|
|
|
/*
|
|
|
|
* Copyright (c) 2014 The Chromium OS Authors.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
|
|
*/
|
|
|
|
|
|
|
|
Native Execution of U-Boot
|
|
|
|
==========================
|
|
|
|
|
|
|
|
The 'sandbox' architecture is designed to allow U-Boot to run under Linux on
|
|
|
|
almost any hardware. To achieve this it builds U-Boot (so far as possible)
|
|
|
|
as a normal C application with a main() and normal C libraries.
|
|
|
|
|
|
|
|
All of U-Boot's architecture-specific code therefore cannot be built as part
|
|
|
|
of the sandbox U-Boot. The purpose of running U-Boot under Linux is to test
|
|
|
|
all the generic code, not specific to any one architecture. The idea is to
|
|
|
|
create unit tests which we can run to test this upper level code.
|
|
|
|
|
|
|
|
CONFIG_SANDBOX is defined when building a native board.
|
|
|
|
|
|
|
|
The board name is 'sandbox' but the vendor name is unset, so there is a
|
|
|
|
single board in board/sandbox.
|
|
|
|
|
|
|
|
CONFIG_SANDBOX_BIG_ENDIAN should be defined when running on big-endian
|
|
|
|
machines.
|
|
|
|
|
|
|
|
Note that standalone/API support is not available at present.
|
|
|
|
|
|
|
|
|
|
|
|
Basic Operation
|
|
|
|
---------------
|
|
|
|
|
|
|
|
To run sandbox U-Boot use something like:
|
|
|
|
|
|
|
|
make sandbox_defconfig all
|
|
|
|
./u-boot
|
|
|
|
|
|
|
|
Note:
|
|
|
|
If you get errors about 'sdl-config: Command not found' you may need to
|
|
|
|
install libsdl1.2-dev or similar to get SDL support. Alternatively you can
|
|
|
|
build sandbox without SDL (i.e. no display/keyboard support) by removing
|
|
|
|
the CONFIG_SANDBOX_SDL line in include/configs/sandbox.h or using:
|
|
|
|
|
|
|
|
make sandbox_defconfig all NO_SDL=1
|
|
|
|
./u-boot
|
|
|
|
|
|
|
|
|
|
|
|
U-Boot will start on your computer, showing a sandbox emulation of the serial
|
|
|
|
console:
|
|
|
|
|
|
|
|
|
|
|
|
U-Boot 2014.04 (Mar 20 2014 - 19:06:00)
|
|
|
|
|
|
|
|
DRAM: 128 MiB
|
|
|
|
Using default environment
|
|
|
|
|
|
|
|
In: serial
|
|
|
|
Out: lcd
|
|
|
|
Err: lcd
|
|
|
|
=>
|
|
|
|
|
|
|
|
You can issue commands as your would normally. If the command you want is
|
|
|
|
not supported you can add it to include/configs/sandbox.h.
|
|
|
|
|
|
|
|
To exit, type 'reset' or press Ctrl-C.
|
|
|
|
|
|
|
|
|
|
|
|
Console / LCD support
|
|
|
|
---------------------
|
|
|
|
|
|
|
|
Assuming that CONFIG_SANDBOX_SDL is defined when building, you can run the
|
|
|
|
sandbox with LCD and keyboard emulation, using something like:
|
|
|
|
|
|
|
|
./u-boot -d u-boot.dtb -l
|
|
|
|
|
|
|
|
This will start U-Boot with a window showing the contents of the LCD. If
|
|
|
|
that window has the focus then you will be able to type commands as you
|
|
|
|
would on the console. You can adjust the display settings in the device
|
|
|
|
tree file - see arch/sandbox/dts/sandbox.dts.
|
|
|
|
|
|
|
|
|
|
|
|
Command-line Options
|
|
|
|
--------------------
|
|
|
|
|
|
|
|
Various options are available, mostly for test purposes. Use -h to see
|
|
|
|
available options. Some of these are described below.
|
|
|
|
|
|
|
|
The terminal is normally in what is called 'raw-with-sigs' mode. This means
|
|
|
|
that you can use arrow keys for command editing and history, but if you
|
|
|
|
press Ctrl-C, U-Boot will exit instead of handling this as a keypress.
|
|
|
|
|
|
|
|
Other options are 'raw' (so Ctrl-C is handled within U-Boot) and 'cooked'
|
|
|
|
(where the terminal is in cooked mode and cursor keys will not work, Ctrl-C
|
|
|
|
will exit).
|
|
|
|
|
|
|
|
As mentioned above, -l causes the LCD emulation window to be shown.
|
|
|
|
|
|
|
|
A device tree binary file can be provided with -d. If you edit the source
|
|
|
|
(it is stored at arch/sandbox/dts/sandbox.dts) you must rebuild U-Boot to
|
|
|
|
recreate the binary file.
|
|
|
|
|
|
|
|
To execute commands directly, use the -c option. You can specify a single
|
|
|
|
command, or multiple commands separated by a semicolon, as is normal in
|
|
|
|
U-Boot. Be careful with quoting as the shall will normally process and
|
|
|
|
swallow quotes. When -c is used, U-Boot exists after the command is complete,
|
|
|
|
but you can force it to go to interactive mode instead with -i.
|
|
|
|
|
|
|
|
|
|
|
|
Memory Emulation
|
|
|
|
----------------
|
|
|
|
|
|
|
|
Memory emulation is supported, with the size set by CONFIG_SYS_SDRAM_SIZE.
|
|
|
|
The -m option can be used to read memory from a file on start-up and write
|
|
|
|
it when shutting down. This allows preserving of memory contents across
|
|
|
|
test runs. You can tell U-Boot to remove the memory file after it is read
|
|
|
|
(on start-up) with the --rm_memory option.
|
|
|
|
|
|
|
|
To access U-Boot's emulated memory within the code, use map_sysmem(). This
|
|
|
|
function is used throughout U-Boot to ensure that emulated memory is used
|
|
|
|
rather than the U-Boot application memory. This provides memory starting
|
|
|
|
at 0 and extending to the size of the emulation.
|
|
|
|
|
|
|
|
|
|
|
|
Storing State
|
|
|
|
-------------
|
|
|
|
|
|
|
|
With sandbox you can write drivers which emulate the operation of drivers on
|
|
|
|
real devices. Some of these drivers may want to record state which is
|
|
|
|
preserved across U-Boot runs. This is particularly useful for testing. For
|
|
|
|
example, the contents of a SPI flash chip should not disappear just because
|
|
|
|
U-Boot exits.
|
|
|
|
|
|
|
|
State is stored in a device tree file in a simple format which is driver-
|
|
|
|
specific. You then use the -s option to specify the state file. Use -r to
|
|
|
|
make U-Boot read the state on start-up (otherwise it starts empty) and -w
|
|
|
|
to write it on exit (otherwise the stored state is left unchanged and any
|
|
|
|
changes U-Boot made will be lost). You can also use -n to tell U-Boot to
|
|
|
|
ignore any problems with missing state. This is useful when first running
|
|
|
|
since the state file will be empty.
|
|
|
|
|
|
|
|
The device tree file has one node for each driver - the driver can store
|
|
|
|
whatever properties it likes in there. See 'Writing Sandbox Drivers' below
|
|
|
|
for more details on how to get drivers to read and write their state.
|
|
|
|
|
|
|
|
|
|
|
|
Running and Booting
|
|
|
|
-------------------
|
|
|
|
|
|
|
|
Since there is no machine architecture, sandbox U-Boot cannot actually boot
|
|
|
|
a kernel, but it does support the bootm command. Filesystems, memory
|
|
|
|
commands, hashing, FIT images, verified boot and many other features are
|
|
|
|
supported.
|
|
|
|
|
|
|
|
When 'bootm' runs a kernel, sandbox will exit, as U-Boot does on a real
|
|
|
|
machine. Of course in this case, no kernel is run.
|
|
|
|
|
|
|
|
It is also possible to tell U-Boot that it has jumped from a temporary
|
|
|
|
previous U-Boot binary, with the -j option. That binary is automatically
|
|
|
|
removed by the U-Boot that gets the -j option. This allows you to write
|
|
|
|
tests which emulate the action of chain-loading U-Boot, typically used in
|
|
|
|
a situation where a second 'updatable' U-Boot is stored on your board. It
|
|
|
|
is very risky to overwrite or upgrade the only U-Boot on a board, since a
|
|
|
|
power or other failure will brick the board and require return to the
|
|
|
|
manufacturer in the case of a consumer device.
|
|
|
|
|
|
|
|
|
|
|
|
Supported Drivers
|
|
|
|
-----------------
|
|
|
|
|
|
|
|
U-Boot sandbox supports these emulations:
|
|
|
|
|
|
|
|
- Block devices
|
|
|
|
- Chrome OS EC
|
|
|
|
- GPIO
|
|
|
|
- Host filesystem (access files on the host from within U-Boot)
|
|
|
|
- I2C
|
|
|
|
- Keyboard (Chrome OS)
|
|
|
|
- LCD
|
|
|
|
- Network
|
|
|
|
- Serial (for console only)
|
|
|
|
- Sound (incomplete - see sandbox_sdl_sound_init() for details)
|
|
|
|
- SPI
|
|
|
|
- SPI flash
|
|
|
|
- TPM (Trusted Platform Module)
|
|
|
|
|
|
|
|
A wide range of commands is implemented. Filesystems which use a block
|
|
|
|
device are supported.
|
|
|
|
|
|
|
|
Also sandbox uses generic board (CONFIG_SYS_GENERIC_BOARD) and supports
|
|
|
|
driver model (CONFIG_DM) and associated commands.
|
|
|
|
|
|
|
|
|
|
|
|
Linux RAW Networking Bridge
|
|
|
|
---------------------------
|
|
|
|
|
|
|
|
The sandbox_eth_raw driver bridges traffic between the bottom of the network
|
|
|
|
stack and the RAW sockets API in Linux. This allows much of the U-Boot network
|
|
|
|
functionality to be tested in sandbox against real network traffic.
|
|
|
|
|
|
|
|
For Ethernet network adapters, the bridge utilizes the RAW AF_PACKET API. This
|
|
|
|
is needed to get access to the lowest level of the network stack in Linux. This
|
|
|
|
means that all of the Ethernet frame is included. This allows the U-Boot network
|
|
|
|
stack to be fully used. In other words, nothing about the Linux network stack is
|
|
|
|
involved in forming the packets that end up on the wire. To receive the
|
|
|
|
responses to packets sent from U-Boot the network interface has to be set to
|
|
|
|
promiscuous mode so that the network card won't filter out packets not destined
|
|
|
|
for its configured (on Linux) MAC address.
|
|
|
|
|
|
|
|
The RAW sockets Ethernet API requires elevated privileges in Linux. You can
|
|
|
|
either run as root, or you can add the capability needed like so:
|
|
|
|
|
|
|
|
sudo /sbin/setcap "CAP_NET_RAW+ep" /path/to/u-boot
|
|
|
|
|
|
|
|
The default device tree for sandbox includes an entry for eth0 on the sandbox
|
|
|
|
host machine whose alias is "eth1". The following are a few examples of network
|
|
|
|
operations being tested on the eth0 interface.
|
|
|
|
|
|
|
|
sudo /path/to/u-boot -D
|
|
|
|
|
|
|
|
DHCP
|
|
|
|
....
|
|
|
|
|
|
|
|
set autoload no
|
|
|
|
set ethact eth1
|
|
|
|
dhcp
|
|
|
|
|
|
|
|
PING
|
|
|
|
....
|
|
|
|
|
|
|
|
set autoload no
|
|
|
|
set ethact eth1
|
|
|
|
dhcp
|
|
|
|
ping $gatewayip
|
|
|
|
|
|
|
|
TFTP
|
|
|
|
....
|
|
|
|
|
|
|
|
set autoload no
|
|
|
|
set ethact eth1
|
|
|
|
dhcp
|
|
|
|
set serverip WWW.XXX.YYY.ZZZ
|
|
|
|
tftpboot u-boot.bin
|
|
|
|
|
|
|
|
The bridge also support (to a lesser extent) the localhost inderface, 'lo'.
|
|
|
|
|
|
|
|
The 'lo' interface cannot use the RAW AF_PACKET API because the lo interface
|
|
|
|
doesn't support Ethernet-level traffic. It is a higher-level interface that is
|
|
|
|
expected only to be used at the AF_INET level of the API. As such, the most raw
|
|
|
|
we can get on that interface is the RAW AF_INET API on UDP. This allows us to
|
|
|
|
set the IP_HDRINCL option to include everything except the Ethernet header in
|
|
|
|
the packets we send and receive.
|
|
|
|
|
|
|
|
Because only UDP is supported, ICMP traffic will not work, so expect that ping
|
|
|
|
commands will time out.
|
|
|
|
|
|
|
|
The default device tree for sandbox includes an entry for lo on the sandbox
|
|
|
|
host machine whose alias is "eth5". The following is an example of a network
|
|
|
|
operation being tested on the lo interface.
|
|
|
|
|
|
|
|
TFTP
|
|
|
|
....
|
|
|
|
|
|
|
|
set ethact eth5
|
|
|
|
tftpboot u-boot.bin
|
|
|
|
|
|
|
|
|
|
|
|
SPI Emulation
|
|
|
|
-------------
|
|
|
|
|
|
|
|
Sandbox supports SPI and SPI flash emulation.
|
|
|
|
|
|
|
|
This is controlled by the spi_sf argument, the format of which is:
|
|
|
|
|
|
|
|
bus:cs:device:file
|
|
|
|
|
|
|
|
bus - SPI bus number
|
|
|
|
cs - SPI chip select number
|
|
|
|
device - SPI device emulation name
|
|
|
|
file - File on disk containing the data
|
|
|
|
|
|
|
|
For example:
|
|
|
|
|
|
|
|
dd if=/dev/zero of=spi.bin bs=1M count=4
|
|
|
|
./u-boot --spi_sf 0:0:M25P16:spi.bin
|
|
|
|
|
|
|
|
With this setup you can issue SPI flash commands as normal:
|
|
|
|
|
|
|
|
=>sf probe
|
|
|
|
SF: Detected M25P16 with page size 64 KiB, total 2 MiB
|
|
|
|
=>sf read 0 0 10000
|
|
|
|
SF: 65536 bytes @ 0x0 Read: OK
|
|
|
|
=>
|
|
|
|
|
|
|
|
Since this is a full SPI emulation (rather than just flash), you can
|
|
|
|
also use low-level SPI commands:
|
|
|
|
|
|
|
|
=>sspi 0:0 32 9f
|
|
|
|
FF202015
|
|
|
|
|
|
|
|
This is issuing a READ_ID command and getting back 20 (ST Micro) part
|
|
|
|
0x2015 (the M25P16).
|
|
|
|
|
|
|
|
Drivers are connected to a particular bus/cs using sandbox's state
|
|
|
|
structure (see the 'spi' member). A set of operations must be provided
|
|
|
|
for each driver.
|
|
|
|
|
|
|
|
|
|
|
|
Configuration settings for the curious are:
|
|
|
|
|
|
|
|
CONFIG_SANDBOX_SPI_MAX_BUS
|
|
|
|
The maximum number of SPI buses supported by the driver (default 1).
|
|
|
|
|
|
|
|
CONFIG_SANDBOX_SPI_MAX_CS
|
|
|
|
The maximum number of chip selects supported by the driver
|
|
|
|
(default 10).
|
|
|
|
|
|
|
|
CONFIG_SPI_IDLE_VAL
|
|
|
|
The idle value on the SPI bus
|
|
|
|
|
|
|
|
|
|
|
|
Writing Sandbox Drivers
|
|
|
|
-----------------------
|
|
|
|
|
|
|
|
Generally you should put your driver in a file containing the word 'sandbox'
|
|
|
|
and put it in the same directory as other drivers of its type. You can then
|
|
|
|
implement the same hooks as the other drivers.
|
|
|
|
|
|
|
|
To access U-Boot's emulated memory, use map_sysmem() as mentioned above.
|
|
|
|
|
|
|
|
If your driver needs to store configuration or state (such as SPI flash
|
|
|
|
contents or emulated chip registers), you can use the device tree as
|
|
|
|
described above. Define handlers for this with the SANDBOX_STATE_IO macro.
|
|
|
|
See arch/sandbox/include/asm/state.h for documentation. In short you provide
|
|
|
|
a node name, compatible string and functions to read and write the state.
|
|
|
|
Since writing the state can expand the device tree, you may need to use
|
|
|
|
state_setprop() which does this automatically and avoids running out of
|
|
|
|
space. See existing code for examples.
|
|
|
|
|
|
|
|
|
|
|
|
Testing
|
|
|
|
-------
|
|
|
|
|
|
|
|
U-Boot sandbox can be used to run various tests, mostly in the test/
|
|
|
|
directory. These include:
|
|
|
|
|
|
|
|
command_ut
|
|
|
|
- Unit tests for command parsing and handling
|
|
|
|
compression
|
|
|
|
- Unit tests for U-Boot's compression algorithms, useful for
|
|
|
|
security checking. It supports gzip, bzip2, lzma and lzo.
|
|
|
|
driver model
|
|
|
|
- test/dm/test-dm.sh to run these.
|
|
|
|
image
|
|
|
|
- Unit tests for images:
|
|
|
|
test/image/test-imagetools.sh - multi-file images
|
|
|
|
test/image/test-fit.py - FIT images
|
|
|
|
tracing
|
|
|
|
- test/trace/test-trace.sh tests the tracing system (see README.trace)
|
|
|
|
verified boot
|
|
|
|
- See test/vboot/vboot_test.sh for this
|
|
|
|
|
|
|
|
If you change or enhance any of the above subsystems, you shold write or
|
|
|
|
expand a test and include it with your patch series submission. Test
|
|
|
|
coverage in U-Boot is limited, as we need to work to improve it.
|
|
|
|
|
|
|
|
Note that many of these tests are implemented as commands which you can
|
|
|
|
run natively on your board if desired (and enabled).
|
|
|
|
|
|
|
|
It would be useful to have a central script to run all of these.
|
|
|
|
|
|
|
|
--
|
|
|
|
Simon Glass <sjg@chromium.org>
|
|
|
|
Updated 22-Mar-14
|