upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
u-boot/drivers/usb/gadget/omap1510_udc.c

1568 lines
43 KiB

/*
* (C) Copyright 2003
* Gerry Hamel, geh@ti.com, Texas Instruments
*
* Based on
* linux/drivers/usb/device/bi/omap.c
* TI OMAP1510 USB bus interface driver
*
* Author: MontaVista Software, Inc.
* source@mvista.com
* (C) Copyright 2002
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <common.h>
#include <asm/io.h>
21 years ago
#ifdef CONFIG_OMAP_SX1
#include <i2c.h>
21 years ago
#endif
#include <usbdevice.h>
#include <usb/omap1510_udc.h>
#include "ep0.h"
#define UDC_INIT_MDELAY 80 /* Device settle delay */
#define UDC_MAX_ENDPOINTS 31 /* Number of endpoints on this UDC */
/* Some kind of debugging output... */
#if 1
#define UDCDBG(str)
#define UDCDBGA(fmt,args...)
#else /* The bugs still exists... */
#define UDCDBG(str) serial_printf("[%s] %s:%d: " str "\n", __FILE__,__FUNCTION__,__LINE__)
#define UDCDBGA(fmt,args...) serial_printf("[%s] %s:%d: " fmt "\n", __FILE__,__FUNCTION__,__LINE__, ##args)
#endif
#if 1
#define UDCREG(name)
#define UDCREGL(name)
#else /* The bugs still exists... */
#define UDCREG(name) serial_printf("%s():%d: %s[%08x]=%.4x\n",__FUNCTION__,__LINE__, (#name), name, inw(name)) /* For 16-bit regs */
#define UDCREGL(name) serial_printf("%s():%d: %s[%08x]=%.8x\n",__FUNCTION__,__LINE__, (#name), name, inl(name)) /* For 32-bit regs */
#endif
static struct urb *ep0_urb = NULL;
static struct usb_device_instance *udc_device; /* Used in interrupt handler */
static u16 udc_devstat = 0; /* UDC status (DEVSTAT) */
static u32 udc_interrupts = 0;
static void udc_stall_ep (unsigned int ep_addr);
static struct usb_endpoint_instance *omap1510_find_ep (int ep)
{
int i;
for (i = 0; i < udc_device->bus->max_endpoints; i++) {
if (udc_device->bus->endpoint_array[i].endpoint_address == ep)
return &udc_device->bus->endpoint_array[i];
}
return NULL;
}
/* ************************************************************************** */
/* IO
*/
/*
* omap1510_prepare_endpoint_for_rx
*
* This function implements TRM Figure 14-11.
*
* The endpoint to prepare for transfer is specified as a physical endpoint
* number. For OUT (rx) endpoints 1 through 15, the corresponding endpoint
* configuration register is checked to see if the endpoint is ISO or not.
* If the OUT endpoint is valid and is non-ISO then its FIFO is enabled.
* No action is taken for endpoint 0 or for IN (tx) endpoints 16 through 30.
*/
static void omap1510_prepare_endpoint_for_rx (int ep_addr)
{
int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
UDCDBGA ("omap1510_prepare_endpoint %x", ep_addr);
if (((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT)) {
if ((inw (UDC_EP_RX (ep_num)) &
(UDC_EPn_RX_Valid | UDC_EPn_RX_Iso)) ==
UDC_EPn_RX_Valid) {
/* rx endpoint is valid, non-ISO, so enable its FIFO */
outw (UDC_EP_Sel | ep_num, UDC_EP_NUM);
outw (UDC_Set_FIFO_En, UDC_CTRL);
outw (0, UDC_EP_NUM);
}
}
}
/* omap1510_configure_endpoints
*
* This function implements TRM Figure 14-10.
*/
static void omap1510_configure_endpoints (struct usb_device_instance *device)
{
int ep;
struct usb_bus_instance *bus;
struct usb_endpoint_instance *endpoint;
unsigned short ep_ptr;
unsigned short ep_size;
unsigned short ep_isoc;
unsigned short ep_doublebuffer;
int ep_addr;
int packet_size;
int buffer_size;
int attributes;
bus = device->bus;
/* There is a dedicated 2048 byte buffer for USB packets that may be
* arbitrarily partitioned among the endpoints on 8-byte boundaries.
* The first 8 bytes are reserved for receiving setup packets on
* endpoint 0.
*/
ep_ptr = 8; /* reserve the first 8 bytes for the setup fifo */
for (ep = 0; ep < bus->max_endpoints; ep++) {
endpoint = bus->endpoint_array + ep;
ep_addr = endpoint->endpoint_address;
if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
/* IN endpoint */
packet_size = endpoint->tx_packetSize;
attributes = endpoint->tx_attributes;
} else {
/* OUT endpoint */
packet_size = endpoint->rcv_packetSize;
attributes = endpoint->rcv_attributes;
}
switch (packet_size) {
case 0:
ep_size = 0;
break;
case 8:
ep_size = 0;
break;
case 16:
ep_size = 1;
break;
case 32:
ep_size = 2;
break;
case 64:
ep_size = 3;
break;
case 128:
ep_size = 4;
break;
case 256:
ep_size = 5;
break;
case 512:
ep_size = 6;
break;
default:
UDCDBGA ("ep 0x%02x has bad packet size %d",
ep_addr, packet_size);
packet_size = 0;
ep_size = 0;
break;
}
switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) {
case USB_ENDPOINT_XFER_CONTROL:
case USB_ENDPOINT_XFER_BULK:
case USB_ENDPOINT_XFER_INT:
default:
/* A non-isochronous endpoint may optionally be
* double-buffered. For now we disable
* double-buffering.
*/
ep_doublebuffer = 0;
ep_isoc = 0;
if (packet_size > 64)
packet_size = 0;
if (!ep || !ep_doublebuffer)
buffer_size = packet_size;
else
buffer_size = packet_size * 2;
break;
case USB_ENDPOINT_XFER_ISOC:
/* Isochronous endpoints are always double-
* buffered, but the double-buffering bit
* in the endpoint configuration register
* becomes the msb of the endpoint size so we
* set the double-buffering flag to zero.
*/
ep_doublebuffer = 0;
ep_isoc = 1;
buffer_size = packet_size * 2;
break;
}
/* check to see if our packet buffer RAM is exhausted */
if ((ep_ptr + buffer_size) > 2048) {
UDCDBGA ("out of packet RAM for ep 0x%02x buf size %d", ep_addr, buffer_size);
buffer_size = packet_size = 0;
}
/* force a default configuration for endpoint 0 since it is
* always enabled
*/
if (!ep && ((packet_size < 8) || (packet_size > 64))) {
buffer_size = packet_size = 64;
ep_size = 3;
}
if (!ep) {
/* configure endpoint 0 */
outw ((ep_size << 12) | (ep_ptr >> 3), UDC_EP0);
/*UDCDBGA("ep 0 buffer offset 0x%03x packet size 0x%03x", */
/* ep_ptr, packet_size); */
} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
/* IN endpoint */
if (packet_size) {
outw ((1 << 15) | (ep_doublebuffer << 14) |
(ep_size << 12) | (ep_isoc << 11) |
(ep_ptr >> 3),
UDC_EP_TX (ep_addr &
USB_ENDPOINT_NUMBER_MASK));
UDCDBGA ("IN ep %d buffer offset 0x%03x"
" packet size 0x%03x",
ep_addr & USB_ENDPOINT_NUMBER_MASK,
ep_ptr, packet_size);
} else {
outw (0,
UDC_EP_TX (ep_addr &
USB_ENDPOINT_NUMBER_MASK));
}
} else {
/* OUT endpoint */
if (packet_size) {
outw ((1 << 15) | (ep_doublebuffer << 14) |
(ep_size << 12) | (ep_isoc << 11) |
(ep_ptr >> 3),
UDC_EP_RX (ep_addr &
USB_ENDPOINT_NUMBER_MASK));
UDCDBGA ("OUT ep %d buffer offset 0x%03x"
" packet size 0x%03x",
ep_addr & USB_ENDPOINT_NUMBER_MASK,
ep_ptr, packet_size);
} else {
outw (0,
UDC_EP_RX (ep_addr &
USB_ENDPOINT_NUMBER_MASK));
}
}
ep_ptr += buffer_size;
}
}
/* omap1510_deconfigure_device
*
* This function balances omap1510_configure_device.
*/
static void omap1510_deconfigure_device (void)
{
int epnum;
UDCDBG ("clear Cfg_Lock");
outw (inw (UDC_SYSCON1) & ~UDC_Cfg_Lock, UDC_SYSCON1);
UDCREG (UDC_SYSCON1);
/* deconfigure all endpoints */
for (epnum = 1; epnum <= 15; epnum++) {
outw (0, UDC_EP_RX (epnum));
outw (0, UDC_EP_TX (epnum));
}
}
/* omap1510_configure_device
*
* This function implements TRM Figure 14-9.
*/
static void omap1510_configure_device (struct usb_device_instance *device)
{
omap1510_configure_endpoints (device);
/* Figure 14-9 indicates we should enable interrupts here, but we have
* other routines (udc_all_interrupts, udc_suspended_interrupts) to
* do that.
*/
UDCDBG ("set Cfg_Lock");
outw (inw (UDC_SYSCON1) | UDC_Cfg_Lock, UDC_SYSCON1);
UDCREG (UDC_SYSCON1);
}
/* omap1510_write_noniso_tx_fifo
*
* This function implements TRM Figure 14-30.
*
* If the endpoint has an active tx_urb, then the next packet of data from the
* URB is written to the tx FIFO. The total amount of data in the urb is given
* by urb->actual_length. The maximum amount of data that can be sent in any
* one packet is given by endpoint->tx_packetSize. The number of data bytes
* from this URB that have already been transmitted is given by endpoint->sent.
* endpoint->last is updated by this routine with the number of data bytes
* transmitted in this packet.
*
* In accordance with Figure 14-30, the EP_NUM register must already have been
* written with the value to select the appropriate tx FIFO before this routine
* is called.
*/
static void omap1510_write_noniso_tx_fifo (struct usb_endpoint_instance
*endpoint)
{
struct urb *urb = endpoint->tx_urb;
if (urb) {
unsigned int last, i;
UDCDBGA ("urb->buffer %p, buffer_length %d, actual_length %d",
urb->buffer, urb->buffer_length, urb->actual_length);
if ((last =
MIN (urb->actual_length - endpoint->sent,
endpoint->tx_packetSize))) {
u8 *cp = urb->buffer + endpoint->sent;
UDCDBGA ("endpoint->sent %d, tx_packetSize %d, last %d", endpoint->sent, endpoint->tx_packetSize, last);
if (((u32) cp & 1) == 0) { /* word aligned? */
outsw (UDC_DATA, cp, last >> 1);
} else { /* byte aligned. */
for (i = 0; i < (last >> 1); i++) {
u16 w = ((u16) cp[2 * i + 1] << 8) |
(u16) cp[2 * i];
outw (w, UDC_DATA);
}
}
if (last & 1) {
outb (*(cp + last - 1), UDC_DATA);
}
}
endpoint->last = last;
}
}
/* omap1510_read_noniso_rx_fifo
*
* This function implements TRM Figure 14-28.
*
* If the endpoint has an active rcv_urb, then the next packet of data is read
* from the rcv FIFO and written to rcv_urb->buffer at offset
* rcv_urb->actual_length to append the packet data to the data from any
* previous packets for this transfer. We assume that there is sufficient room
* left in the buffer to hold an entire packet of data.
*
* The return value is the number of bytes read from the FIFO for this packet.
*
* In accordance with Figure 14-28, the EP_NUM register must already have been
* written with the value to select the appropriate rcv FIFO before this routine
* is called.
*/
static int omap1510_read_noniso_rx_fifo (struct usb_endpoint_instance
*endpoint)
{
struct urb *urb = endpoint->rcv_urb;
int len = 0;
if (urb) {
len = inw (UDC_RXFSTAT);
if (len) {
unsigned char *cp = urb->buffer + urb->actual_length;
insw (UDC_DATA, cp, len >> 1);
if (len & 1)
*(cp + len - 1) = inb (UDC_DATA);
}
}
return len;
}
/* omap1510_prepare_for_control_write_status
*
* This function implements TRM Figure 14-17.
*
* We have to deal here with non-autodecoded control writes that haven't already
* been dealt with by ep0_recv_setup. The non-autodecoded standard control
* write requests are: set/clear endpoint feature, set configuration, set
* interface, and set descriptor. ep0_recv_setup handles set/clear requests for
* ENDPOINT_HALT by halting the endpoint for a set request and resetting the
* endpoint for a clear request. ep0_recv_setup returns an error for
* SET_DESCRIPTOR requests which causes them to be terminated with a stall by
* the setup handler. A SET_INTERFACE request is handled by ep0_recv_setup by
* generating a DEVICE_SET_INTERFACE event. This leaves only the
* SET_CONFIGURATION event for us to deal with here.
*
*/
static void omap1510_prepare_for_control_write_status (struct urb *urb)
{
struct usb_device_request *request = &urb->device_request;;
/* check for a SET_CONFIGURATION request */
if (request->bRequest == USB_REQ_SET_CONFIGURATION) {
int configuration = le16_to_cpu (request->wValue) & 0xff;
unsigned short devstat = inw (UDC_DEVSTAT);
if ((devstat & (UDC_ADD | UDC_CFG)) == UDC_ADD) {
/* device is currently in ADDRESSED state */
if (configuration) {
/* Assume the specified non-zero configuration
* value is valid and switch to the CONFIGURED
* state.
*/
outw (UDC_Dev_Cfg, UDC_SYSCON2);
}
} else if ((devstat & UDC_CFG) == UDC_CFG) {
/* device is currently in CONFIGURED state */
if (!configuration) {
/* Switch to ADDRESSED state. */
outw (UDC_Clr_Cfg, UDC_SYSCON2);
}
}
}
/* select EP0 tx FIFO */
outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
/* clear endpoint (no data bytes in status stage) */
outw (UDC_Clr_EP, UDC_CTRL);
/* enable the EP0 tx FIFO */
outw (UDC_Set_FIFO_En, UDC_CTRL);
/* deselect the endpoint */
outw (UDC_EP_Dir, UDC_EP_NUM);
}
/* udc_state_transition_up
* udc_state_transition_down
*
* Helper functions to implement device state changes. The device states and
* the events that transition between them are:
*
* STATE_ATTACHED
* || /\
* \/ ||
* DEVICE_HUB_CONFIGURED DEVICE_HUB_RESET
* || /\
* \/ ||
* STATE_POWERED
* || /\
* \/ ||
* DEVICE_RESET DEVICE_POWER_INTERRUPTION
* || /\
* \/ ||
* STATE_DEFAULT
* || /\
* \/ ||
* DEVICE_ADDRESS_ASSIGNED DEVICE_RESET
* || /\
* \/ ||
* STATE_ADDRESSED
* || /\
* \/ ||
* DEVICE_CONFIGURED DEVICE_DE_CONFIGURED
* || /\
* \/ ||
* STATE_CONFIGURED
*
* udc_state_transition_up transitions up (in the direction from STATE_ATTACHED
* to STATE_CONFIGURED) from the specified initial state to the specified final
* state, passing through each intermediate state on the way. If the initial
* state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then
* no state transitions will take place.
*
* udc_state_transition_down transitions down (in the direction from
* STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the
* specified final state, passing through each intermediate state on the way.
* If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final
* state, then no state transitions will take place.
*
* These functions must only be called with interrupts disabled.
*/
static void udc_state_transition_up (usb_device_state_t initial,
usb_device_state_t final)
{
if (initial < final) {
switch (initial) {
case STATE_ATTACHED:
usbd_device_event_irq (udc_device,
DEVICE_HUB_CONFIGURED, 0);
if (final == STATE_POWERED)
break;
case STATE_POWERED:
usbd_device_event_irq (udc_device, DEVICE_RESET, 0);
if (final == STATE_DEFAULT)
break;
case STATE_DEFAULT:
usbd_device_event_irq (udc_device,
DEVICE_ADDRESS_ASSIGNED, 0);
if (final == STATE_ADDRESSED)
break;
case STATE_ADDRESSED:
usbd_device_event_irq (udc_device, DEVICE_CONFIGURED,
0);
case STATE_CONFIGURED:
break;
default:
break;
}
}
}
static void udc_state_transition_down (usb_device_state_t initial,
usb_device_state_t final)
{
if (initial > final) {
switch (initial) {
case STATE_CONFIGURED:
usbd_device_event_irq (udc_device, DEVICE_DE_CONFIGURED, 0);
if (final == STATE_ADDRESSED)
break;
case STATE_ADDRESSED:
usbd_device_event_irq (udc_device, DEVICE_RESET, 0);
if (final == STATE_DEFAULT)
break;
case STATE_DEFAULT:
usbd_device_event_irq (udc_device, DEVICE_POWER_INTERRUPTION, 0);
if (final == STATE_POWERED)
break;
case STATE_POWERED:
usbd_device_event_irq (udc_device, DEVICE_HUB_RESET, 0);
case STATE_ATTACHED:
break;
default:
break;
}
}
}
/* Handle all device state changes.
* This function implements TRM Figure 14-21.
*/
static void omap1510_udc_state_changed (void)
{
u16 bits;
u16 devstat = inw (UDC_DEVSTAT);
UDCDBGA ("state changed, devstat %x, old %x", devstat, udc_devstat);
bits = devstat ^ udc_devstat;
if (bits) {
if (bits & UDC_ATT) {
if (devstat & UDC_ATT) {
UDCDBG ("device attached and powered");
udc_state_transition_up (udc_device->device_state, STATE_POWERED);
} else {
UDCDBG ("device detached or unpowered");
udc_state_transition_down (udc_device->device_state, STATE_ATTACHED);
}
}
if (bits & UDC_USB_Reset) {
if (devstat & UDC_USB_Reset) {
UDCDBG ("device reset in progess");
udc_state_transition_down (udc_device->device_state, STATE_POWERED);
} else {
UDCDBG ("device reset completed");
}
}
if (bits & UDC_DEF) {
if (devstat & UDC_DEF) {
UDCDBG ("device entering default state");
udc_state_transition_up (udc_device->device_state, STATE_DEFAULT);
} else {
UDCDBG ("device leaving default state");
udc_state_transition_down (udc_device->device_state, STATE_POWERED);
}
}
if (bits & UDC_SUS) {
if (devstat & UDC_SUS) {
UDCDBG ("entering suspended state");
usbd_device_event_irq (udc_device, DEVICE_BUS_INACTIVE, 0);
} else {
UDCDBG ("leaving suspended state");
usbd_device_event_irq (udc_device, DEVICE_BUS_ACTIVITY, 0);
}
}
if (bits & UDC_R_WK_OK) {
UDCDBGA ("remote wakeup %s", (devstat & UDC_R_WK_OK)
? "enabled" : "disabled");
}
if (bits & UDC_ADD) {
if (devstat & UDC_ADD) {
UDCDBG ("default -> addressed");
udc_state_transition_up (udc_device->device_state, STATE_ADDRESSED);
} else {
UDCDBG ("addressed -> default");
udc_state_transition_down (udc_device->device_state, STATE_DEFAULT);
}
}
if (bits & UDC_CFG) {
if (devstat & UDC_CFG) {
UDCDBG ("device configured");
/* The ep0_recv_setup function generates the
* DEVICE_CONFIGURED event when a
* USB_REQ_SET_CONFIGURATION setup packet is
* received, so we should already be in the
* state STATE_CONFIGURED.
*/
udc_state_transition_up (udc_device->device_state, STATE_CONFIGURED);
} else {
UDCDBG ("device deconfigured");
udc_state_transition_down (udc_device->device_state, STATE_ADDRESSED);
}
}
}
/* Clear interrupt source */
outw (UDC_DS_Chg, UDC_IRQ_SRC);
/* Save current DEVSTAT */
udc_devstat = devstat;
}
/* Handle SETUP USB interrupt.
* This function implements TRM Figure 14-14.
*/
static void omap1510_udc_setup (struct usb_endpoint_instance *endpoint)
{
UDCDBG ("-> Entering device setup");
19 years ago
do {
const int setup_pktsize = 8;
unsigned char *datap =
(unsigned char *) &ep0_urb->device_request;
/* Gain access to EP 0 setup FIFO */
outw (UDC_Setup_Sel, UDC_EP_NUM);
/* Read control request data */
insb (UDC_DATA, datap, setup_pktsize);
UDCDBGA ("EP0 setup read [%x %x %x %x %x %x %x %x]",
*(datap + 0), *(datap + 1), *(datap + 2),
*(datap + 3), *(datap + 4), *(datap + 5),
*(datap + 6), *(datap + 7));
/* Reset EP0 setup FIFO */
outw (0, UDC_EP_NUM);
} while (inw (UDC_IRQ_SRC) & UDC_Setup);
/* Try to process setup packet */
if (ep0_recv_setup (ep0_urb)) {
/* Not a setup packet, stall next EP0 transaction */
udc_stall_ep (0);
UDCDBG ("can't parse setup packet, still waiting for setup");
return;
}
/* Check direction */
if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK)
== USB_REQ_HOST2DEVICE) {
UDCDBG ("control write on EP0");
if (le16_to_cpu (ep0_urb->device_request.wLength)) {
/* We don't support control write data stages.
* The only standard control write request with a data
* stage is SET_DESCRIPTOR, and ep0_recv_setup doesn't
* support that so we just stall those requests. A
* function driver might support a non-standard
* write request with a data stage, but it isn't
* obvious what we would do with the data if we read it
* so we'll just stall it. It seems like the API isn't
* quite right here.
*/
#if 0
/* Here is what we would do if we did support control
* write data stages.
*/
ep0_urb->actual_length = 0;
outw (0, UDC_EP_NUM);
/* enable the EP0 rx FIFO */
outw (UDC_Set_FIFO_En, UDC_CTRL);
#else
/* Stall this request */
UDCDBG ("Stalling unsupported EP0 control write data "
"stage.");
udc_stall_ep (0);
#endif
} else {
omap1510_prepare_for_control_write_status (ep0_urb);
}
} else {
UDCDBG ("control read on EP0");
/* The ep0_recv_setup function has already placed our response
* packet data in ep0_urb->buffer and the packet length in
* ep0_urb->actual_length.
*/
endpoint->tx_urb = ep0_urb;
endpoint->sent = 0;
/* select the EP0 tx FIFO */
outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
/* Write packet data to the FIFO. omap1510_write_noniso_tx_fifo
* will update endpoint->last with the number of bytes written
* to the FIFO.
*/
omap1510_write_noniso_tx_fifo (endpoint);
/* enable the FIFO to start the packet transmission */
outw (UDC_Set_FIFO_En, UDC_CTRL);
/* deselect the EP0 tx FIFO */
outw (UDC_EP_Dir, UDC_EP_NUM);
}
UDCDBG ("<- Leaving device setup");
}
/* Handle endpoint 0 RX interrupt
* This routine implements TRM Figure 14-16.
*/
static void omap1510_udc_ep0_rx (struct usb_endpoint_instance *endpoint)
{
unsigned short status;
UDCDBG ("RX on EP0");
/* select EP0 rx FIFO */
outw (UDC_EP_Sel, UDC_EP_NUM);
status = inw (UDC_STAT_FLG);
if (status & UDC_ACK) {
/* Check direction */
if ((ep0_urb->device_request.bmRequestType
& USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) {
/* This rx interrupt must be for a control write data
* stage packet.
*
* We don't support control write data stages.
* We should never end up here.
*/
/* clear the EP0 rx FIFO */
outw (UDC_Clr_EP, UDC_CTRL);
/* deselect the EP0 rx FIFO */
outw (0, UDC_EP_NUM);
UDCDBG ("Stalling unexpected EP0 control write "
"data stage packet");
udc_stall_ep (0);
} else {
/* This rx interrupt must be for a control read status
* stage packet.
*/
UDCDBG ("ACK on EP0 control read status stage packet");
/* deselect EP0 rx FIFO */
outw (0, UDC_EP_NUM);
}
} else if (status & UDC_STALL) {
UDCDBG ("EP0 stall during RX");
/* deselect EP0 rx FIFO */
outw (0, UDC_EP_NUM);
} else {
/* deselect EP0 rx FIFO */
outw (0, UDC_EP_NUM);
}
}
/* Handle endpoint 0 TX interrupt
* This routine implements TRM Figure 14-18.
*/
static void omap1510_udc_ep0_tx (struct usb_endpoint_instance *endpoint)
{
unsigned short status;
struct usb_device_request *request = &ep0_urb->device_request;
UDCDBG ("TX on EP0");
/* select EP0 TX FIFO */
outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
status = inw (UDC_STAT_FLG);
if (status & UDC_ACK) {
/* Check direction */
if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) ==
USB_REQ_HOST2DEVICE) {
/* This tx interrupt must be for a control write status
* stage packet.
*/
UDCDBG ("ACK on EP0 control write status stage packet");
/* deselect EP0 TX FIFO */
outw (UDC_EP_Dir, UDC_EP_NUM);
} else {
/* This tx interrupt must be for a control read data
* stage packet.
*/
int wLength = le16_to_cpu (request->wLength);
/* Update our count of bytes sent so far in this
* transfer.
*/
endpoint->sent += endpoint->last;
/* We are finished with this transfer if we have sent
* all of the bytes in our tx urb (urb->actual_length)
* unless we need a zero-length terminating packet. We
* need a zero-length terminating packet if we returned
* fewer bytes than were requested (wLength) by the host,
* and the number of bytes we returned is an exact
* multiple of the packet size endpoint->tx_packetSize.
*/
if ((endpoint->sent == ep0_urb->actual_length)
&& ((ep0_urb->actual_length == wLength)
|| (endpoint->last !=
endpoint->tx_packetSize))) {
/* Done with control read data stage. */
UDCDBG ("control read data stage complete");
/* deselect EP0 TX FIFO */
outw (UDC_EP_Dir, UDC_EP_NUM);
/* select EP0 RX FIFO to prepare for control
* read status stage.
*/
outw (UDC_EP_Sel, UDC_EP_NUM);
/* clear the EP0 RX FIFO */
outw (UDC_Clr_EP, UDC_CTRL);
/* enable the EP0 RX FIFO */
outw (UDC_Set_FIFO_En, UDC_CTRL);
/* deselect the EP0 RX FIFO */
outw (0, UDC_EP_NUM);
} else {
/* We still have another packet of data to send
* in this control read data stage or else we
* need a zero-length terminating packet.
*/
UDCDBG ("ACK control read data stage packet");
omap1510_write_noniso_tx_fifo (endpoint);
/* enable the EP0 tx FIFO to start transmission */
outw (UDC_Set_FIFO_En, UDC_CTRL);
/* deselect EP0 TX FIFO */
outw (UDC_EP_Dir, UDC_EP_NUM);
}
}
} else if (status & UDC_STALL) {
UDCDBG ("EP0 stall during TX");
/* deselect EP0 TX FIFO */
outw (UDC_EP_Dir, UDC_EP_NUM);
} else {
/* deselect EP0 TX FIFO */
outw (UDC_EP_Dir, UDC_EP_NUM);
}
}
/* Handle RX transaction on non-ISO endpoint.
* This function implements TRM Figure 14-27.
* The ep argument is a physical endpoint number for a non-ISO OUT endpoint
* in the range 1 to 15.
*/
static void omap1510_udc_epn_rx (int ep)
{
unsigned short status;
/* Check endpoint status */
status = inw (UDC_STAT_FLG);
if (status & UDC_ACK) {
int nbytes;
struct usb_endpoint_instance *endpoint =
omap1510_find_ep (ep);
nbytes = omap1510_read_noniso_rx_fifo (endpoint);
usbd_rcv_complete (endpoint, nbytes, 0);
/* enable rx FIFO to prepare for next packet */
outw (UDC_Set_FIFO_En, UDC_CTRL);
} else if (status & UDC_STALL) {
UDCDBGA ("STALL on RX endpoint %d", ep);
} else if (status & UDC_NAK) {
UDCDBGA ("NAK on RX ep %d", ep);
} else {
serial_printf ("omap-bi: RX on ep %d with status %x", ep,
status);
}
}
/* Handle TX transaction on non-ISO endpoint.
* This function implements TRM Figure 14-29.
* The ep argument is a physical endpoint number for a non-ISO IN endpoint
* in the range 16 to 30.
*/
static void omap1510_udc_epn_tx (int ep)
{
unsigned short status;
/*serial_printf("omap1510_udc_epn_tx( %x )\n",ep); */
/* Check endpoint status */
status = inw (UDC_STAT_FLG);
if (status & UDC_ACK) {
struct usb_endpoint_instance *endpoint =
omap1510_find_ep (ep);
/* We need to transmit a terminating zero-length packet now if
* we have sent all of the data in this URB and the transfer
* size was an exact multiple of the packet size.
*/
if (endpoint->tx_urb
&& (endpoint->last == endpoint->tx_packetSize)
&& (endpoint->tx_urb->actual_length - endpoint->sent -
endpoint->last == 0)) {
/* Prepare to transmit a zero-length packet. */
endpoint->sent += endpoint->last;
/* write 0 bytes of data to FIFO */
omap1510_write_noniso_tx_fifo (endpoint);
/* enable tx FIFO to start transmission */
outw (UDC_Set_FIFO_En, UDC_CTRL);
} else if (endpoint->tx_urb
&& endpoint->tx_urb->actual_length) {
/* retire the data that was just sent */
usbd_tx_complete (endpoint);
/* Check to see if we have more data ready to transmit
* now.
*/
if (endpoint->tx_urb
&& endpoint->tx_urb->actual_length) {
/* write data to FIFO */
omap1510_write_noniso_tx_fifo (endpoint);
/* enable tx FIFO to start transmission */
outw (UDC_Set_FIFO_En, UDC_CTRL);
}
}
} else if (status & UDC_STALL) {
UDCDBGA ("STALL on TX endpoint %d", ep);
} else if (status & UDC_NAK) {
UDCDBGA ("NAK on TX endpoint %d", ep);
} else {
/*serial_printf("omap-bi: TX on ep %d with status %x\n", ep, status); */
}
}
/*
-------------------------------------------------------------------------------
*/
/* Handle general USB interrupts and dispatch according to type.
* This function implements TRM Figure 14-13.
*/
void omap1510_udc_irq (void)
{
u16 irq_src = inw (UDC_IRQ_SRC);
int valid_irq = 0;
if (!(irq_src & ~UDC_SOF_Flg)) /* ignore SOF interrupts ) */
return;
UDCDBGA ("< IRQ #%d start >- %x", udc_interrupts, irq_src);
/*serial_printf("< IRQ #%d start >- %x\n", udc_interrupts, irq_src); */
if (irq_src & UDC_DS_Chg) {
/* Device status changed */
omap1510_udc_state_changed ();
valid_irq++;
}
if (irq_src & UDC_EP0_RX) {
/* Endpoint 0 receive */
outw (UDC_EP0_RX, UDC_IRQ_SRC); /* ack interrupt */
omap1510_udc_ep0_rx (udc_device->bus->endpoint_array + 0);
valid_irq++;
}
if (irq_src & UDC_EP0_TX) {
/* Endpoint 0 transmit */
outw (UDC_EP0_TX, UDC_IRQ_SRC); /* ack interrupt */
omap1510_udc_ep0_tx (udc_device->bus->endpoint_array + 0);
valid_irq++;
}
if (irq_src & UDC_Setup) {
/* Device setup */
omap1510_udc_setup (udc_device->bus->endpoint_array + 0);
valid_irq++;
}
/*if (!valid_irq) */
/* serial_printf("unknown interrupt, IRQ_SRC %.4x\n", irq_src); */
UDCDBGA ("< IRQ #%d end >", udc_interrupts);
udc_interrupts++;
}
/* This function implements TRM Figure 14-26. */
void omap1510_udc_noniso_irq (void)
{
unsigned short epnum;
unsigned short irq_src = inw (UDC_IRQ_SRC);
int valid_irq = 0;
if (!(irq_src & (UDC_EPn_RX | UDC_EPn_TX)))
return;
UDCDBGA ("non-ISO IRQ, IRQ_SRC %x", inw (UDC_IRQ_SRC));
if (irq_src & UDC_EPn_RX) { /* Endpoint N OUT transaction */
/* Determine the endpoint number for this interrupt */
epnum = (inw (UDC_EPN_STAT) & 0x0f00) >> 8;
UDCDBGA ("RX on ep %x", epnum);
/* acknowledge interrupt */
outw (UDC_EPn_RX, UDC_IRQ_SRC);
if (epnum) {
/* select the endpoint FIFO */
outw (UDC_EP_Sel | epnum, UDC_EP_NUM);
omap1510_udc_epn_rx (epnum);
/* deselect the endpoint FIFO */
outw (epnum, UDC_EP_NUM);
}
valid_irq++;
}
if (irq_src & UDC_EPn_TX) { /* Endpoint N IN transaction */
/* Determine the endpoint number for this interrupt */
epnum = (inw (UDC_EPN_STAT) & 0x000f) | USB_DIR_IN;
UDCDBGA ("TX on ep %x", epnum);
/* acknowledge interrupt */
outw (UDC_EPn_TX, UDC_IRQ_SRC);
if (epnum) {
/* select the endpoint FIFO */
outw (UDC_EP_Sel | UDC_EP_Dir | epnum, UDC_EP_NUM);
omap1510_udc_epn_tx (epnum);
/* deselect the endpoint FIFO */
outw (UDC_EP_Dir | epnum, UDC_EP_NUM);
}
valid_irq++;
}
if (!valid_irq)
serial_printf (": unknown non-ISO interrupt, IRQ_SRC %.4x\n",
irq_src);
}
/*
-------------------------------------------------------------------------------
*/
/*
* Start of public functions.
*/
/* Called to start packet transmission. */
int udc_endpoint_write (struct usb_endpoint_instance *endpoint)
{
unsigned short epnum =
endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK;
UDCDBGA ("Starting transmit on ep %x", epnum);
if (endpoint->tx_urb) {
/* select the endpoint FIFO */
outw (UDC_EP_Sel | UDC_EP_Dir | epnum, UDC_EP_NUM);
/* write data to FIFO */
omap1510_write_noniso_tx_fifo (endpoint);
/* enable tx FIFO to start transmission */
outw (UDC_Set_FIFO_En, UDC_CTRL);
/* deselect the endpoint FIFO */
outw (UDC_EP_Dir | epnum, UDC_EP_NUM);
}
return 0;
}
/* Start to initialize h/w stuff */
int udc_init (void)
{
u16 udc_rev;
21 years ago
uchar value;
ulong gpio;
int i;
/* Let the device settle down before we start */
for (i = 0; i < UDC_INIT_MDELAY; i++) udelay(1000);
udc_device = NULL;
UDCDBG ("starting");
/* Check peripheral reset. Must be 1 to make sure
MPU TIPB peripheral reset is inactive */
UDCREG (ARM_RSTCT2);
/* Set and check clock control.
* We might ought to be using the clock control API to do
* this instead of fiddling with the clock registers directly
* here.
*/
outw ((1 << 4) | (1 << 5), CLOCK_CTRL);
UDCREG (CLOCK_CTRL);
#ifdef CONFIG_OMAP1510
/* This code was originally implemented for OMAP1510 and
* therefore is only applicable for OMAP1510 boards. For
* OMAP5912 or OMAP16xx the register APLL_CTRL does not
* exist and DPLL_CTRL is already configured.
*/
/* Set and check APLL */
outw (0x0008, APLL_CTRL);
UDCREG (APLL_CTRL);
/* Set and check DPLL */
outw (0x2210, DPLL_CTRL);
UDCREG (DPLL_CTRL);
#endif
/* Set and check SOFT
* The below line of code has been changed to perform a
* read-modify-write instead of a simple write for
* configuring the SOFT_REQ register. This allows the code
* to be compatible with OMAP5912 and OMAP16xx devices
*/
outw ((1 << 4) | (1 << 3) | 1 | (inw(SOFT_REQ)), SOFT_REQ);
/* Short delay to wait for DPLL */
udelay (1000);
/* Print banner with device revision */
udc_rev = inw (UDC_REV) & 0xff;
#ifdef CONFIG_OMAP1510
printf ("USB: TI OMAP1510 USB function module rev %d.%d\n",
udc_rev >> 4, udc_rev & 0xf);
#endif
#ifdef CONFIG_OMAP1610
printf ("USB: TI OMAP5912 USB function module rev %d.%d\n",
udc_rev >> 4, udc_rev & 0xf);
#endif
21 years ago
#ifdef CONFIG_OMAP_SX1
i2c_read (0x32, 0x04, 1, &value, 1);
value |= 0x04;
i2c_write (0x32, 0x04, 1, &value, 1);
21 years ago
i2c_read (0x32, 0x03, 1, &value, 1);
value |= 0x01;
i2c_write (0x32, 0x03, 1, &value, 1);
gpio = inl(GPIO_PIN_CONTROL_REG);
gpio |= 0x0002; /* A_IRDA_OFF */
gpio |= 0x0800; /* A_SWITCH */
gpio |= 0x8000; /* A_USB_ON */
outl (gpio, GPIO_PIN_CONTROL_REG);
gpio = inl(GPIO_DIR_CONTROL_REG);
gpio &= ~0x0002; /* A_IRDA_OFF */
gpio &= ~0x0800; /* A_SWITCH */
gpio &= ~0x8000; /* A_USB_ON */
outl (gpio, GPIO_DIR_CONTROL_REG);
gpio = inl(GPIO_DATA_OUTPUT_REG);
gpio |= 0x0002; /* A_IRDA_OFF */
gpio &= ~0x0800; /* A_SWITCH */
gpio &= ~0x8000; /* A_USB_ON */
outl (gpio, GPIO_DATA_OUTPUT_REG);
21 years ago
#endif
/* The VBUS_MODE bit selects whether VBUS detection is done via
* software (1) or hardware (0). When software detection is
* selected, VBUS_CTRL selects whether USB is not connected (0)
* or connected (1).
*/
outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_MODE, FUNC_MUX_CTRL_0);
outl (inl (FUNC_MUX_CTRL_0) & ~UDC_VBUS_CTRL, FUNC_MUX_CTRL_0);
UDCREGL (FUNC_MUX_CTRL_0);
/*
* At this point, device is ready for configuration...
*/
UDCDBG ("disable USB interrupts");
outw (0, UDC_IRQ_EN);
UDCREG (UDC_IRQ_EN);
UDCDBG ("disable USB DMA");
outw (0, UDC_DMA_IRQ_EN);
UDCREG (UDC_DMA_IRQ_EN);
UDCDBG ("initialize SYSCON1");
outw (UDC_Self_Pwr | UDC_Pullup_En, UDC_SYSCON1);
UDCREG (UDC_SYSCON1);
return 0;
}
/* Stall endpoint */
static void udc_stall_ep (unsigned int ep_addr)
{
/*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */
int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
UDCDBGA ("stall ep_addr %d", ep_addr);
/* REVISIT?
* The OMAP TRM section 14.2.4.2 says we must check that the FIFO
* is empty before halting the endpoint. The current implementation
* doesn't check that the FIFO is empty.
*/
if (!ep_num) {
outw (UDC_Stall_Cmd, UDC_SYSCON2);
} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
if (inw (UDC_EP_RX (ep_num)) & UDC_EPn_RX_Valid) {
/* we have a valid rx endpoint, so halt it */
outw (UDC_EP_Sel | ep_num, UDC_EP_NUM);
outw (UDC_Set_Halt, UDC_CTRL);
outw (ep_num, UDC_EP_NUM);
}
} else {
if (inw (UDC_EP_TX (ep_num)) & UDC_EPn_TX_Valid) {
/* we have a valid tx endpoint, so halt it */
outw (UDC_EP_Sel | UDC_EP_Dir | ep_num, UDC_EP_NUM);
outw (UDC_Set_Halt, UDC_CTRL);
outw (ep_num, UDC_EP_NUM);
}
}
}
/* Reset endpoint */
#if 0
static void udc_reset_ep (unsigned int ep_addr)
{
/*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */
int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
UDCDBGA ("reset ep_addr %d", ep_addr);
if (!ep_num) {
/* control endpoint 0 can't be reset */
} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
UDCDBGA ("UDC_EP_RX(%d) = 0x%04x", ep_num,
inw (UDC_EP_RX (ep_num)));
if (inw (UDC_EP_RX (ep_num)) & UDC_EPn_RX_Valid) {
/* we have a valid rx endpoint, so reset it */
outw (ep_num | UDC_EP_Sel, UDC_EP_NUM);
outw (UDC_Reset_EP, UDC_CTRL);
outw (ep_num, UDC_EP_NUM);
UDCDBGA ("OUT endpoint %d reset", ep_num);
}
} else {
UDCDBGA ("UDC_EP_TX(%d) = 0x%04x", ep_num,
inw (UDC_EP_TX (ep_num)));
/* Resetting of tx endpoints seems to be causing the USB function
* module to fail, which causes problems when the driver is
* uninstalled. We'll skip resetting tx endpoints for now until
* we figure out what the problem is.
*/
#if 0
if (inw (UDC_EP_TX (ep_num)) & UDC_EPn_TX_Valid) {
/* we have a valid tx endpoint, so reset it */
outw (ep_num | UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM);
outw (UDC_Reset_EP, UDC_CTRL);
outw (ep_num | UDC_EP_Dir, UDC_EP_NUM);
UDCDBGA ("IN endpoint %d reset", ep_num);
}
#endif
}
}
#endif
/* ************************************************************************** */
/**
* udc_check_ep - check logical endpoint
*
* Return physical endpoint number to use for this logical endpoint or zero if not valid.
*/
#if 0
int udc_check_ep (int logical_endpoint, int packetsize)
{
if ((logical_endpoint == 0x80) ||
((logical_endpoint & 0x8f) != logical_endpoint)) {
return 0;
}
switch (packetsize) {
case 8:
case 16:
case 32:
case 64:
case 128:
case 256:
case 512:
break;
default:
return 0;
}
return EP_ADDR_TO_PHYS_EP (logical_endpoint);
}
#endif
/*
* udc_setup_ep - setup endpoint
*
* Associate a physical endpoint with endpoint_instance
*/
void udc_setup_ep (struct usb_device_instance *device,
unsigned int ep, struct usb_endpoint_instance *endpoint)
{
UDCDBGA ("setting up endpoint addr %x", endpoint->endpoint_address);
/* This routine gets called by bi_modinit for endpoint 0 and from
* bi_config for all of the other endpoints. bi_config gets called
* during the DEVICE_CREATE, DEVICE_CONFIGURED, and
* DEVICE_SET_INTERFACE events. We need to reconfigure the OMAP packet
* RAM after bi_config scans the selected device configuration and
* initializes the endpoint structures, but before this routine enables
* the OUT endpoint FIFOs. Since bi_config calls this routine in a
* loop for endpoints 1 through UDC_MAX_ENDPOINTS, we reconfigure our
* packet RAM here when ep==1.
* I really hate to do this here, but it seems like the API exported
* by the USB bus interface controller driver to the usbd-bi module
* isn't quite right so there is no good place to do this.
*/
if (ep == 1) {
omap1510_deconfigure_device ();
omap1510_configure_device (device);
}
if (endpoint && (ep < UDC_MAX_ENDPOINTS)) {
int ep_addr = endpoint->endpoint_address;
if (!ep_addr) {
/* nothing to do for endpoint 0 */
} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
/* nothing to do for IN (tx) endpoints */
} else { /* OUT (rx) endpoint */
if (endpoint->rcv_packetSize) {
/*struct urb* urb = &(urb_out_array[ep&0xFF]); */
/*urb->endpoint = endpoint; */
/*urb->device = device; */
/*urb->buffer_length = sizeof(urb->buffer); */
/*endpoint->rcv_urb = urb; */
omap1510_prepare_endpoint_for_rx (ep_addr);
}
}
}
}
/**
* udc_disable_ep - disable endpoint
* @ep:
*
* Disable specified endpoint
*/
#if 0
void udc_disable_ep (unsigned int ep_addr)
{
/*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */
int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
struct usb_endpoint_instance *endpoint = omap1510_find_ep (ep_addr); /*udc_device->bus->endpoint_array + ep; */
UDCDBGA ("disable ep_addr %d", ep_addr);
if (!ep_num) {
/* nothing to do for endpoint 0 */ ;
} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
if (endpoint->tx_packetSize) {
/* we have a valid tx endpoint */
/*usbd_flush_tx(endpoint); */
endpoint->tx_urb = NULL;
}
} else {
if (endpoint->rcv_packetSize) {
/* we have a valid rx endpoint */
/*usbd_flush_rcv(endpoint); */
endpoint->rcv_urb = NULL;
}
}
}
#endif
/* ************************************************************************** */
/**
* udc_connected - is the USB cable connected
*
* Return non-zero if cable is connected.
*/
#if 0
int udc_connected (void)
{
return ((inw (UDC_DEVSTAT) & UDC_ATT) == UDC_ATT);
}
#endif
/* Turn on the USB connection by enabling the pullup resistor */
void udc_connect (void)
{
UDCDBG ("connect, enable Pullup");
outl (0x00000018, FUNC_MUX_CTRL_D);
}
/* Turn off the USB connection by disabling the pullup resistor */
void udc_disconnect (void)
{
UDCDBG ("disconnect, disable Pullup");
outl (0x00000000, FUNC_MUX_CTRL_D);
}
/* ************************************************************************** */
/*
* udc_disable_interrupts - disable interrupts
* switch off interrupts
*/
#if 0
void udc_disable_interrupts (struct usb_device_instance *device)
{
UDCDBG ("disabling all interrupts");
outw (0, UDC_IRQ_EN);
}
#endif
/* ************************************************************************** */
/**
* udc_ep0_packetsize - return ep0 packetsize
*/
#if 0
int udc_ep0_packetsize (void)
{
return EP0_PACKETSIZE;
}
#endif
/* Switch on the UDC */
void udc_enable (struct usb_device_instance *device)
{
UDCDBGA ("enable device %p, status %d", device, device->status);
/* initialize driver state variables */
udc_devstat = 0;
/* Save the device structure pointer */
udc_device = device;
/* Setup ep0 urb */
if (!ep0_urb) {
ep0_urb =
usbd_alloc_urb (udc_device,
udc_device->bus->endpoint_array);
} else {
serial_printf ("udc_enable: ep0_urb already allocated %p\n",
ep0_urb);
}
UDCDBG ("Check clock status");
UDCREG (STATUS_REQ);
/* The VBUS_MODE bit selects whether VBUS detection is done via
* software (1) or hardware (0). When software detection is
* selected, VBUS_CTRL selects whether USB is not connected (0)
* or connected (1).
*/
outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_CTRL | UDC_VBUS_MODE,
FUNC_MUX_CTRL_0);
UDCREGL (FUNC_MUX_CTRL_0);
omap1510_configure_device (device);
}
/* Switch off the UDC */
void udc_disable (void)
{
UDCDBG ("disable UDC");
omap1510_deconfigure_device ();
/* The VBUS_MODE bit selects whether VBUS detection is done via
* software (1) or hardware (0). When software detection is
* selected, VBUS_CTRL selects whether USB is not connected (0)
* or connected (1).
*/
outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_MODE, FUNC_MUX_CTRL_0);
outl (inl (FUNC_MUX_CTRL_0) & ~UDC_VBUS_CTRL, FUNC_MUX_CTRL_0);
UDCREGL (FUNC_MUX_CTRL_0);
/* Free ep0 URB */
if (ep0_urb) {
/*usbd_dealloc_urb(ep0_urb); */
ep0_urb = NULL;
}
/* Reset device pointer.
* We ought to do this here to balance the initialization of udc_device
* in udc_enable, but some of our other exported functions get called
* by the bus interface driver after udc_disable, so we have to hang on
* to the device pointer to avoid a null pointer dereference. */
/* udc_device = NULL; */
}
/**
* udc_startup - allow udc code to do any additional startup
*/
void udc_startup_events (struct usb_device_instance *device)
{
/* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */
usbd_device_event_irq (device, DEVICE_INIT, 0);
/* The DEVICE_CREATE event puts the USB device in the state
* STATE_ATTACHED.
*/
usbd_device_event_irq (device, DEVICE_CREATE, 0);
/* Some USB controller driver implementations signal
* DEVICE_HUB_CONFIGURED and DEVICE_RESET events here.
* DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED,
* and DEVICE_RESET causes a transition to the state STATE_DEFAULT.
* The OMAP USB client controller has the capability to detect when the
* USB cable is connected to a powered USB bus via the ATT bit in the
* DEVSTAT register, so we will defer the DEVICE_HUB_CONFIGURED and
* DEVICE_RESET events until later.
*/
udc_enable (device);
}
/**
19 years ago
* udc_irq - do pseudo interrupts
*/
void udc_irq(void)
{
/* Loop while we have interrupts.
* If we don't do this, the input chain
* polling delay is likely to miss
* host requests.
*/
while (inw (UDC_IRQ_SRC) & ~UDC_SOF_Flg) {
/* Handle any new IRQs */
omap1510_udc_irq ();
omap1510_udc_noniso_irq ();
}
}
/* Flow control */
void udc_set_nak(int epid)
{
/* TODO: implement this functionality in omap1510 */
}
void udc_unset_nak (int epid)
{
/* TODO: implement this functionality in omap1510 */
}