upstream u-boot with additional patches for our devices/boards:
https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ;
Gbit ethernet patch for some LIME2 revisions ;
with SPI flash support
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
301 lines
7.8 KiB
301 lines
7.8 KiB
11 years ago
|
/*
|
||
|
* Copyright 2014 Freescale Semiconductor, Inc.
|
||
|
*
|
||
|
* calculate the organization and timing parameter
|
||
|
* from ddr3 spd, please refer to the spec
|
||
|
* JEDEC standard No.21-C 4_01_02_12R23A.pdf
|
||
|
*
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <common.h>
|
||
|
#include <fsl_ddr_sdram.h>
|
||
|
|
||
|
#include <fsl_ddr.h>
|
||
|
|
||
|
/*
|
||
|
* Calculate the Density of each Physical Rank.
|
||
|
* Returned size is in bytes.
|
||
|
*
|
||
|
* Total DIMM size =
|
||
|
* sdram capacity(bit) / 8 * primary bus width / sdram width
|
||
|
* * Logical Ranks per DIMM
|
||
|
*
|
||
|
* where: sdram capacity = spd byte4[3:0]
|
||
|
* primary bus width = spd byte13[2:0]
|
||
|
* sdram width = spd byte12[2:0]
|
||
|
* Logical Ranks per DIMM = spd byte12[5:3] for SDP, DDP, QDP
|
||
|
* spd byte12{5:3] * spd byte6[6:4] for 3DS
|
||
|
*
|
||
|
* To simplify each rank size = total DIMM size / Number of Package Ranks
|
||
|
* where Number of Package Ranks = spd byte12[5:3]
|
||
|
*
|
||
|
* SPD byte4 - sdram density and banks
|
||
|
* bit[3:0] size(bit) size(byte)
|
||
|
* 0000 256Mb 32MB
|
||
|
* 0001 512Mb 64MB
|
||
|
* 0010 1Gb 128MB
|
||
|
* 0011 2Gb 256MB
|
||
|
* 0100 4Gb 512MB
|
||
|
* 0101 8Gb 1GB
|
||
|
* 0110 16Gb 2GB
|
||
|
* 0111 32Gb 4GB
|
||
|
*
|
||
|
* SPD byte13 - module memory bus width
|
||
|
* bit[2:0] primary bus width
|
||
|
* 000 8bits
|
||
|
* 001 16bits
|
||
|
* 010 32bits
|
||
|
* 011 64bits
|
||
|
*
|
||
|
* SPD byte12 - module organization
|
||
|
* bit[2:0] sdram device width
|
||
|
* 000 4bits
|
||
|
* 001 8bits
|
||
|
* 010 16bits
|
||
|
* 011 32bits
|
||
|
*
|
||
|
* SPD byte12 - module organization
|
||
|
* bit[5:3] number of package ranks per DIMM
|
||
|
* 000 1
|
||
|
* 001 2
|
||
|
* 010 3
|
||
|
* 011 4
|
||
|
*
|
||
|
* SPD byte6 - SDRAM package type
|
||
|
* bit[6:4] Die count
|
||
|
* 000 1
|
||
|
* 001 2
|
||
|
* 010 3
|
||
|
* 011 4
|
||
|
* 100 5
|
||
|
* 101 6
|
||
|
* 110 7
|
||
|
* 111 8
|
||
|
*
|
||
|
* SPD byte6 - SRAM package type
|
||
|
* bit[1:0] Signal loading
|
||
|
* 00 Not specified
|
||
|
* 01 Multi load stack
|
||
|
* 10 Sigle load stack (3DS)
|
||
|
* 11 Reserved
|
||
|
*/
|
||
|
static unsigned long long
|
||
|
compute_ranksize(const struct ddr4_spd_eeprom_s *spd)
|
||
|
{
|
||
|
unsigned long long bsize;
|
||
|
|
||
|
int nbit_sdram_cap_bsize = 0;
|
||
|
int nbit_primary_bus_width = 0;
|
||
|
int nbit_sdram_width = 0;
|
||
|
int die_count = 0;
|
||
|
bool package_3ds;
|
||
|
|
||
|
if ((spd->density_banks & 0xf) <= 7)
|
||
|
nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28;
|
||
|
if ((spd->bus_width & 0x7) < 4)
|
||
|
nbit_primary_bus_width = (spd->bus_width & 0x7) + 3;
|
||
|
if ((spd->organization & 0x7) < 4)
|
||
|
nbit_sdram_width = (spd->organization & 0x7) + 2;
|
||
|
package_3ds = (spd->package_type & 0x3) == 0x2;
|
||
|
if (package_3ds)
|
||
|
die_count = (spd->package_type >> 4) & 0x7;
|
||
|
|
||
|
bsize = 1ULL << (nbit_sdram_cap_bsize - 3 +
|
||
|
nbit_primary_bus_width - nbit_sdram_width +
|
||
|
die_count);
|
||
|
|
||
|
debug("DDR: DDR III rank density = 0x%16llx\n", bsize);
|
||
|
|
||
|
return bsize;
|
||
|
}
|
||
|
|
||
|
#define spd_to_ps(mtb, ftb) \
|
||
|
(mtb * pdimm->mtb_ps + (ftb * pdimm->ftb_10th_ps) / 10)
|
||
|
/*
|
||
|
* ddr_compute_dimm_parameters for DDR3 SPD
|
||
|
*
|
||
|
* Compute DIMM parameters based upon the SPD information in spd.
|
||
|
* Writes the results to the dimm_params_t structure pointed by pdimm.
|
||
|
*
|
||
|
*/
|
||
|
unsigned int
|
||
|
ddr_compute_dimm_parameters(const generic_spd_eeprom_t *spd,
|
||
|
dimm_params_t *pdimm,
|
||
|
unsigned int dimm_number)
|
||
|
{
|
||
|
unsigned int retval;
|
||
|
int i;
|
||
|
|
||
|
if (spd->mem_type) {
|
||
|
if (spd->mem_type != SPD_MEMTYPE_DDR4) {
|
||
|
printf("DIMM %u: is not a DDR4 SPD.\n", dimm_number);
|
||
|
return 1;
|
||
|
}
|
||
|
} else {
|
||
|
memset(pdimm, 0, sizeof(dimm_params_t));
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
retval = ddr4_spd_check(spd);
|
||
|
if (retval) {
|
||
|
printf("DIMM %u: failed checksum\n", dimm_number);
|
||
|
return 2;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The part name in ASCII in the SPD EEPROM is not null terminated.
|
||
|
* Guarantee null termination here by presetting all bytes to 0
|
||
|
* and copying the part name in ASCII from the SPD onto it
|
||
|
*/
|
||
|
memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
|
||
|
if ((spd->info_size_crc & 0xF) > 2)
|
||
|
memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
|
||
|
|
||
|
/* DIMM organization parameters */
|
||
|
pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1;
|
||
|
pdimm->rank_density = compute_ranksize(spd);
|
||
|
pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
|
||
|
pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7));
|
||
|
if ((spd->bus_width >> 3) & 0x3)
|
||
|
pdimm->ec_sdram_width = 8;
|
||
|
else
|
||
|
pdimm->ec_sdram_width = 0;
|
||
|
pdimm->data_width = pdimm->primary_sdram_width
|
||
|
+ pdimm->ec_sdram_width;
|
||
|
pdimm->device_width = 1 << ((spd->organization & 0x7) + 2);
|
||
|
|
||
|
/* These are the types defined by the JEDEC DDR3 SPD spec */
|
||
|
pdimm->mirrored_dimm = 0;
|
||
|
pdimm->registered_dimm = 0;
|
||
|
switch (spd->module_type & DDR3_SPD_MODULETYPE_MASK) {
|
||
|
case DDR3_SPD_MODULETYPE_RDIMM:
|
||
|
/* Registered/buffered DIMMs */
|
||
|
pdimm->registered_dimm = 1;
|
||
|
break;
|
||
|
|
||
|
case DDR3_SPD_MODULETYPE_UDIMM:
|
||
|
case DDR3_SPD_MODULETYPE_SO_DIMM:
|
||
|
/* Unbuffered DIMMs */
|
||
|
if (spd->mod_section.unbuffered.addr_mapping & 0x1)
|
||
|
pdimm->mirrored_dimm = 1;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
printf("unknown module_type 0x%02X\n", spd->module_type);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* SDRAM device parameters */
|
||
|
pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12;
|
||
|
pdimm->n_col_addr = (spd->addressing & 0x7) + 9;
|
||
|
pdimm->bank_addr_bits = (spd->density_banks >> 4) & 0x3;
|
||
|
pdimm->bank_group_bits = (spd->density_banks >> 6) & 0x3;
|
||
|
|
||
|
/*
|
||
|
* The SPD spec has not the ECC bit,
|
||
|
* We consider the DIMM as ECC capability
|
||
|
* when the extension bus exist
|
||
|
*/
|
||
|
if (pdimm->ec_sdram_width)
|
||
|
pdimm->edc_config = 0x02;
|
||
|
else
|
||
|
pdimm->edc_config = 0x00;
|
||
|
|
||
|
/*
|
||
|
* The SPD spec has not the burst length byte
|
||
|
* but DDR4 spec has nature BL8 and BC4,
|
||
|
* BL8 -bit3, BC4 -bit2
|
||
|
*/
|
||
|
pdimm->burst_lengths_bitmask = 0x0c;
|
||
|
pdimm->row_density = __ilog2(pdimm->rank_density);
|
||
|
|
||
|
/* MTB - medium timebase
|
||
|
* The MTB in the SPD spec is 125ps,
|
||
|
*
|
||
|
* FTB - fine timebase
|
||
|
* use 1/10th of ps as our unit to avoid floating point
|
||
|
* eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps
|
||
|
*/
|
||
|
if ((spd->timebases & 0xf) == 0x0) {
|
||
|
pdimm->mtb_ps = 125;
|
||
|
pdimm->ftb_10th_ps = 10;
|
||
|
|
||
|
} else {
|
||
|
printf("Unknown Timebases\n");
|
||
|
}
|
||
|
|
||
|
/* sdram minimum cycle time */
|
||
|
pdimm->tckmin_x_ps = spd_to_ps(spd->tck_min, spd->fine_tck_min);
|
||
|
|
||
|
/* sdram max cycle time */
|
||
|
pdimm->tckmax_ps = spd_to_ps(spd->tck_max, spd->fine_tck_max);
|
||
|
|
||
|
/*
|
||
|
* CAS latency supported
|
||
|
* bit0 - CL7
|
||
|
* bit4 - CL11
|
||
|
* bit8 - CL15
|
||
|
* bit12- CL19
|
||
|
* bit16- CL23
|
||
|
*/
|
||
|
pdimm->caslat_x = (spd->caslat_b1 << 7) |
|
||
|
(spd->caslat_b2 << 15) |
|
||
|
(spd->caslat_b3 << 23);
|
||
|
|
||
|
BUG_ON(spd->caslat_b4 != 0);
|
||
|
|
||
|
/*
|
||
|
* min CAS latency time
|
||
|
*/
|
||
|
pdimm->taa_ps = spd_to_ps(spd->taa_min, spd->fine_taa_min);
|
||
|
|
||
|
/*
|
||
|
* min RAS to CAS delay time
|
||
|
*/
|
||
|
pdimm->trcd_ps = spd_to_ps(spd->trcd_min, spd->fine_trcd_min);
|
||
|
|
||
|
/*
|
||
|
* Min Row Precharge Delay Time
|
||
|
*/
|
||
|
pdimm->trp_ps = spd_to_ps(spd->trp_min, spd->fine_trp_min);
|
||
|
|
||
|
/* min active to precharge delay time */
|
||
|
pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) +
|
||
|
spd->tras_min_lsb) * pdimm->mtb_ps;
|
||
|
|
||
|
/* min active to actice/refresh delay time */
|
||
|
pdimm->trc_ps = spd_to_ps((((spd->tras_trc_ext & 0xf0) << 4) +
|
||
|
spd->trc_min_lsb), spd->fine_trc_min);
|
||
|
/* Min Refresh Recovery Delay Time */
|
||
|
pdimm->trfc1_ps = ((spd->trfc1_min_msb << 8) | (spd->trfc1_min_lsb)) *
|
||
|
pdimm->mtb_ps;
|
||
|
pdimm->trfc2_ps = ((spd->trfc2_min_msb << 8) | (spd->trfc2_min_lsb)) *
|
||
|
pdimm->mtb_ps;
|
||
|
pdimm->trfc4_ps = ((spd->trfc4_min_msb << 8) | (spd->trfc4_min_lsb)) *
|
||
|
pdimm->mtb_ps;
|
||
|
/* min four active window delay time */
|
||
|
pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min) *
|
||
|
pdimm->mtb_ps;
|
||
|
|
||
|
/* min row active to row active delay time, different bank group */
|
||
|
pdimm->trrds_ps = spd_to_ps(spd->trrds_min, spd->fine_trrds_min);
|
||
|
/* min row active to row active delay time, same bank group */
|
||
|
pdimm->trrdl_ps = spd_to_ps(spd->trrdl_min, spd->fine_trrdl_min);
|
||
|
/* min CAS to CAS Delay Time (tCCD_Lmin), same bank group */
|
||
|
pdimm->tccdl_ps = spd_to_ps(spd->tccdl_min, spd->fine_tccdl_min);
|
||
|
|
||
|
/*
|
||
|
* Average periodic refresh interval
|
||
|
* tREFI = 7.8 us at normal temperature range
|
||
|
*/
|
||
|
pdimm->refresh_rate_ps = 7800000;
|
||
|
|
||
|
for (i = 0; i < 18; i++)
|
||
|
pdimm->dq_mapping[i] = spd->mapping[i];
|
||
|
|
||
|
pdimm->dq_mapping_ors = ((spd->mapping[0] >> 6) & 0x3) == 0 ? 1 : 0;
|
||
|
|
||
|
return 0;
|
||
|
}
|