upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
u-boot/post/lib_powerpc/fpu/darwin-ldouble.c

121 lines
3.1 KiB

/*
* Borrowed from GCC 4.2.2 (which still was GPL v2+)
*/
/* 128-bit long double support routines for Darwin.
Copyright (C) 1993, 2003, 2004, 2005, 2006, 2007
Free Software Foundation, Inc.
This file is part of GCC.
* SPDX-License-Identifier: GPL-2.0+
*/
/*
* Implementations of floating-point long double basic arithmetic
* functions called by the IBM C compiler when generating code for
* PowerPC platforms. In particular, the following functions are
* implemented: __gcc_qadd, __gcc_qsub, __gcc_qmul, and __gcc_qdiv.
* Double-double algorithms are based on the paper "Doubled-Precision
* IEEE Standard 754 Floating-Point Arithmetic" by W. Kahan, February 26,
* 1987. An alternative published reference is "Software for
* Doubled-Precision Floating-Point Computations", by Seppo Linnainmaa,
* ACM TOMS vol 7 no 3, September 1981, pages 272-283.
*/
/*
* Each long double is made up of two IEEE doubles. The value of the
* long double is the sum of the values of the two parts. The most
* significant part is required to be the value of the long double
* rounded to the nearest double, as specified by IEEE. For Inf
* values, the least significant part is required to be one of +0.0 or
* -0.0. No other requirements are made; so, for example, 1.0 may be
* represented as (1.0, +0.0) or (1.0, -0.0), and the low part of a
* NaN is don't-care.
*
* This code currently assumes big-endian.
*/
#define fabs(x) __builtin_fabs(x)
#define isless(x, y) __builtin_isless(x, y)
#define inf() __builtin_inf()
#define unlikely(x) __builtin_expect((x), 0)
#define nonfinite(a) unlikely(!isless(fabs(a), inf()))
typedef union {
long double ldval;
double dval[2];
} longDblUnion;
/* Add two 'long double' values and return the result. */
long double __gcc_qadd(double a, double aa, double c, double cc)
{
longDblUnion x;
double z, q, zz, xh;
z = a + c;
if (nonfinite(z)) {
z = cc + aa + c + a;
if (nonfinite(z))
return z;
x.dval[0] = z; /* Will always be DBL_MAX. */
zz = aa + cc;
if (fabs(a) > fabs(c))
x.dval[1] = a - z + c + zz;
else
x.dval[1] = c - z + a + zz;
} else {
q = a - z;
zz = q + c + (a - (q + z)) + aa + cc;
/* Keep -0 result. */
if (zz == 0.0)
return z;
xh = z + zz;
if (nonfinite(xh))
return xh;
x.dval[0] = xh;
x.dval[1] = z - xh + zz;
}
return x.ldval;
}
long double __gcc_qsub(double a, double b, double c, double d)
{
return __gcc_qadd(a, b, -c, -d);
}
long double __gcc_qmul(double a, double b, double c, double d)
{
longDblUnion z;
double t, tau, u, v, w;
t = a * c; /* Highest order double term. */
if (unlikely(t == 0) /* Preserve -0. */
|| nonfinite(t))
return t;
/* Sum terms of two highest orders. */
/* Use fused multiply-add to get low part of a * c. */
#ifndef __NO_FPRS__
asm("fmsub %0,%1,%2,%3" : "=f"(tau) : "f"(a), "f"(c), "f"(t));
#else
tau = fmsub(a, c, t);
#endif
v = a * d;
w = b * c;
tau += v + w; /* Add in other second-order terms. */
u = t + tau;
/* Construct long double result. */
if (nonfinite(u))
return u;
z.dval[0] = u;
z.dval[1] = (t - u) + tau;
return z.ldval;
}