|
|
|
/*
|
|
|
|
* Copyright 2008-2009 Freescale Semiconductor, Inc.
|
|
|
|
*
|
|
|
|
* (C) Copyright 2000
|
|
|
|
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
|
|
|
|
*
|
|
|
|
* See file CREDITS for list of people who contributed to this
|
|
|
|
* project.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License as
|
|
|
|
* published by the Free Software Foundation; either version 2 of
|
|
|
|
* the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
|
|
* MA 02111-1307 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <common.h>
|
|
|
|
#include <asm/processor.h>
|
|
|
|
#include <asm/mmu.h>
|
|
|
|
#ifdef CONFIG_ADDR_MAP
|
|
|
|
#include <addr_map.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
|
|
|
|
void invalidate_tlb(u8 tlb)
|
|
|
|
{
|
|
|
|
if (tlb == 0)
|
|
|
|
mtspr(MMUCSR0, 0x4);
|
|
|
|
if (tlb == 1)
|
|
|
|
mtspr(MMUCSR0, 0x2);
|
|
|
|
}
|
|
|
|
|
|
|
|
void init_tlbs(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < num_tlb_entries; i++) {
|
|
|
|
write_tlb(tlb_table[i].mas0,
|
|
|
|
tlb_table[i].mas1,
|
|
|
|
tlb_table[i].mas2,
|
|
|
|
tlb_table[i].mas3,
|
|
|
|
tlb_table[i].mas7);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ;
|
|
|
|
}
|
|
|
|
|
ppc/85xx: add boot from NAND/eSDHC/eSPI support
The MPC8536E is capable of booting form NAND/eSDHC/eSPI, this patch
implements these three bootup methods in a unified way - all of these
use the general cpu/mpc85xx/start.S, and load the main image to L2SRAM
which lets us use the SPD to initialize the SDRAM.
For all three bootup methods, the bootup process can be divided into two
stages: the first stage will initialize the corresponding controller,
configure the L2SRAM, then copy the second stage image to L2SRAM and
jump to it. The second stage image is just like the general U-Boot image
to configure all the hardware and boot up to U-Boot command line.
When boot from NAND, the eLBC controller will first load the first stage
image to internal 4K RAM buffer because it's also stored on the NAND
flash. The first stage image, also call 4K NAND loader, will initialize
the L2SRAM, load the second stage image to L2SRAM and jump to it. The 4K
NAND loader's code comes from the corresponding nand_spl directory, along
with the code twisted by CONFIG_NAND_SPL.
When boot from eSDHC/eSPI, there's no such a first stage image because
the CPU ROM code does the same work. It will initialize the L2SRAM
according to the config addr/word pairs on the fixed address and
initialize the eSDHC/eSPI controller, then load the second stage image
to L2SRAM and jump to it.
The macro CONFIG_SYS_RAMBOOT is used to control the code to produce the
second stage image for all different bootup methods. It's set in the
board config file when one of the bootup methods above is selected.
Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
16 years ago
|
|
|
#ifndef CONFIG_NAND_SPL
|
|
|
|
static inline void use_tlb_cam(u8 idx)
|
|
|
|
{
|
|
|
|
int i = idx / 32;
|
|
|
|
int bit = idx % 32;
|
|
|
|
|
|
|
|
gd->used_tlb_cams[i] |= (1 << bit);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void free_tlb_cam(u8 idx)
|
|
|
|
{
|
|
|
|
int i = idx / 32;
|
|
|
|
int bit = idx % 32;
|
|
|
|
|
|
|
|
gd->used_tlb_cams[i] &= ~(1 << bit);
|
|
|
|
}
|
|
|
|
|
|
|
|
void init_used_tlb_cams(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
unsigned int num_cam = mfspr(SPRN_TLB1CFG) & 0xfff;
|
|
|
|
|
|
|
|
for (i = 0; i < ((CONFIG_SYS_NUM_TLBCAMS+31)/32); i++)
|
|
|
|
gd->used_tlb_cams[i] = 0;
|
|
|
|
|
|
|
|
/* walk all the entries */
|
|
|
|
for (i = 0; i < num_cam; i++) {
|
|
|
|
u32 _mas1;
|
|
|
|
|
|
|
|
mtspr(MAS0, FSL_BOOKE_MAS0(1, i, 0));
|
|
|
|
|
|
|
|
asm volatile("tlbre;isync");
|
|
|
|
_mas1 = mfspr(MAS1);
|
|
|
|
|
|
|
|
/* if the entry isn't valid skip it */
|
|
|
|
if ((_mas1 & MAS1_VALID))
|
|
|
|
use_tlb_cam(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int find_free_tlbcam(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
u32 idx;
|
|
|
|
|
|
|
|
for (i = 0; i < ((CONFIG_SYS_NUM_TLBCAMS+31)/32); i++) {
|
|
|
|
idx = ffz(gd->used_tlb_cams[i]);
|
|
|
|
|
|
|
|
if (idx != 32)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
idx += i * 32;
|
|
|
|
|
|
|
|
if (idx >= CONFIG_SYS_NUM_TLBCAMS)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
return idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
void set_tlb(u8 tlb, u32 epn, u64 rpn,
|
|
|
|
u8 perms, u8 wimge,
|
|
|
|
u8 ts, u8 esel, u8 tsize, u8 iprot)
|
|
|
|
{
|
|
|
|
u32 _mas0, _mas1, _mas2, _mas3, _mas7;
|
|
|
|
|
|
|
|
if (tlb == 1)
|
|
|
|
use_tlb_cam(esel);
|
|
|
|
|
|
|
|
_mas0 = FSL_BOOKE_MAS0(tlb, esel, 0);
|
|
|
|
_mas1 = FSL_BOOKE_MAS1(1, iprot, 0, ts, tsize);
|
|
|
|
_mas2 = FSL_BOOKE_MAS2(epn, wimge);
|
|
|
|
_mas3 = FSL_BOOKE_MAS3(rpn, 0, perms);
|
|
|
|
_mas7 = FSL_BOOKE_MAS7(rpn);
|
|
|
|
|
|
|
|
write_tlb(_mas0, _mas1, _mas2, _mas3, _mas7);
|
|
|
|
|
|
|
|
#ifdef CONFIG_ADDR_MAP
|
|
|
|
if ((tlb == 1) && (gd->flags & GD_FLG_RELOC))
|
|
|
|
addrmap_set_entry(epn, rpn, (1UL << ((tsize * 2) + 10)), esel);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void disable_tlb(u8 esel)
|
|
|
|
{
|
|
|
|
u32 _mas0, _mas1, _mas2, _mas3, _mas7;
|
|
|
|
|
|
|
|
free_tlb_cam(esel);
|
|
|
|
|
|
|
|
_mas0 = FSL_BOOKE_MAS0(1, esel, 0);
|
|
|
|
_mas1 = 0;
|
|
|
|
_mas2 = 0;
|
|
|
|
_mas3 = 0;
|
|
|
|
_mas7 = 0;
|
|
|
|
|
|
|
|
mtspr(MAS0, _mas0);
|
|
|
|
mtspr(MAS1, _mas1);
|
|
|
|
mtspr(MAS2, _mas2);
|
|
|
|
mtspr(MAS3, _mas3);
|
|
|
|
#ifdef CONFIG_ENABLE_36BIT_PHYS
|
|
|
|
mtspr(MAS7, _mas7);
|
|
|
|
#endif
|
|
|
|
asm volatile("isync;msync;tlbwe;isync");
|
|
|
|
|
|
|
|
#ifdef CONFIG_ADDR_MAP
|
|
|
|
if (gd->flags & GD_FLG_RELOC)
|
|
|
|
addrmap_set_entry(0, 0, 0, esel);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static void tlbsx (const volatile unsigned *addr)
|
|
|
|
{
|
|
|
|
__asm__ __volatile__ ("tlbsx 0,%0" : : "r" (addr), "m" (*addr));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* return -1 if we didn't find anything */
|
|
|
|
int find_tlb_idx(void *addr, u8 tlbsel)
|
|
|
|
{
|
|
|
|
u32 _mas0, _mas1;
|
|
|
|
|
|
|
|
/* zero out Search PID, AS */
|
|
|
|
mtspr(MAS6, 0);
|
|
|
|
|
|
|
|
tlbsx(addr);
|
|
|
|
|
|
|
|
_mas0 = mfspr(MAS0);
|
|
|
|
_mas1 = mfspr(MAS1);
|
|
|
|
|
|
|
|
/* we found something, and its in the TLB we expect */
|
|
|
|
if ((MAS1_VALID & _mas1) &&
|
|
|
|
(MAS0_TLBSEL(tlbsel) == (_mas0 & MAS0_TLBSEL_MSK))) {
|
|
|
|
return ((_mas0 & MAS0_ESEL_MSK) >> 16);
|
|
|
|
}
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_ADDR_MAP
|
|
|
|
void init_addr_map(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
unsigned int num_cam = mfspr(SPRN_TLB1CFG) & 0xfff;
|
|
|
|
|
|
|
|
/* walk all the entries */
|
|
|
|
for (i = 0; i < num_cam; i++) {
|
|
|
|
unsigned long epn;
|
|
|
|
u32 tsize, _mas1;
|
|
|
|
phys_addr_t rpn;
|
|
|
|
|
|
|
|
mtspr(MAS0, FSL_BOOKE_MAS0(1, i, 0));
|
|
|
|
|
|
|
|
asm volatile("tlbre;isync");
|
|
|
|
_mas1 = mfspr(MAS1);
|
|
|
|
|
|
|
|
/* if the entry isn't valid skip it */
|
|
|
|
if (!(_mas1 & MAS1_VALID))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
tsize = (_mas1 >> 8) & 0xf;
|
|
|
|
epn = mfspr(MAS2) & MAS2_EPN;
|
|
|
|
rpn = mfspr(MAS3) & MAS3_RPN;
|
|
|
|
#ifdef CONFIG_ENABLE_36BIT_PHYS
|
|
|
|
rpn |= ((phys_addr_t)mfspr(MAS7)) << 32;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
addrmap_set_entry(epn, rpn, (1UL << ((tsize * 2) + 10)), i);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef CONFIG_SYS_DDR_TLB_START
|
|
|
|
#define CONFIG_SYS_DDR_TLB_START 8
|
|
|
|
#endif
|
|
|
|
|
|
|
|
unsigned int setup_ddr_tlbs(unsigned int memsize_in_meg)
|
|
|
|
{
|
|
|
|
unsigned int tlb_size;
|
|
|
|
unsigned int ram_tlb_index = CONFIG_SYS_DDR_TLB_START;
|
|
|
|
unsigned int ram_tlb_address = (unsigned int)CONFIG_SYS_DDR_SDRAM_BASE;
|
|
|
|
unsigned int max_cam = (mfspr(SPRN_TLB1CFG) >> 16) & 0xf;
|
|
|
|
u64 size, memsize = (u64)memsize_in_meg << 20;
|
|
|
|
|
|
|
|
size = min(memsize, CONFIG_MAX_MEM_MAPPED);
|
|
|
|
|
|
|
|
/* Convert (4^max) kB to (2^max) bytes */
|
|
|
|
max_cam = max_cam * 2 + 10;
|
|
|
|
|
|
|
|
for (; size && ram_tlb_index < 16; ram_tlb_index++) {
|
|
|
|
u32 camsize = __ilog2_u64(size) & ~1U;
|
|
|
|
u32 align = __ilog2(ram_tlb_address) & ~1U;
|
|
|
|
|
|
|
|
if (align == -2) align = max_cam;
|
|
|
|
if (camsize > align)
|
|
|
|
camsize = align;
|
|
|
|
|
|
|
|
if (camsize > max_cam)
|
|
|
|
camsize = max_cam;
|
|
|
|
|
|
|
|
tlb_size = (camsize - 10) / 2;
|
|
|
|
|
|
|
|
set_tlb(1, ram_tlb_address, ram_tlb_address,
|
|
|
|
MAS3_SX|MAS3_SW|MAS3_SR, 0,
|
|
|
|
0, ram_tlb_index, tlb_size, 1);
|
|
|
|
|
|
|
|
size -= 1ULL << camsize;
|
|
|
|
memsize -= 1ULL << camsize;
|
|
|
|
ram_tlb_address += 1UL << camsize;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (memsize)
|
|
|
|
print_size(memsize, " left unmapped\n");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Confirm that the requested amount of memory was mapped.
|
|
|
|
*/
|
|
|
|
return memsize_in_meg;
|
|
|
|
}
|
ppc/85xx: add boot from NAND/eSDHC/eSPI support
The MPC8536E is capable of booting form NAND/eSDHC/eSPI, this patch
implements these three bootup methods in a unified way - all of these
use the general cpu/mpc85xx/start.S, and load the main image to L2SRAM
which lets us use the SPD to initialize the SDRAM.
For all three bootup methods, the bootup process can be divided into two
stages: the first stage will initialize the corresponding controller,
configure the L2SRAM, then copy the second stage image to L2SRAM and
jump to it. The second stage image is just like the general U-Boot image
to configure all the hardware and boot up to U-Boot command line.
When boot from NAND, the eLBC controller will first load the first stage
image to internal 4K RAM buffer because it's also stored on the NAND
flash. The first stage image, also call 4K NAND loader, will initialize
the L2SRAM, load the second stage image to L2SRAM and jump to it. The 4K
NAND loader's code comes from the corresponding nand_spl directory, along
with the code twisted by CONFIG_NAND_SPL.
When boot from eSDHC/eSPI, there's no such a first stage image because
the CPU ROM code does the same work. It will initialize the L2SRAM
according to the config addr/word pairs on the fixed address and
initialize the eSDHC/eSPI controller, then load the second stage image
to L2SRAM and jump to it.
The macro CONFIG_SYS_RAMBOOT is used to control the code to produce the
second stage image for all different bootup methods. It's set in the
board config file when one of the bootup methods above is selected.
Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
16 years ago
|
|
|
#endif /* !CONFIG_NAND_SPL */
|