upstream u-boot with additional patches for our devices/boards:
https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ;
Gbit ethernet patch for some LIME2 revisions ;
with SPI flash support
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
397 lines
11 KiB
397 lines
11 KiB
10 years ago
|
/*
|
||
|
* Copyright (C) 2013, Intel Corporation
|
||
|
* Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com>
|
||
|
*
|
||
|
* Ported from Intel released Quark UEFI BIOS
|
||
|
* QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei
|
||
|
*
|
||
|
* SPDX-License-Identifier: Intel
|
||
|
*/
|
||
|
|
||
|
#include <common.h>
|
||
|
#include <asm/arch/mrc.h>
|
||
|
#include <asm/arch/msg_port.h>
|
||
|
#include "mrc_util.h"
|
||
|
#include "hte.h"
|
||
|
|
||
|
/**
|
||
|
* Enable HTE to detect all possible errors for the given training parameters
|
||
|
* (per-bit or full byte lane).
|
||
|
*/
|
||
|
static void hte_enable_all_errors(void)
|
||
|
{
|
||
|
msg_port_write(HTE, 0x000200A2, 0xFFFFFFFF);
|
||
|
msg_port_write(HTE, 0x000200A3, 0x000000FF);
|
||
|
msg_port_write(HTE, 0x000200A4, 0x00000000);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Go and read the HTE register in order to find any error
|
||
|
*
|
||
|
* @return: The errors detected in the HTE status register
|
||
|
*/
|
||
|
static u32 hte_check_errors(void)
|
||
|
{
|
||
|
return msg_port_read(HTE, 0x000200A7);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Wait until HTE finishes
|
||
|
*/
|
||
|
static void hte_wait_for_complete(void)
|
||
|
{
|
||
|
u32 tmp;
|
||
|
|
||
|
ENTERFN();
|
||
|
|
||
|
do {} while ((msg_port_read(HTE, 0x00020012) & BIT30) != 0);
|
||
|
|
||
|
tmp = msg_port_read(HTE, 0x00020011);
|
||
|
tmp |= BIT9;
|
||
|
tmp &= ~(BIT12 | BIT13);
|
||
|
msg_port_write(HTE, 0x00020011, tmp);
|
||
|
|
||
|
LEAVEFN();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Clear registers related with errors in the HTE
|
||
|
*/
|
||
|
static void hte_clear_error_regs(void)
|
||
|
{
|
||
|
u32 tmp;
|
||
|
|
||
|
/*
|
||
|
* Clear all HTE errors and enable error checking
|
||
|
* for burst and chunk.
|
||
|
*/
|
||
|
tmp = msg_port_read(HTE, 0x000200A1);
|
||
|
tmp |= BIT8;
|
||
|
msg_port_write(HTE, 0x000200A1, tmp);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Execute a basic single-cache-line memory write/read/verify test using simple
|
||
|
* constant pattern, different for READ_TRAIN and WRITE_TRAIN modes.
|
||
|
*
|
||
|
* See hte_basic_write_read() which is the external visible wrapper.
|
||
|
*
|
||
|
* @mrc_params: host structure for all MRC global data
|
||
|
* @addr: memory adress being tested (must hit specific channel/rank)
|
||
|
* @first_run: if set then the HTE registers are configured, otherwise it is
|
||
|
* assumed configuration is done and we just re-run the test
|
||
|
* @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern)
|
||
|
*
|
||
|
* @return: byte lane failure on each bit (for Quark only bit0 and bit1)
|
||
|
*/
|
||
|
static u16 hte_basic_data_cmp(struct mrc_params *mrc_params, u32 addr,
|
||
|
u8 first_run, u8 mode)
|
||
|
{
|
||
|
u32 pattern;
|
||
|
u32 offset;
|
||
|
|
||
|
if (first_run) {
|
||
|
msg_port_write(HTE, 0x00020020, 0x01B10021);
|
||
|
msg_port_write(HTE, 0x00020021, 0x06000000);
|
||
|
msg_port_write(HTE, 0x00020022, addr >> 6);
|
||
|
msg_port_write(HTE, 0x00020062, 0x00800015);
|
||
|
msg_port_write(HTE, 0x00020063, 0xAAAAAAAA);
|
||
|
msg_port_write(HTE, 0x00020064, 0xCCCCCCCC);
|
||
|
msg_port_write(HTE, 0x00020065, 0xF0F0F0F0);
|
||
|
msg_port_write(HTE, 0x00020061, 0x00030008);
|
||
|
|
||
|
if (mode == WRITE_TRAIN)
|
||
|
pattern = 0xC33C0000;
|
||
|
else /* READ_TRAIN */
|
||
|
pattern = 0xAA5555AA;
|
||
|
|
||
|
for (offset = 0x80; offset <= 0x8F; offset++)
|
||
|
msg_port_write(HTE, offset, pattern);
|
||
|
}
|
||
|
|
||
|
msg_port_write(HTE, 0x000200A1, 0xFFFF1000);
|
||
|
msg_port_write(HTE, 0x00020011, 0x00011000);
|
||
|
msg_port_write(HTE, 0x00020011, 0x00011100);
|
||
|
|
||
|
hte_wait_for_complete();
|
||
|
|
||
|
/*
|
||
|
* Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for
|
||
|
* any bytelane errors.
|
||
|
*/
|
||
|
return (hte_check_errors() >> 8) & 0xFF;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Examine a single-cache-line memory with write/read/verify test using multiple
|
||
|
* data patterns (victim-aggressor algorithm).
|
||
|
*
|
||
|
* See hte_write_stress_bit_lanes() which is the external visible wrapper.
|
||
|
*
|
||
|
* @mrc_params: host structure for all MRC global data
|
||
|
* @addr: memory adress being tested (must hit specific channel/rank)
|
||
|
* @loop_cnt: number of test iterations
|
||
|
* @seed_victim: victim data pattern seed
|
||
|
* @seed_aggressor: aggressor data pattern seed
|
||
|
* @victim_bit: should be 0 as auto-rotate feature is in use
|
||
|
* @first_run: if set then the HTE registers are configured, otherwise it is
|
||
|
* assumed configuration is done and we just re-run the test
|
||
|
*
|
||
|
* @return: byte lane failure on each bit (for Quark only bit0 and bit1)
|
||
|
*/
|
||
|
static u16 hte_rw_data_cmp(struct mrc_params *mrc_params, u32 addr,
|
||
|
u8 loop_cnt, u32 seed_victim, u32 seed_aggressor,
|
||
|
u8 victim_bit, u8 first_run)
|
||
|
{
|
||
|
u32 offset;
|
||
|
u32 tmp;
|
||
|
|
||
|
if (first_run) {
|
||
|
msg_port_write(HTE, 0x00020020, 0x00910024);
|
||
|
msg_port_write(HTE, 0x00020023, 0x00810024);
|
||
|
msg_port_write(HTE, 0x00020021, 0x06070000);
|
||
|
msg_port_write(HTE, 0x00020024, 0x06070000);
|
||
|
msg_port_write(HTE, 0x00020022, addr >> 6);
|
||
|
msg_port_write(HTE, 0x00020025, addr >> 6);
|
||
|
msg_port_write(HTE, 0x00020062, 0x0000002A);
|
||
|
msg_port_write(HTE, 0x00020063, seed_victim);
|
||
|
msg_port_write(HTE, 0x00020064, seed_aggressor);
|
||
|
msg_port_write(HTE, 0x00020065, seed_victim);
|
||
|
|
||
|
/*
|
||
|
* Write the pattern buffers to select the victim bit
|
||
|
*
|
||
|
* Start with bit0
|
||
|
*/
|
||
|
for (offset = 0x80; offset <= 0x8F; offset++) {
|
||
|
if ((offset % 8) == victim_bit)
|
||
|
msg_port_write(HTE, offset, 0x55555555);
|
||
|
else
|
||
|
msg_port_write(HTE, offset, 0xCCCCCCCC);
|
||
|
}
|
||
|
|
||
|
msg_port_write(HTE, 0x00020061, 0x00000000);
|
||
|
msg_port_write(HTE, 0x00020066, 0x03440000);
|
||
|
msg_port_write(HTE, 0x000200A1, 0xFFFF1000);
|
||
|
}
|
||
|
|
||
|
tmp = 0x10001000 | (loop_cnt << 16);
|
||
|
msg_port_write(HTE, 0x00020011, tmp);
|
||
|
msg_port_write(HTE, 0x00020011, tmp | BIT8);
|
||
|
|
||
|
hte_wait_for_complete();
|
||
|
|
||
|
/*
|
||
|
* Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for
|
||
|
* any bytelane errors.
|
||
|
*/
|
||
|
return (hte_check_errors() >> 8) & 0xFF;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Use HW HTE engine to initialize or test all memory attached to a given DUNIT.
|
||
|
* If flag is MRC_MEM_INIT, this routine writes 0s to all memory locations to
|
||
|
* initialize ECC. If flag is MRC_MEM_TEST, this routine will send an 5AA55AA5
|
||
|
* pattern to all memory locations on the RankMask and then read it back.
|
||
|
* Then it sends an A55AA55A pattern to all memory locations on the RankMask
|
||
|
* and reads it back.
|
||
|
*
|
||
|
* @mrc_params: host structure for all MRC global data
|
||
|
* @flag: MRC_MEM_INIT or MRC_MEM_TEST
|
||
|
*
|
||
|
* @return: errors register showing HTE failures. Also prints out which rank
|
||
|
* failed the HTE test if failure occurs. For rank detection to work,
|
||
|
* the address map must be left in its default state. If MRC changes
|
||
|
* the address map, this function must be modified to change it back
|
||
|
* to default at the beginning, then restore it at the end.
|
||
|
*/
|
||
|
u32 hte_mem_init(struct mrc_params *mrc_params, u8 flag)
|
||
|
{
|
||
|
u32 offset;
|
||
|
int test_num;
|
||
|
int i;
|
||
|
|
||
|
/*
|
||
|
* Clear out the error registers at the start of each memory
|
||
|
* init or memory test run.
|
||
|
*/
|
||
|
hte_clear_error_regs();
|
||
|
|
||
|
msg_port_write(HTE, 0x00020062, 0x00000015);
|
||
|
|
||
|
for (offset = 0x80; offset <= 0x8F; offset++)
|
||
|
msg_port_write(HTE, offset, ((offset & 1) ? 0xA55A : 0x5AA5));
|
||
|
|
||
|
msg_port_write(HTE, 0x00020021, 0x00000000);
|
||
|
msg_port_write(HTE, 0x00020022, (mrc_params->mem_size >> 6) - 1);
|
||
|
msg_port_write(HTE, 0x00020063, 0xAAAAAAAA);
|
||
|
msg_port_write(HTE, 0x00020064, 0xCCCCCCCC);
|
||
|
msg_port_write(HTE, 0x00020065, 0xF0F0F0F0);
|
||
|
msg_port_write(HTE, 0x00020066, 0x03000000);
|
||
|
|
||
|
switch (flag) {
|
||
|
case MRC_MEM_INIT:
|
||
|
/*
|
||
|
* Only 1 write pass through memory is needed
|
||
|
* to initialize ECC
|
||
|
*/
|
||
|
test_num = 1;
|
||
|
break;
|
||
|
case MRC_MEM_TEST:
|
||
|
/* Write/read then write/read with inverted pattern */
|
||
|
test_num = 4;
|
||
|
break;
|
||
|
default:
|
||
|
DPF(D_INFO, "Unknown parameter for flag: %d\n", flag);
|
||
|
return 0xFFFFFFFF;
|
||
|
}
|
||
|
|
||
|
DPF(D_INFO, "hte_mem_init");
|
||
|
|
||
|
for (i = 0; i < test_num; i++) {
|
||
|
DPF(D_INFO, ".");
|
||
|
|
||
|
if (i == 0) {
|
||
|
msg_port_write(HTE, 0x00020061, 0x00000000);
|
||
|
msg_port_write(HTE, 0x00020020, 0x00110010);
|
||
|
} else if (i == 1) {
|
||
|
msg_port_write(HTE, 0x00020061, 0x00000000);
|
||
|
msg_port_write(HTE, 0x00020020, 0x00010010);
|
||
|
} else if (i == 2) {
|
||
|
msg_port_write(HTE, 0x00020061, 0x00010100);
|
||
|
msg_port_write(HTE, 0x00020020, 0x00110010);
|
||
|
} else {
|
||
|
msg_port_write(HTE, 0x00020061, 0x00010100);
|
||
|
msg_port_write(HTE, 0x00020020, 0x00010010);
|
||
|
}
|
||
|
|
||
|
msg_port_write(HTE, 0x00020011, 0x00111000);
|
||
|
msg_port_write(HTE, 0x00020011, 0x00111100);
|
||
|
|
||
|
hte_wait_for_complete();
|
||
|
|
||
|
/* If this is a READ pass, check for errors at the end */
|
||
|
if ((i % 2) == 1) {
|
||
|
/* Return immediately if error */
|
||
|
if (hte_check_errors())
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
DPF(D_INFO, "done\n");
|
||
|
|
||
|
return hte_check_errors();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Execute a basic single-cache-line memory write/read/verify test using simple
|
||
|
* constant pattern, different for READ_TRAIN and WRITE_TRAIN modes.
|
||
|
*
|
||
|
* @mrc_params: host structure for all MRC global data
|
||
|
* @addr: memory adress being tested (must hit specific channel/rank)
|
||
|
* @first_run: if set then the HTE registers are configured, otherwise it is
|
||
|
* assumed configuration is done and we just re-run the test
|
||
|
* @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern)
|
||
|
*
|
||
|
* @return: byte lane failure on each bit (for Quark only bit0 and bit1)
|
||
|
*/
|
||
|
u16 hte_basic_write_read(struct mrc_params *mrc_params, u32 addr,
|
||
|
u8 first_run, u8 mode)
|
||
|
{
|
||
|
u16 errors;
|
||
|
|
||
|
ENTERFN();
|
||
|
|
||
|
/* Enable all error reporting in preparation for HTE test */
|
||
|
hte_enable_all_errors();
|
||
|
hte_clear_error_regs();
|
||
|
|
||
|
errors = hte_basic_data_cmp(mrc_params, addr, first_run, mode);
|
||
|
|
||
|
LEAVEFN();
|
||
|
|
||
|
return errors;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Examine a single-cache-line memory with write/read/verify test using multiple
|
||
|
* data patterns (victim-aggressor algorithm).
|
||
|
*
|
||
|
* @mrc_params: host structure for all MRC global data
|
||
|
* @addr: memory adress being tested (must hit specific channel/rank)
|
||
|
* @first_run: if set then the HTE registers are configured, otherwise it is
|
||
|
* assumed configuration is done and we just re-run the test
|
||
|
*
|
||
|
* @return: byte lane failure on each bit (for Quark only bit0 and bit1)
|
||
|
*/
|
||
|
u16 hte_write_stress_bit_lanes(struct mrc_params *mrc_params,
|
||
|
u32 addr, u8 first_run)
|
||
|
{
|
||
|
u16 errors;
|
||
|
u8 victim_bit = 0;
|
||
|
|
||
|
ENTERFN();
|
||
|
|
||
|
/* Enable all error reporting in preparation for HTE test */
|
||
|
hte_enable_all_errors();
|
||
|
hte_clear_error_regs();
|
||
|
|
||
|
/*
|
||
|
* Loop through each bit in the bytelane.
|
||
|
*
|
||
|
* Each pass creates a victim bit while keeping all other bits the same
|
||
|
* as aggressors. AVN HTE adds an auto-rotate feature which allows us
|
||
|
* to program the entire victim/aggressor sequence in 1 step.
|
||
|
*
|
||
|
* The victim bit rotates on each pass so no need to have software
|
||
|
* implement a victim bit loop like on VLV.
|
||
|
*/
|
||
|
errors = hte_rw_data_cmp(mrc_params, addr, HTE_LOOP_CNT,
|
||
|
HTE_LFSR_VICTIM_SEED, HTE_LFSR_AGRESSOR_SEED,
|
||
|
victim_bit, first_run);
|
||
|
|
||
|
LEAVEFN();
|
||
|
|
||
|
return errors;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Execute a basic single-cache-line memory write or read.
|
||
|
* This is just for receive enable / fine write-levelling purpose.
|
||
|
*
|
||
|
* @addr: memory adress being tested (must hit specific channel/rank)
|
||
|
* @first_run: if set then the HTE registers are configured, otherwise it is
|
||
|
* assumed configuration is done and we just re-run the test
|
||
|
* @is_write: when non-zero memory write operation executed, otherwise read
|
||
|
*/
|
||
|
void hte_mem_op(u32 addr, u8 first_run, u8 is_write)
|
||
|
{
|
||
|
u32 offset;
|
||
|
u32 tmp;
|
||
|
|
||
|
hte_enable_all_errors();
|
||
|
hte_clear_error_regs();
|
||
|
|
||
|
if (first_run) {
|
||
|
tmp = is_write ? 0x01110021 : 0x01010021;
|
||
|
msg_port_write(HTE, 0x00020020, tmp);
|
||
|
|
||
|
msg_port_write(HTE, 0x00020021, 0x06000000);
|
||
|
msg_port_write(HTE, 0x00020022, addr >> 6);
|
||
|
msg_port_write(HTE, 0x00020062, 0x00800015);
|
||
|
msg_port_write(HTE, 0x00020063, 0xAAAAAAAA);
|
||
|
msg_port_write(HTE, 0x00020064, 0xCCCCCCCC);
|
||
|
msg_port_write(HTE, 0x00020065, 0xF0F0F0F0);
|
||
|
msg_port_write(HTE, 0x00020061, 0x00030008);
|
||
|
|
||
|
for (offset = 0x80; offset <= 0x8F; offset++)
|
||
|
msg_port_write(HTE, offset, 0xC33C0000);
|
||
|
}
|
||
|
|
||
|
msg_port_write(HTE, 0x000200A1, 0xFFFF1000);
|
||
|
msg_port_write(HTE, 0x00020011, 0x00011000);
|
||
|
msg_port_write(HTE, 0x00020011, 0x00011100);
|
||
|
|
||
|
hte_wait_for_complete();
|
||
|
}
|