upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
u-boot/board/freescale/common/p_corenet/tlb.c

147 lines
4.7 KiB

/*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*
* (C) Copyright 2000
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/mmu.h>
struct fsl_e_tlb_entry tlb_table[] = {
/* TLB 0 - for temp stack in cache */
SET_TLB_ENTRY(0, CONFIG_SYS_INIT_RAM_ADDR,
CONFIG_SYS_INIT_RAM_ADDR_PHYS,
MAS3_SW|MAS3_SR, 0,
0, 0, BOOKE_PAGESZ_4K, 0),
SET_TLB_ENTRY(0, CONFIG_SYS_INIT_RAM_ADDR + 4 * 1024,
CONFIG_SYS_INIT_RAM_ADDR_PHYS + 4 * 1024,
MAS3_SW|MAS3_SR, 0,
0, 0, BOOKE_PAGESZ_4K, 0),
SET_TLB_ENTRY(0, CONFIG_SYS_INIT_RAM_ADDR + 8 * 1024,
CONFIG_SYS_INIT_RAM_ADDR_PHYS + 8 * 1024,
MAS3_SW|MAS3_SR, 0,
0, 0, BOOKE_PAGESZ_4K, 0),
SET_TLB_ENTRY(0, CONFIG_SYS_INIT_RAM_ADDR + 12 * 1024,
CONFIG_SYS_INIT_RAM_ADDR_PHYS + 12 * 1024,
MAS3_SW|MAS3_SR, 0,
0, 0, BOOKE_PAGESZ_4K, 0),
#ifdef CPLD_BASE
SET_TLB_ENTRY(0, CPLD_BASE, CPLD_BASE_PHYS,
MAS3_SW|MAS3_SR, MAS2_I|MAS2_G,
0, 0, BOOKE_PAGESZ_4K, 0),
#endif
#ifdef PIXIS_BASE
SET_TLB_ENTRY(0, PIXIS_BASE, PIXIS_BASE_PHYS,
MAS3_SW|MAS3_SR, MAS2_I|MAS2_G,
0, 0, BOOKE_PAGESZ_4K, 0),
#endif
/* TLB 1 */
/* *I*** - Covers boot page */
#if defined(CONFIG_SYS_RAMBOOT) && defined(CONFIG_SYS_INIT_L3_ADDR)
/*
* *I*G - L3SRAM. When L3 is used as 1M SRAM, the address of the
* SRAM is at 0xfff00000, it covered the 0xfffff000.
*/
SET_TLB_ENTRY(1, CONFIG_SYS_INIT_L3_ADDR, CONFIG_SYS_INIT_L3_ADDR,
MAS3_SX|MAS3_SW|MAS3_SR, MAS2_I|MAS2_G,
0, 0, BOOKE_PAGESZ_1M, 1),
powerpc/corenet_ds: Slave module for boot from PCIE When boot from PCIE, slave's core should be in holdoff after powered on for some specific requirements. Master will release the slave's core at the right time by PCIE interface. Slave's ucode and ENV can be stored in master's memory space, then slave can fetch them through PCIE interface. For the corenet platform, ucode is for Fman. NOTE: Because the slave can not erase, write master's NOR flash by PCIE interface, so it can not modify the ENV parameters stored in master's NOR flash using "saveenv" or other commands. environment and requirement: master: 1. NOR flash for its own u-boot image, ucode and ENV space. 2. Slave's u-boot image is in master NOR flash. 3. Put the slave's ucode and ENV into it's own memory space. 4. Normally boot from local NOR flash. 5. Configure PCIE system if needed. slave: 1. Just has EEPROM for RCW. No flash for u-boot image, ucode and ENV. 2. Boot location should be set to one PCIE interface by RCW. 3. RCW should configure the SerDes, PCIE interfaces correctly. 4. Must set all the cores in holdoff by RCW. 5. Must be powered on before master's boot. For the slave module, need to finish these processes: 1. Set the boot location to one PCIE interface by RCW. 2. Set a specific TLB entry for the boot process. 3. Set a LAW entry with the TargetID of one PCIE for the boot. 4. Set a specific TLB entry in order to fetch ucode and ENV from master. 5. Set a LAW entry with the TargetID one of the PCIE ports for ucode and ENV. 6. Slave's u-boot image should be generated specifically by make xxxx_SRIO_PCIE_BOOT_config. This will set SYS_TEXT_BASE=0xFFF80000 and other configurations. In addition, the processes are very similar between boot from SRIO and boot from PCIE. Some configurations like the address spaces can be set to the same. So the module of boot from PCIE was added based on the existing module of boot from SRIO, and the following changes were needed: 1. Updated the README.srio-boot-corenet to add descriptions about boot from PCIE, and change the name to README.srio-pcie-boot-corenet. 2. Changed the compile config "xxxx_SRIOBOOT_SLAVE" to "xxxx_SRIO_PCIE_BOOT", and the image builded with "xxxx_SRIO_PCIE_BOOT" can support both the boot from SRIO and from PCIE. 3. Updated other macros and documents if needed to add information about boot from PCIE. Signed-off-by: Liu Gang <Gang.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
13 years ago
#elif defined(CONFIG_SRIO_PCIE_BOOT_SLAVE)
powerpc/corenet_ds: Slave module for boot from SRIO For the powerpc processors with SRIO interface, boot location can be configured from SRIO1 or SRIO2 by RCW. The processor booting from SRIO can do without flash for u-boot image. The image can be fetched from another processor's memory space by SRIO link connected between them. The processor boots from SRIO is slave, the processor boots from normal flash memory space and can help slave to boot from its memory space is master. They are different environments and requirements: master: 1. NOR flash for its own u-boot image, ucode and ENV space. 2. Slave's u-boot image in master NOR flash. 3. Normally boot from local NOR flash. 4. Configure SRIO switch system if needed. slave: 1. Just has EEPROM for RCW. No flash for u-boot image, ucode and ENV. 2. Boot location should be set to SRIO1 or SRIO2 by RCW. 3. RCW should configure the SerDes, SRIO interfaces correctly. 4. Slave must be powered on after master's boot. 5. Must define CONFIG_SYS_QE_FMAN_FW_IN_REMOTE because of no ucode locally. For the slave module, need to finish these processes: 1. Set the boot location to SRIO1 or SRIO2 by RCW. 2. Set a specific TLB entry for the boot process. 3. Set a LAW entry with the TargetID SRIO1 or SRIO2 for the boot. 4. Slave's u-boot image should be generated specifically by make xxxx_SRIOBOOT_SLAVE_config. This will set SYS_TEXT_BASE=0xFFF80000 and other configurations. Signed-off-by: Liu Gang <Gang.Liu@freescale.com> Signed-off-by: Shaohui Xie <Shaohui.Xie@freescale.com>
13 years ago
/*
powerpc/corenet_ds: Slave module for boot from PCIE When boot from PCIE, slave's core should be in holdoff after powered on for some specific requirements. Master will release the slave's core at the right time by PCIE interface. Slave's ucode and ENV can be stored in master's memory space, then slave can fetch them through PCIE interface. For the corenet platform, ucode is for Fman. NOTE: Because the slave can not erase, write master's NOR flash by PCIE interface, so it can not modify the ENV parameters stored in master's NOR flash using "saveenv" or other commands. environment and requirement: master: 1. NOR flash for its own u-boot image, ucode and ENV space. 2. Slave's u-boot image is in master NOR flash. 3. Put the slave's ucode and ENV into it's own memory space. 4. Normally boot from local NOR flash. 5. Configure PCIE system if needed. slave: 1. Just has EEPROM for RCW. No flash for u-boot image, ucode and ENV. 2. Boot location should be set to one PCIE interface by RCW. 3. RCW should configure the SerDes, PCIE interfaces correctly. 4. Must set all the cores in holdoff by RCW. 5. Must be powered on before master's boot. For the slave module, need to finish these processes: 1. Set the boot location to one PCIE interface by RCW. 2. Set a specific TLB entry for the boot process. 3. Set a LAW entry with the TargetID of one PCIE for the boot. 4. Set a specific TLB entry in order to fetch ucode and ENV from master. 5. Set a LAW entry with the TargetID one of the PCIE ports for ucode and ENV. 6. Slave's u-boot image should be generated specifically by make xxxx_SRIO_PCIE_BOOT_config. This will set SYS_TEXT_BASE=0xFFF80000 and other configurations. In addition, the processes are very similar between boot from SRIO and boot from PCIE. Some configurations like the address spaces can be set to the same. So the module of boot from PCIE was added based on the existing module of boot from SRIO, and the following changes were needed: 1. Updated the README.srio-boot-corenet to add descriptions about boot from PCIE, and change the name to README.srio-pcie-boot-corenet. 2. Changed the compile config "xxxx_SRIOBOOT_SLAVE" to "xxxx_SRIO_PCIE_BOOT", and the image builded with "xxxx_SRIO_PCIE_BOOT" can support both the boot from SRIO and from PCIE. 3. Updated other macros and documents if needed to add information about boot from PCIE. Signed-off-by: Liu Gang <Gang.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
13 years ago
* SRIO_PCIE_BOOT-SLAVE. When slave boot, the address of the
powerpc/corenet_ds: Slave module for boot from SRIO For the powerpc processors with SRIO interface, boot location can be configured from SRIO1 or SRIO2 by RCW. The processor booting from SRIO can do without flash for u-boot image. The image can be fetched from another processor's memory space by SRIO link connected between them. The processor boots from SRIO is slave, the processor boots from normal flash memory space and can help slave to boot from its memory space is master. They are different environments and requirements: master: 1. NOR flash for its own u-boot image, ucode and ENV space. 2. Slave's u-boot image in master NOR flash. 3. Normally boot from local NOR flash. 4. Configure SRIO switch system if needed. slave: 1. Just has EEPROM for RCW. No flash for u-boot image, ucode and ENV. 2. Boot location should be set to SRIO1 or SRIO2 by RCW. 3. RCW should configure the SerDes, SRIO interfaces correctly. 4. Slave must be powered on after master's boot. 5. Must define CONFIG_SYS_QE_FMAN_FW_IN_REMOTE because of no ucode locally. For the slave module, need to finish these processes: 1. Set the boot location to SRIO1 or SRIO2 by RCW. 2. Set a specific TLB entry for the boot process. 3. Set a LAW entry with the TargetID SRIO1 or SRIO2 for the boot. 4. Slave's u-boot image should be generated specifically by make xxxx_SRIOBOOT_SLAVE_config. This will set SYS_TEXT_BASE=0xFFF80000 and other configurations. Signed-off-by: Liu Gang <Gang.Liu@freescale.com> Signed-off-by: Shaohui Xie <Shaohui.Xie@freescale.com>
13 years ago
* space is at 0xfff00000, it covered the 0xfffff000.
*/
powerpc/corenet_ds: Slave module for boot from PCIE When boot from PCIE, slave's core should be in holdoff after powered on for some specific requirements. Master will release the slave's core at the right time by PCIE interface. Slave's ucode and ENV can be stored in master's memory space, then slave can fetch them through PCIE interface. For the corenet platform, ucode is for Fman. NOTE: Because the slave can not erase, write master's NOR flash by PCIE interface, so it can not modify the ENV parameters stored in master's NOR flash using "saveenv" or other commands. environment and requirement: master: 1. NOR flash for its own u-boot image, ucode and ENV space. 2. Slave's u-boot image is in master NOR flash. 3. Put the slave's ucode and ENV into it's own memory space. 4. Normally boot from local NOR flash. 5. Configure PCIE system if needed. slave: 1. Just has EEPROM for RCW. No flash for u-boot image, ucode and ENV. 2. Boot location should be set to one PCIE interface by RCW. 3. RCW should configure the SerDes, PCIE interfaces correctly. 4. Must set all the cores in holdoff by RCW. 5. Must be powered on before master's boot. For the slave module, need to finish these processes: 1. Set the boot location to one PCIE interface by RCW. 2. Set a specific TLB entry for the boot process. 3. Set a LAW entry with the TargetID of one PCIE for the boot. 4. Set a specific TLB entry in order to fetch ucode and ENV from master. 5. Set a LAW entry with the TargetID one of the PCIE ports for ucode and ENV. 6. Slave's u-boot image should be generated specifically by make xxxx_SRIO_PCIE_BOOT_config. This will set SYS_TEXT_BASE=0xFFF80000 and other configurations. In addition, the processes are very similar between boot from SRIO and boot from PCIE. Some configurations like the address spaces can be set to the same. So the module of boot from PCIE was added based on the existing module of boot from SRIO, and the following changes were needed: 1. Updated the README.srio-boot-corenet to add descriptions about boot from PCIE, and change the name to README.srio-pcie-boot-corenet. 2. Changed the compile config "xxxx_SRIOBOOT_SLAVE" to "xxxx_SRIO_PCIE_BOOT", and the image builded with "xxxx_SRIO_PCIE_BOOT" can support both the boot from SRIO and from PCIE. 3. Updated other macros and documents if needed to add information about boot from PCIE. Signed-off-by: Liu Gang <Gang.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
13 years ago
SET_TLB_ENTRY(1, CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR,
CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR_PHYS,
powerpc/corenet_ds: Slave module for boot from SRIO For the powerpc processors with SRIO interface, boot location can be configured from SRIO1 or SRIO2 by RCW. The processor booting from SRIO can do without flash for u-boot image. The image can be fetched from another processor's memory space by SRIO link connected between them. The processor boots from SRIO is slave, the processor boots from normal flash memory space and can help slave to boot from its memory space is master. They are different environments and requirements: master: 1. NOR flash for its own u-boot image, ucode and ENV space. 2. Slave's u-boot image in master NOR flash. 3. Normally boot from local NOR flash. 4. Configure SRIO switch system if needed. slave: 1. Just has EEPROM for RCW. No flash for u-boot image, ucode and ENV. 2. Boot location should be set to SRIO1 or SRIO2 by RCW. 3. RCW should configure the SerDes, SRIO interfaces correctly. 4. Slave must be powered on after master's boot. 5. Must define CONFIG_SYS_QE_FMAN_FW_IN_REMOTE because of no ucode locally. For the slave module, need to finish these processes: 1. Set the boot location to SRIO1 or SRIO2 by RCW. 2. Set a specific TLB entry for the boot process. 3. Set a LAW entry with the TargetID SRIO1 or SRIO2 for the boot. 4. Slave's u-boot image should be generated specifically by make xxxx_SRIOBOOT_SLAVE_config. This will set SYS_TEXT_BASE=0xFFF80000 and other configurations. Signed-off-by: Liu Gang <Gang.Liu@freescale.com> Signed-off-by: Shaohui Xie <Shaohui.Xie@freescale.com>
13 years ago
MAS3_SX|MAS3_SW|MAS3_SR, MAS2_W|MAS2_G,
0, 0, BOOKE_PAGESZ_1M, 1),
#else
SET_TLB_ENTRY(1, 0xfffff000, 0xfffff000,
MAS3_SX|MAS3_SW|MAS3_SR, MAS2_I|MAS2_G,
0, 0, BOOKE_PAGESZ_4K, 1),
#endif
/* *I*G* - CCSRBAR */
SET_TLB_ENTRY(1, CONFIG_SYS_CCSRBAR, CONFIG_SYS_CCSRBAR_PHYS,
MAS3_SW|MAS3_SR, MAS2_I|MAS2_G,
0, 1, BOOKE_PAGESZ_16M, 1),
/* *I*G* - Flash, localbus */
/* This will be changed to *I*G* after relocation to RAM. */
SET_TLB_ENTRY(1, CONFIG_SYS_FLASH_BASE, CONFIG_SYS_FLASH_BASE_PHYS,
MAS3_SX|MAS3_SR, MAS2_W|MAS2_G,
0, 2, BOOKE_PAGESZ_256M, 1),
/* *I*G* - PCI */
SET_TLB_ENTRY(1, CONFIG_SYS_PCIE1_MEM_VIRT, CONFIG_SYS_PCIE1_MEM_PHYS,
MAS3_SW|MAS3_SR, MAS2_I|MAS2_G,
0, 3, BOOKE_PAGESZ_1G, 1),
/* *I*G* - PCI */
SET_TLB_ENTRY(1, CONFIG_SYS_PCIE1_MEM_VIRT + 0x40000000,
CONFIG_SYS_PCIE1_MEM_PHYS + 0x40000000,
MAS3_SW|MAS3_SR, MAS2_I|MAS2_G,
0, 4, BOOKE_PAGESZ_256M, 1),
SET_TLB_ENTRY(1, CONFIG_SYS_PCIE1_MEM_VIRT + 0x50000000,
CONFIG_SYS_PCIE1_MEM_PHYS + 0x50000000,
MAS3_SW|MAS3_SR, MAS2_I|MAS2_G,
0, 5, BOOKE_PAGESZ_256M, 1),
/* *I*G* - PCI I/O */
SET_TLB_ENTRY(1, CONFIG_SYS_PCIE1_IO_VIRT, CONFIG_SYS_PCIE1_IO_PHYS,
MAS3_SW|MAS3_SR, MAS2_I|MAS2_G,
0, 6, BOOKE_PAGESZ_256K, 1),
/* Bman/Qman */
#ifdef CONFIG_SYS_BMAN_MEM_PHYS
SET_TLB_ENTRY(1, CONFIG_SYS_BMAN_MEM_BASE, CONFIG_SYS_BMAN_MEM_PHYS,
MAS3_SW|MAS3_SR, 0,
0, 9, BOOKE_PAGESZ_1M, 1),
SET_TLB_ENTRY(1, CONFIG_SYS_BMAN_MEM_BASE + 0x00100000,
CONFIG_SYS_BMAN_MEM_PHYS + 0x00100000,
MAS3_SW|MAS3_SR, MAS2_I|MAS2_G,
0, 10, BOOKE_PAGESZ_1M, 1),
#endif
#ifdef CONFIG_SYS_QMAN_MEM_PHYS
SET_TLB_ENTRY(1, CONFIG_SYS_QMAN_MEM_BASE, CONFIG_SYS_QMAN_MEM_PHYS,
MAS3_SW|MAS3_SR, 0,
0, 11, BOOKE_PAGESZ_1M, 1),
SET_TLB_ENTRY(1, CONFIG_SYS_QMAN_MEM_BASE + 0x00100000,
CONFIG_SYS_QMAN_MEM_PHYS + 0x00100000,
MAS3_SW|MAS3_SR, MAS2_I|MAS2_G,
0, 12, BOOKE_PAGESZ_1M, 1),
#endif
#ifdef CONFIG_SYS_DCSRBAR_PHYS
SET_TLB_ENTRY(1, CONFIG_SYS_DCSRBAR, CONFIG_SYS_DCSRBAR_PHYS,
MAS3_SW|MAS3_SR, MAS2_I|MAS2_G,
0, 13, BOOKE_PAGESZ_4M, 1),
#endif
#ifdef CONFIG_SYS_NAND_BASE
/*
* *I*G - NAND
* entry 14 and 15 has been used hard coded, they will be disabled
* in cpu_init_f, so we use entry 16 for nand.
*/
SET_TLB_ENTRY(1, CONFIG_SYS_NAND_BASE, CONFIG_SYS_NAND_BASE_PHYS,
MAS3_SX|MAS3_SW|MAS3_SR, MAS2_I|MAS2_G,
0, 16, BOOKE_PAGESZ_1M, 1),
#endif
powerpc/corenet_ds: Slave module for boot from PCIE When boot from PCIE, slave's core should be in holdoff after powered on for some specific requirements. Master will release the slave's core at the right time by PCIE interface. Slave's ucode and ENV can be stored in master's memory space, then slave can fetch them through PCIE interface. For the corenet platform, ucode is for Fman. NOTE: Because the slave can not erase, write master's NOR flash by PCIE interface, so it can not modify the ENV parameters stored in master's NOR flash using "saveenv" or other commands. environment and requirement: master: 1. NOR flash for its own u-boot image, ucode and ENV space. 2. Slave's u-boot image is in master NOR flash. 3. Put the slave's ucode and ENV into it's own memory space. 4. Normally boot from local NOR flash. 5. Configure PCIE system if needed. slave: 1. Just has EEPROM for RCW. No flash for u-boot image, ucode and ENV. 2. Boot location should be set to one PCIE interface by RCW. 3. RCW should configure the SerDes, PCIE interfaces correctly. 4. Must set all the cores in holdoff by RCW. 5. Must be powered on before master's boot. For the slave module, need to finish these processes: 1. Set the boot location to one PCIE interface by RCW. 2. Set a specific TLB entry for the boot process. 3. Set a LAW entry with the TargetID of one PCIE for the boot. 4. Set a specific TLB entry in order to fetch ucode and ENV from master. 5. Set a LAW entry with the TargetID one of the PCIE ports for ucode and ENV. 6. Slave's u-boot image should be generated specifically by make xxxx_SRIO_PCIE_BOOT_config. This will set SYS_TEXT_BASE=0xFFF80000 and other configurations. In addition, the processes are very similar between boot from SRIO and boot from PCIE. Some configurations like the address spaces can be set to the same. So the module of boot from PCIE was added based on the existing module of boot from SRIO, and the following changes were needed: 1. Updated the README.srio-boot-corenet to add descriptions about boot from PCIE, and change the name to README.srio-pcie-boot-corenet. 2. Changed the compile config "xxxx_SRIOBOOT_SLAVE" to "xxxx_SRIO_PCIE_BOOT", and the image builded with "xxxx_SRIO_PCIE_BOOT" can support both the boot from SRIO and from PCIE. 3. Updated other macros and documents if needed to add information about boot from PCIE. Signed-off-by: Liu Gang <Gang.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
13 years ago
#ifdef CONFIG_SRIO_PCIE_BOOT_SLAVE
/*
powerpc/corenet_ds: Slave module for boot from PCIE When boot from PCIE, slave's core should be in holdoff after powered on for some specific requirements. Master will release the slave's core at the right time by PCIE interface. Slave's ucode and ENV can be stored in master's memory space, then slave can fetch them through PCIE interface. For the corenet platform, ucode is for Fman. NOTE: Because the slave can not erase, write master's NOR flash by PCIE interface, so it can not modify the ENV parameters stored in master's NOR flash using "saveenv" or other commands. environment and requirement: master: 1. NOR flash for its own u-boot image, ucode and ENV space. 2. Slave's u-boot image is in master NOR flash. 3. Put the slave's ucode and ENV into it's own memory space. 4. Normally boot from local NOR flash. 5. Configure PCIE system if needed. slave: 1. Just has EEPROM for RCW. No flash for u-boot image, ucode and ENV. 2. Boot location should be set to one PCIE interface by RCW. 3. RCW should configure the SerDes, PCIE interfaces correctly. 4. Must set all the cores in holdoff by RCW. 5. Must be powered on before master's boot. For the slave module, need to finish these processes: 1. Set the boot location to one PCIE interface by RCW. 2. Set a specific TLB entry for the boot process. 3. Set a LAW entry with the TargetID of one PCIE for the boot. 4. Set a specific TLB entry in order to fetch ucode and ENV from master. 5. Set a LAW entry with the TargetID one of the PCIE ports for ucode and ENV. 6. Slave's u-boot image should be generated specifically by make xxxx_SRIO_PCIE_BOOT_config. This will set SYS_TEXT_BASE=0xFFF80000 and other configurations. In addition, the processes are very similar between boot from SRIO and boot from PCIE. Some configurations like the address spaces can be set to the same. So the module of boot from PCIE was added based on the existing module of boot from SRIO, and the following changes were needed: 1. Updated the README.srio-boot-corenet to add descriptions about boot from PCIE, and change the name to README.srio-pcie-boot-corenet. 2. Changed the compile config "xxxx_SRIOBOOT_SLAVE" to "xxxx_SRIO_PCIE_BOOT", and the image builded with "xxxx_SRIO_PCIE_BOOT" can support both the boot from SRIO and from PCIE. 3. Updated other macros and documents if needed to add information about boot from PCIE. Signed-off-by: Liu Gang <Gang.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
13 years ago
* SRIO_PCIE_BOOT-SLAVE. 1M space from 0xffe00000 for
* fetching ucode and ENV from master
*/
powerpc/corenet_ds: Slave module for boot from PCIE When boot from PCIE, slave's core should be in holdoff after powered on for some specific requirements. Master will release the slave's core at the right time by PCIE interface. Slave's ucode and ENV can be stored in master's memory space, then slave can fetch them through PCIE interface. For the corenet platform, ucode is for Fman. NOTE: Because the slave can not erase, write master's NOR flash by PCIE interface, so it can not modify the ENV parameters stored in master's NOR flash using "saveenv" or other commands. environment and requirement: master: 1. NOR flash for its own u-boot image, ucode and ENV space. 2. Slave's u-boot image is in master NOR flash. 3. Put the slave's ucode and ENV into it's own memory space. 4. Normally boot from local NOR flash. 5. Configure PCIE system if needed. slave: 1. Just has EEPROM for RCW. No flash for u-boot image, ucode and ENV. 2. Boot location should be set to one PCIE interface by RCW. 3. RCW should configure the SerDes, PCIE interfaces correctly. 4. Must set all the cores in holdoff by RCW. 5. Must be powered on before master's boot. For the slave module, need to finish these processes: 1. Set the boot location to one PCIE interface by RCW. 2. Set a specific TLB entry for the boot process. 3. Set a LAW entry with the TargetID of one PCIE for the boot. 4. Set a specific TLB entry in order to fetch ucode and ENV from master. 5. Set a LAW entry with the TargetID one of the PCIE ports for ucode and ENV. 6. Slave's u-boot image should be generated specifically by make xxxx_SRIO_PCIE_BOOT_config. This will set SYS_TEXT_BASE=0xFFF80000 and other configurations. In addition, the processes are very similar between boot from SRIO and boot from PCIE. Some configurations like the address spaces can be set to the same. So the module of boot from PCIE was added based on the existing module of boot from SRIO, and the following changes were needed: 1. Updated the README.srio-boot-corenet to add descriptions about boot from PCIE, and change the name to README.srio-pcie-boot-corenet. 2. Changed the compile config "xxxx_SRIOBOOT_SLAVE" to "xxxx_SRIO_PCIE_BOOT", and the image builded with "xxxx_SRIO_PCIE_BOOT" can support both the boot from SRIO and from PCIE. 3. Updated other macros and documents if needed to add information about boot from PCIE. Signed-off-by: Liu Gang <Gang.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
13 years ago
SET_TLB_ENTRY(1, CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR,
CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR_PHYS,
MAS3_SX|MAS3_SW|MAS3_SR, MAS2_G,
0, 17, BOOKE_PAGESZ_1M, 1),
#endif
};
int num_tlb_entries = ARRAY_SIZE(tlb_table);