upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
u-boot/board/MAI/AmigaOneG3SE/articiaS.c

705 lines
18 KiB

/*
* (C) Copyright 2002
* Hyperion Entertainment, ThomasF@hyperion-entertainment.com
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <pci.h>
#include <asm/processor.h>
#include "memio.h"
#include "articiaS.h"
#include "smbus.h"
#include "via686.h"
DECLARE_GLOBAL_DATA_PTR;
#undef DEBUG
struct dimm_bank {
uint8 used; /* Bank is populated */
uint32 rows; /* Number of row addresses */
uint32 columns; /* Number of column addresses */
uint8 registered; /* SIMM is registered */
uint8 ecc; /* SIMM has ecc */
uint8 burst_len; /* Supported burst lengths */
uint32 cas_lat; /* Supported CAS latencies */
uint32 cas_used; /* CAS to use (not set by user) */
uint32 trcd; /* RAS to CAS latency */
uint32 trp; /* Precharge latency */
uint32 tclk_hi; /* SDRAM cycle time (highest CAS latency) */
uint32 tclk_2hi; /* SDRAM second highest CAS latency */
uint32 size; /* Size of bank in bytes */
uint8 auto_refresh; /* Module supports auto refresh */
uint32 refresh_time; /* Refresh time (in ns) */
};
/*
** Based in part on the evb64260 code
*/
/*
* translate ns.ns/10 coding of SPD timing values
* into 10 ps unit values
*/
static inline unsigned short NS10to10PS (unsigned char spd_byte)
{
unsigned short ns, ns10;
/* isolate upper nibble */
ns = (spd_byte >> 4) & 0x0F;
/* isolate lower nibble */
ns10 = (spd_byte & 0x0F);
return (ns * 100 + ns10 * 10);
}
/*
* translate ns coding of SPD timing values
* into 10 ps unit values
*/
static inline unsigned short NSto10PS (unsigned char spd_byte)
{
return (spd_byte * 100);
}
long detect_sdram (uint8 * rom, int dimmNum, struct dimm_bank *banks)
{
int dimm_address = (dimmNum == 0) ? SM_DIMM0_ADDR : SM_DIMM1_ADDR;
uint32 busclock = gd->bus_clk;
uint32 memclock = busclock;
uint32 tmemclock = 1000000000 / (memclock / 100);
uint32 datawidth;
if (sm_get_data (rom, dimm_address) == 0) {
/* Nothing in slot, make both banks empty */
debug ("Slot %d: vacant\n", dimmNum);
banks[0].used = 0;
banks[1].used = 0;
return 0;
}
if (rom[2] != 0x04) {
debug ("Slot %d: No SDRAM\n", dimmNum);
banks[0].used = 0;
banks[1].used = 0;
return 0;
}
/* Determine number of banks/rows */
if (rom[5] == 1) {
banks[0].used = 1;
banks[1].used = 0;
} else {
banks[0].used = 1;
banks[1].used = 1;
}
/* Determine number of row addresses */
if (rom[3] & 0xf0) {
/* Different banks sizes */
banks[0].rows = rom[3] & 0x0f;
banks[1].rows = (rom[3] & 0xf0) >> 4;
} else {
/* Equal sized banks */
banks[0].rows = rom[3] & 0x0f;
banks[1].rows = banks[0].rows;
}
/* Determine number of column addresses */
if (rom[4] & 0xf0) {
/* Different bank sizes */
banks[0].columns = rom[4] & 0x0f;
banks[1].columns = (rom[4] & 0xf0) >> 4;
} else {
banks[0].columns = rom[4] & 0x0f;
banks[1].columns = banks[0].columns;
}
/* Check Jedec revision, and modify row/column accordingly */
if (rom[62] > 0x10) {
if (banks[0].rows <= 3)
banks[0].rows += 15;
if (banks[1].rows <= 3)
banks[1].rows += 15;
if (banks[0].columns <= 3)
banks[0].columns += 15;
if (banks[0].columns <= 3)
banks[0].columns += 15;
}
/* Check registered/unregisterd */
if (rom[21] & 0x12) {
banks[0].registered = 1;
banks[1].registered = 1;
} else {
banks[0].registered = 0;
banks[1].registered = 0;
}
#ifdef CONFIG_ECC
/* Check parity/ECC */
banks[0].ecc = (rom[11] == 0x02);
banks[1].ecc = (rom[11] == 0x02);
#endif
/* Find burst lengths supported */
banks[0].burst_len = rom[16] & 0x8f;
banks[1].burst_len = rom[16] & 0x8f;
/* Find possible cas latencies */
banks[0].cas_lat = rom[18] & 0x7F;
banks[1].cas_lat = rom[18] & 0x7F;
/* RAS/CAS latency */
banks[0].trcd = (NSto10PS (rom[29]) + (tmemclock - 1)) / tmemclock;
banks[1].trcd = (NSto10PS (rom[29]) + (tmemclock - 1)) / tmemclock;
/* Precharge latency */
banks[0].trp = (NSto10PS (rom[27]) + (tmemclock - 1)) / tmemclock;
banks[1].trp = (NSto10PS (rom[27]) + (tmemclock - 1)) / tmemclock;
/* highest CAS latency */
banks[0].tclk_hi = NS10to10PS (rom[9]);
banks[1].tclk_hi = NS10to10PS (rom[9]);
/* second highest CAS latency */
banks[0].tclk_2hi = NS10to10PS (rom[23]);
banks[1].tclk_2hi = NS10to10PS (rom[23]);
/* bank sizes */
datawidth = rom[13] & 0x7f;
banks[0].size =
(1L << (banks[0].rows + banks[0].columns)) *
/* FIXME datawidth */ 8 * rom[17];
if (rom[13] & 0x80)
banks[1].size = 2 * banks[0].size;
else
banks[1].size = (1L << (banks[1].rows + banks[1].columns)) *
/* FIXME datawidth */ 8 * rom[17];
/* Refresh */
if (rom[12] & 0x80) {
banks[0].auto_refresh = 1;
banks[1].auto_refresh = 1;
} else {
banks[0].auto_refresh = 0;
banks[1].auto_refresh = 0;
}
switch (rom[12] & 0x7f) {
case 0:
banks[0].refresh_time = (1562500 + (tmemclock - 1)) / tmemclock;
banks[1].refresh_time = (1562500 + (tmemclock - 1)) / tmemclock;
break;
case 1:
banks[0].refresh_time = (390600 + (tmemclock - 1)) / tmemclock;
banks[1].refresh_time = (390600 + (tmemclock - 1)) / tmemclock;
break;
case 2:
banks[0].refresh_time = (781200 + (tmemclock - 1)) / tmemclock;
banks[1].refresh_time = (781200 + (tmemclock - 1)) / tmemclock;
break;
case 3:
banks[0].refresh_time = (3125000 + (tmemclock - 1)) / tmemclock;
banks[1].refresh_time = (3125000 + (tmemclock - 1)) / tmemclock;
break;
case 4:
banks[0].refresh_time = (6250000 + (tmemclock - 1)) / tmemclock;
banks[1].refresh_time = (6250000 + (tmemclock - 1)) / tmemclock;
break;
case 5:
banks[0].refresh_time = (12500000 + (tmemclock - 1)) / tmemclock;
banks[1].refresh_time = (12500000 + (tmemclock - 1)) / tmemclock;
break;
default:
banks[0].refresh_time = 0x100; /* Default of Articia S */
banks[1].refresh_time = 0x100;
break;
}
#ifdef DEBUG
printf ("\nInformation for SIMM bank %ld:\n", dimmNum);
printf ("Number of banks: %ld\n", banks[0].used + banks[1].used);
printf ("Number of row addresses: %ld\n", banks[0].rows);
printf ("Number of coumns addresses: %ld\n", banks[0].columns);
printf ("SIMM is %sregistered\n",
banks[0].registered == 0 ? "not " : "");
#ifdef CONFIG_ECC
printf ("SIMM %s ECC\n",
banks[0].ecc == 1 ? "supports" : "doesn't support");
#endif
printf ("Supported burst lenghts: %s %s %s %s %s\n",
banks[0].burst_len & 0x08 ? "8" : " ",
banks[0].burst_len & 0x04 ? "4" : " ",
banks[0].burst_len & 0x02 ? "2" : " ",
banks[0].burst_len & 0x01 ? "1" : " ",
banks[0].burst_len & 0x80 ? "PAGE" : " ");
printf ("Supported CAS latencies: %s %s %s\n",
banks[0].cas_lat & 0x04 ? "CAS 3" : " ",
banks[0].cas_lat & 0x02 ? "CAS 2" : " ",
banks[0].cas_lat & 0x01 ? "CAS 1" : " ");
printf ("RAS to CAS latency: %ld\n", banks[0].trcd);
printf ("Precharge latency: %ld\n", banks[0].trp);
printf ("SDRAM highest CAS latency: %ld\n", banks[0].tclk_hi);
printf ("SDRAM 2nd highest CAS latency: %ld\n", banks[0].tclk_2hi);
printf ("SDRAM data width: %ld\n", datawidth);
printf ("Auto Refresh %ssupported\n",
banks[0].auto_refresh ? "" : "not ");
printf ("Refresh time: %ld clocks\n", banks[0].refresh_time);
if (banks[0].used)
printf ("Bank 0 size: %ld MB\n", banks[0].size / 1024 / 1024);
if (banks[1].used)
printf ("Bank 1 size: %ld MB\n", banks[1].size / 1024 / 1024);
printf ("\n");
#endif
sm_term ();
return 1;
}
void select_cas (struct dimm_bank *banks, uint8 fast)
{
if (!banks[0].used) {
banks[0].cas_used = 0;
banks[0].cas_used = 0;
return;
}
if (fast) {
/* Search for fast CAS */
uint32 i;
uint32 c = 0x01;
for (i = 1; i < 5; i++) {
if (banks[0].cas_lat & c) {
banks[0].cas_used = i;
banks[1].cas_used = i;
debug ("Using CAS %d (fast)\n", i);
return;
}
c <<= 1;
}
/* Default to CAS 3 */
banks[0].cas_used = 3;
banks[1].cas_used = 3;
debug ("Using CAS 3 (fast)\n");
return;
} else {
/* Search for slow cas */
uint32 i;
uint32 c = 0x08;
for (i = 4; i > 1; i--) {
if (banks[0].cas_lat & c) {
banks[0].cas_used = i;
banks[1].cas_used = i;
debug ("Using CAS %d (slow)\n", i);
return;
}
c >>= 1;
}
/* Default to CAS 3 */
banks[0].cas_used = 3;
banks[1].cas_used = 3;
debug ("Using CAS 3 (slow)\n");
return;
}
banks[0].cas_used = 3;
banks[1].cas_used = 3;
debug ("Using CAS 3\n");
return;
}
uint32 get_reg_setting (uint32 banks, uint32 rows, uint32 columns, uint32 size)
{
uint32 i;
struct RowColumnSize {
uint32 banks;
uint32 rows;
uint32 columns;
uint32 size;
uint32 register_value;
};
struct RowColumnSize rcs_map[] = {
/* Sbk Radr Cadr MB Value */
{1, 11, 8, 8, 0x00840f00},
{1, 11, 9, 16, 0x00925f00},
{1, 11, 10, 32, 0x00a64f00},
{2, 12, 8, 32, 0x00c55f00},
{2, 12, 9, 64, 0x00d66f00},
{2, 12, 10, 128, 0x00e77f00},
{2, 12, 11, 256, 0x00ff8f00},
{2, 13, 11, 512, 0x00ff9f00},
{0, 0, 0, 0, 0x00000000}
};
i = 0;
while (rcs_map[i].banks != 0) {
if (rows == rcs_map[i].rows
&& columns == rcs_map[i].columns
&& (size / 1024 / 1024) == rcs_map[i].size)
return rcs_map[i].register_value;
i++;
}
return 0;
}
uint32 burst_to_len (uint32 support)
{
if (support & 0x80)
return 0x7;
else if (support & 0x8)
return 0x3;
else if (support & 0x4)
return 0x2;
else if (support & 0x2)
return 0x1;
else if (support & 0x1)
return 0x0;
return 0;
}
long articiaS_ram_init (void)
{
register uint32 i;
register uint32 value1;
register uint32 value2;
uint8 rom[128];
uint32 burst_len;
uint32 burst_support;
uint32 total_ram = 0;
struct dimm_bank banks[4]; /* FIXME: Move to initram */
uint32 busclock = gd->bus_clk;
uint32 memclock = busclock;
uint32 reg32;
uint32 refresh_clocks;
uint8 auto_refresh;
memset (banks, 0, sizeof (struct dimm_bank) * 4);
detect_sdram (rom, 0, &banks[0]);
detect_sdram (rom, 1, &banks[2]);
for (i = 0; i < 4; i++) {
total_ram = total_ram + (banks[i].used * banks[i].size);
}
pci_write_cfg_long (0, 0, GLOBALINFO0, 0x117430c0);
pci_write_cfg_long (0, 0, HBUSACR0, 0x1f0100b0);
pci_write_cfg_long (0, 0, SRAM_CR, 0x00f12000); /* Note: Might also try 0x00f10000 (original: 0x00f12000) */
pci_write_cfg_byte (0, 0, DRAM_RAS_CTL0, 0x3f);
pci_write_cfg_byte (0, 0, DRAM_RAS_CTL1, 0x00); /* was: 0x04); */
pci_write_cfg_word (0, 0, DRAM_ECC0, 0x2020); /* was: 0x2400); No ECC yet */
/* FIXME: Move this stuff to seperate function, like setup_dimm_bank */
if (banks[0].used) {
value1 = get_reg_setting (banks[0].used + banks[1].used,
banks[0].rows, banks[0].columns,
banks[0].size);
} else {
value1 = 0;
}
if (banks[1].used) {
value2 = get_reg_setting (banks[0].used + banks[1].used,
banks[1].rows, banks[1].columns,
banks[1].size);
} else {
value2 = 0;
}
pci_write_cfg_long (0, 0, DIMM0_B0_SCR0, value1);
pci_write_cfg_long (0, 0, DIMM0_B1_SCR0, value2);
debug ("DIMM0_B0_SCR0 = 0x%08x\n", value1);
debug ("DIMM0_B1_SCR0 = 0x%08x\n", value2);
if (banks[2].used) {
value1 = get_reg_setting (banks[2].used + banks[3].used,
banks[2].rows, banks[2].columns,
banks[2].size);
} else {
value1 = 0;
}
if (banks[3].used) {
value2 = get_reg_setting (banks[2].used + banks[3].used,
banks[3].rows, banks[3].columns,
banks[3].size);
} else {
value2 = 0;
}
pci_write_cfg_long (0, 0, DIMM1_B2_SCR0, value1);
pci_write_cfg_long (0, 0, DIMM1_B3_SCR0, value2);
debug ("DIMM0_B2_SCR0 = 0x%08x\n", value1);
debug ("DIMM0_B3_SCR0 = 0x%08x\n", value2);
pci_write_cfg_long (0, 0, DIMM2_B4_SCR0, 0);
pci_write_cfg_long (0, 0, DIMM2_B5_SCR0, 0);
pci_write_cfg_long (0, 0, DIMM3_B6_SCR0, 0);
pci_write_cfg_long (0, 0, DIMM3_B7_SCR0, 0);
/* Determine timing */
select_cas (&banks[0], 0);
select_cas (&banks[2], 0);
/* FIXME: What about write recovery */
/* Auto refresh Precharge */
#if 0
reg32 = (0x3 << 13) | (0x7 << 10) | ((banks[0].trp - 2) << 8) |
/* Write recovery CAS Latency */
(0x1 << 6) | (banks[0].cas_used << 4) |
/* RAS/CAS latency */
((banks[0].trcd - 1) << 0);
reg32 |= ((0x3 << 13) | (0x7 << 10) | ((banks[2].trp - 2) << 8) |
(0x1 << 6) | (banks[2].cas_used << 4) |
((banks[2].trcd - 1) << 0)) << 16;
#else
if (100000000 == gd->bus_clk)
reg32 = 0x71737173;
else
reg32 = 0x69736973;
#endif
pci_write_cfg_long (0, 0, DIMM0_TCR0, reg32);
debug ("DIMM0_TCR0 = 0x%08x\n", reg32);
/* Write default in DIMM2/3 (not used on A1) */
pci_write_cfg_long (0, 0, DIMM2_TCR0, 0x7d737d73);
/* Determine buffered/unbuffered mode for each SIMM. Uses first bank as reference (second, if present, uses the same) */
reg32 = pci_read_cfg_long (0, 0, DRAM_GCR0);
reg32 &= 0xFF00FFFF;
#if 0
if (banks[0].used && banks[0].registered)
reg32 |= 0x1 << 16;
if (banks[2].used && banks[2].registered)
reg32 |= 0x1 << 18;
#else
if (banks[0].registered || banks[2].registered)
reg32 |= 0x55 << 16;
#endif
pci_write_cfg_long (0, 0, DRAM_GCR0, reg32);
debug ("DRAM_GCR0 = 0x%08x\n", reg32);
/* Determine refresh */
refresh_clocks = 0xffffffff;
auto_refresh = 1;
for (i = 0; i < 4; i++) {
if (banks[i].used) {
if (banks[i].auto_refresh == 0)
auto_refresh = 0;
if (banks[i].refresh_time < refresh_clocks)
refresh_clocks = banks[i].refresh_time;
}
}
#if 1
/* It seems this is suggested by the ArticiaS data book */
if (100000000 == gd->bus_clk)
refresh_clocks = 1561;
else
refresh_clocks = 2083;
#endif
debug ("Refresh set to %ld clocks, auto refresh %s\n",
refresh_clocks, auto_refresh ? "on" : "off");
pci_write_cfg_long (0, 0, DRAM_REFRESH0,
(1 << 16) | (1 << 15) | (auto_refresh << 12) |
(refresh_clocks));
debug ("DRAM_REFRESH0 = 0x%08x\n",
(1 << 16) | (1 << 15) | (auto_refresh << 12) |
(refresh_clocks));
/* pci_write_cfg_long(0, 0, DRAM_REFRESH0, 0x00019400); */
/* Set mode registers */
/* FIXME: For now, set same burst len for all modules. Dunno if that's necessary */
/* Find a common burst len */
burst_support = 0xff;
if (banks[0].used)
burst_support = banks[0].burst_len;
if (banks[1].used)
burst_support = banks[1].burst_len;
if (banks[2].used)
burst_support = banks[2].burst_len;
if (banks[3].used)
burst_support = banks[3].burst_len;
/*
** Mode register:
** Bits Use
** 0-2 Burst len
** 3 Burst type (0 = sequential, 1 = interleave)
** 4-6 CAS latency
** 7-8 Operation mode (0 = default, all others invalid)
** 9 Write burst
** 10-11 Reserved
**
** Mode register burst table:
** A2 A1 A0 lenght
** 0 0 0 1
** 0 0 1 2
** 0 1 0 4
** 0 1 1 8
** 1 0 0 invalid
** 1 0 1 invalid
** 1 1 0 invalid
** 1 1 1 page (only valid for non-interleaved)
*/
burst_len = burst_to_len (burst_support);
burst_len = 2; /* FIXME */
if (banks[0].used) {
pci_write_cfg_word (0, 0, DRAM_PCR0,
0x8000 | burst_len | (banks[0].cas_used << 4));
debug ("Mode bank 0: 0x%08x\n",
0x8000 | burst_len | (banks[0].cas_used << 4));
} else {
/* Seems to be needed to disable the bank */
pci_write_cfg_word (0, 0, DRAM_PCR0, 0x0000 | 0x032);
}
if (banks[1].used) {
pci_write_cfg_word (0, 0, DRAM_PCR0,
0x9000 | burst_len | (banks[1].cas_used << 4));
debug ("Mode bank 1: 0x%08x\n",
0x8000 | burst_len | (banks[1].cas_used << 4));
} else {
/* Seems to be needed to disable the bank */
pci_write_cfg_word (0, 0, DRAM_PCR0, 0x1000 | 0x032);
}
if (banks[2].used) {
pci_write_cfg_word (0, 0, DRAM_PCR0,
0xa000 | burst_len | (banks[2].cas_used << 4));
debug ("Mode bank 2: 0x%08x\n",
0x8000 | burst_len | (banks[2].cas_used << 4));
} else {
/* Seems to be needed to disable the bank */
pci_write_cfg_word (0, 0, DRAM_PCR0, 0x2000 | 0x032);
}
if (banks[3].used) {
pci_write_cfg_word (0, 0, DRAM_PCR0,
0xb000 | burst_len | (banks[3].cas_used << 4));
debug ("Mode bank 3: 0x%08x\n",
0x8000 | burst_len | (banks[3].cas_used << 4));
} else {
/* Seems to be needed to disable the bank */
pci_write_cfg_word (0, 0, DRAM_PCR0, 0x3000 | 0x032);
}
pci_write_cfg_word (0, 0, 0xba, 0x00);
return total_ram;
}
extern int drv_isa_kbd_init (void);
int last_stage_init (void)
{
drv_isa_kbd_init ();
return 0;
}
int overwrite_console (void)
{
return (0);
}
#define in_8 read_byte
#define out_8 write_byte
static __inline__ unsigned long get_msr (void)
{
unsigned long msr;
asm volatile ("mfmsr %0":"=r" (msr):);
return msr;
}
static __inline__ void set_msr (unsigned long msr)
{
asm volatile ("mtmsr %0"::"r" (msr));
}
int board_early_init_f (void)
{
unsigned char c_value = 0;
unsigned long msr;
/* Basic init of PS/2 keyboard (needed for some reason)... */
/* Ripped from John's code */
while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0);
out_8 ((unsigned char *) 0xfe000064, 0xaa);
while ((in_8 ((unsigned char *) 0xfe000064) & 0x01) == 0);
c_value = in_8 ((unsigned char *) 0xfe000060);
while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0);
out_8 ((unsigned char *) 0xfe000064, 0xab);
while ((in_8 ((unsigned char *) 0xfe000064) & 0x01) == 0);
c_value = in_8 ((unsigned char *) 0xfe000060);
while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0);
out_8 ((unsigned char *) 0xfe000064, 0xae);
/* while ((in_8((unsigned char *)0xfe000064) & 0x01) == 0); */
/* c_value = in_8((unsigned char *)0xfe000060); */
/* Enable FPU */
msr = get_msr ();
set_msr (msr | MSR_FP);
via_calibrate_bus_freq ();
return 0;
}