relocations have an addend in the relocation struct, rather than expecting the loader to read a value from the location to be updated. While this is beneficial for ordinary program loading, it's problematic for U-Boot because the location to be updated starts out with zero, rather than a pre-relocation value. Since we need to be able to run C code before relocation, we need a tool to apply the relocations at build time. In theory this tool is applicable to other newer architectures (mainly 64-bit), but currently the only relocations it supports are for arm64, and it assumes a 64-bit little-endian target. If the latter limitation is ever to be changed, we'll need a way to tell the tool what format the image is in. Eventually this may be replaced by a tool that uses libelf or similar and operates directly on the ELF file. I've written some code for such an approach but libelf does not make it easy to poke addresses by memory address (rather than by section), and I was hesitant to write code to manually parse the program headers and do the update outside of libelf (or to iterate over sections) -- especially since it wouldn't get test coverage on things like binaries with multiple PT_LOAD segments. This should be good enough for now to let the manual relocation stuff be removed from the arm64 patches. Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: David Feng <fenghua@phytium.com.cn>
11 years ago
if (!supported_rela(&swrela))
continue;
debug("Rela %" PRIx64 " %" PRIu64 " %" PRIx64 "\n",
swrela.r_offset, swrela.r_info, swrela.r_addend);
if (swrela.r_offset < text_base) {
fprintf(stderr, "%s: %s: bad rela at %" PRIx64 "\n",
argv[0], argv[1], pos);
return 4;
}
addr = swrela.r_offset - text_base;
if (fseek(f, addr, SEEK_SET) < 0) {
fprintf(stderr, "%s: %s: seek to %"
PRIx64 " failed: %s\n",
argv[0], argv[1], addr, strerror(errno));
}
if (fwrite(&rela.r_addend, sizeof(rela.r_addend), 1, f) != 1) {
fprintf(stderr, "%s: %s: write failed at %" PRIx64 "\n",
argv[0], argv[1], addr);
return 4;
}
}
if (fclose(f) < 0) {
fprintf(stderr, "%s: %s: close failed: %s\n",
argv[0], argv[1], strerror(errno));
return 4;
}
return 0;
}