Add NAND support. Signed-off-by: Nishanth Menon <nm@ti.com> Signed-off-by: Syed Mohammed Khasim <khasim@ti.com> Signed-off-by: Dirk Behme <dirk.behme@googlemail.com>master
parent
91eee54673
commit
12201a1354
@ -0,0 +1,353 @@ |
||||
/*
|
||||
* (C) Copyright 2004-2008 Texas Instruments, <www.ti.com> |
||||
* Rohit Choraria <rohitkc@ti.com> |
||||
* |
||||
* See file CREDITS for list of people who contributed to this |
||||
* project. |
||||
* |
||||
* This program is free software; you can redistribute it and/or |
||||
* modify it under the terms of the GNU General Public License as |
||||
* published by the Free Software Foundation; either version 2 of |
||||
* the License, or (at your option) any later version. |
||||
* |
||||
* This program is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
* GNU General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU General Public License |
||||
* along with this program; if not, write to the Free Software |
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
||||
* MA 02111-1307 USA |
||||
*/ |
||||
|
||||
#include <common.h> |
||||
#include <asm/io.h> |
||||
#include <asm/errno.h> |
||||
#include <asm/arch/mem.h> |
||||
#include <asm/arch/omap_gpmc.h> |
||||
#include <linux/mtd/nand_ecc.h> |
||||
#include <nand.h> |
||||
|
||||
static uint8_t cs; |
||||
static gpmc_t *gpmc_base = (gpmc_t *)GPMC_BASE; |
||||
static gpmc_csx_t *gpmc_cs_base; |
||||
static struct nand_ecclayout hw_nand_oob = GPMC_NAND_HW_ECC_LAYOUT; |
||||
|
||||
/*
|
||||
* omap_nand_hwcontrol - Set the address pointers corretly for the |
||||
* following address/data/command operation |
||||
*/ |
||||
static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd, |
||||
uint32_t ctrl) |
||||
{ |
||||
register struct nand_chip *this = mtd->priv; |
||||
|
||||
/*
|
||||
* Point the IO_ADDR to DATA and ADDRESS registers instead |
||||
* of chip address |
||||
*/ |
||||
switch (ctrl) { |
||||
case NAND_CTRL_CHANGE | NAND_CTRL_CLE: |
||||
this->IO_ADDR_W = (void __iomem *)&gpmc_cs_base->nand_cmd; |
||||
break; |
||||
case NAND_CTRL_CHANGE | NAND_CTRL_ALE: |
||||
this->IO_ADDR_W = (void __iomem *)&gpmc_cs_base->nand_adr; |
||||
break; |
||||
case NAND_CTRL_CHANGE | NAND_NCE: |
||||
this->IO_ADDR_W = (void __iomem *)&gpmc_cs_base->nand_dat; |
||||
break; |
||||
} |
||||
|
||||
if (cmd != NAND_CMD_NONE) |
||||
writeb(cmd, this->IO_ADDR_W); |
||||
} |
||||
|
||||
/*
|
||||
* omap_hwecc_init - Initialize the Hardware ECC for NAND flash in |
||||
* GPMC controller |
||||
* @mtd: MTD device structure |
||||
* |
||||
*/ |
||||
static void omap_hwecc_init(struct nand_chip *chip) |
||||
{ |
||||
/*
|
||||
* Init ECC Control Register |
||||
* Clear all ECC | Enable Reg1 |
||||
*/ |
||||
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_base->ecc_control); |
||||
writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_base->ecc_size_config); |
||||
} |
||||
|
||||
/*
|
||||
* gen_true_ecc - This function will generate true ECC value, which |
||||
* can be used when correcting data read from NAND flash memory core |
||||
* |
||||
* @ecc_buf: buffer to store ecc code |
||||
* |
||||
* @return: re-formatted ECC value |
||||
*/ |
||||
static uint32_t gen_true_ecc(uint8_t *ecc_buf) |
||||
{ |
||||
return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) | |
||||
((ecc_buf[2] & 0x0F) << 8); |
||||
} |
||||
|
||||
/*
|
||||
* omap_correct_data - Compares the ecc read from nand spare area with ECC |
||||
* registers values and corrects one bit error if it has occured |
||||
* Further details can be had from OMAP TRM and the following selected links: |
||||
* http://en.wikipedia.org/wiki/Hamming_code
|
||||
* http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
|
||||
* |
||||
* @mtd: MTD device structure |
||||
* @dat: page data |
||||
* @read_ecc: ecc read from nand flash |
||||
* @calc_ecc: ecc read from ECC registers |
||||
* |
||||
* @return 0 if data is OK or corrected, else returns -1 |
||||
*/ |
||||
static int omap_correct_data(struct mtd_info *mtd, uint8_t *dat, |
||||
uint8_t *read_ecc, uint8_t *calc_ecc) |
||||
{ |
||||
uint32_t orig_ecc, new_ecc, res, hm; |
||||
uint16_t parity_bits, byte; |
||||
uint8_t bit; |
||||
|
||||
/* Regenerate the orginal ECC */ |
||||
orig_ecc = gen_true_ecc(read_ecc); |
||||
new_ecc = gen_true_ecc(calc_ecc); |
||||
/* Get the XOR of real ecc */ |
||||
res = orig_ecc ^ new_ecc; |
||||
if (res) { |
||||
/* Get the hamming width */ |
||||
hm = hweight32(res); |
||||
/* Single bit errors can be corrected! */ |
||||
if (hm == 12) { |
||||
/* Correctable data! */ |
||||
parity_bits = res >> 16; |
||||
bit = (parity_bits & 0x7); |
||||
byte = (parity_bits >> 3) & 0x1FF; |
||||
/* Flip the bit to correct */ |
||||
dat[byte] ^= (0x1 << bit); |
||||
} else if (hm == 1) { |
||||
printf("Error: Ecc is wrong\n"); |
||||
/* ECC itself is corrupted */ |
||||
return 2; |
||||
} else { |
||||
/*
|
||||
* hm distance != parity pairs OR one, could mean 2 bit |
||||
* error OR potentially be on a blank page.. |
||||
* orig_ecc: contains spare area data from nand flash. |
||||
* new_ecc: generated ecc while reading data area. |
||||
* Note: if the ecc = 0, all data bits from which it was |
||||
* generated are 0xFF. |
||||
* The 3 byte(24 bits) ecc is generated per 512byte |
||||
* chunk of a page. If orig_ecc(from spare area) |
||||
* is 0xFF && new_ecc(computed now from data area)=0x0, |
||||
* this means that data area is 0xFF and spare area is |
||||
* 0xFF. A sure sign of a erased page! |
||||
*/ |
||||
if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000)) |
||||
return 0; |
||||
printf("Error: Bad compare! failed\n"); |
||||
/* detected 2 bit error */ |
||||
return -1; |
||||
} |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
/*
|
||||
* omap_calculate_ecc - Generate non-inverted ECC bytes. |
||||
* |
||||
* Using noninverted ECC can be considered ugly since writing a blank |
||||
* page ie. padding will clear the ECC bytes. This is no problem as |
||||
* long nobody is trying to write data on the seemingly unused page. |
||||
* Reading an erased page will produce an ECC mismatch between |
||||
* generated and read ECC bytes that has to be dealt with separately. |
||||
* E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC |
||||
* is used, the result of read will be 0x0 while the ECC offsets of the |
||||
* spare area will be 0xFF which will result in an ECC mismatch. |
||||
* @mtd: MTD structure |
||||
* @dat: unused |
||||
* @ecc_code: ecc_code buffer |
||||
*/ |
||||
static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, |
||||
uint8_t *ecc_code) |
||||
{ |
||||
u_int32_t val; |
||||
|
||||
/* Start Reading from HW ECC1_Result = 0x200 */ |
||||
val = readl(&gpmc_base->ecc1_result); |
||||
|
||||
ecc_code[0] = val & 0xFF; |
||||
ecc_code[1] = (val >> 16) & 0xFF; |
||||
ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0); |
||||
|
||||
/*
|
||||
* Stop reading anymore ECC vals and clear old results |
||||
* enable will be called if more reads are required |
||||
*/ |
||||
writel(0x000, &gpmc_base->ecc_config); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
/*
|
||||
* omap_enable_ecc - This function enables the hardware ecc functionality |
||||
* @mtd: MTD device structure |
||||
* @mode: Read/Write mode |
||||
*/ |
||||
static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode) |
||||
{ |
||||
struct nand_chip *chip = mtd->priv; |
||||
uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1; |
||||
|
||||
switch (mode) { |
||||
case NAND_ECC_READ: |
||||
case NAND_ECC_WRITE: |
||||
/* Clear the ecc result registers, select ecc reg as 1 */ |
||||
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_base->ecc_control); |
||||
|
||||
/*
|
||||
* Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes |
||||
* tell all regs to generate size0 sized regs |
||||
* we just have a single ECC engine for all CS |
||||
*/ |
||||
writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, |
||||
&gpmc_base->ecc_size_config); |
||||
val = (dev_width << 7) | (cs << 1) | (0x1); |
||||
writel(val, &gpmc_base->ecc_config); |
||||
break; |
||||
default: |
||||
printf("Error: Unrecognized Mode[%d]!\n", mode); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
/*
|
||||
* omap_nand_switch_ecc - switch the ECC operation b/w h/w ecc and s/w ecc. |
||||
* The default is to come up on s/w ecc |
||||
* |
||||
* @hardware - 1 -switch to h/w ecc, 0 - s/w ecc |
||||
* |
||||
*/ |
||||
void omap_nand_switch_ecc(int32_t hardware) |
||||
{ |
||||
struct nand_chip *nand; |
||||
struct mtd_info *mtd; |
||||
|
||||
if (nand_curr_device < 0 || |
||||
nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE || |
||||
!nand_info[nand_curr_device].name) { |
||||
printf("Error: Can't switch ecc, no devices available\n"); |
||||
return; |
||||
} |
||||
|
||||
mtd = &nand_info[nand_curr_device]; |
||||
nand = mtd->priv; |
||||
|
||||
nand->options |= NAND_OWN_BUFFERS; |
||||
|
||||
/* Reset ecc interface */ |
||||
nand->ecc.read_page = NULL; |
||||
nand->ecc.write_page = NULL; |
||||
nand->ecc.read_oob = NULL; |
||||
nand->ecc.write_oob = NULL; |
||||
nand->ecc.hwctl = NULL; |
||||
nand->ecc.correct = NULL; |
||||
nand->ecc.calculate = NULL; |
||||
|
||||
/* Setup the ecc configurations again */ |
||||
if (hardware) { |
||||
nand->ecc.mode = NAND_ECC_HW; |
||||
nand->ecc.layout = &hw_nand_oob; |
||||
nand->ecc.size = 512; |
||||
nand->ecc.bytes = 3; |
||||
nand->ecc.hwctl = omap_enable_hwecc; |
||||
nand->ecc.correct = omap_correct_data; |
||||
nand->ecc.calculate = omap_calculate_ecc; |
||||
omap_hwecc_init(nand); |
||||
printf("HW ECC selected\n"); |
||||
} else { |
||||
nand->ecc.mode = NAND_ECC_SOFT; |
||||
/* Use mtd default settings */ |
||||
nand->ecc.layout = NULL; |
||||
printf("SW ECC selected\n"); |
||||
} |
||||
|
||||
/* Update NAND handling after ECC mode switch */ |
||||
nand_scan_tail(mtd); |
||||
|
||||
nand->options &= ~NAND_OWN_BUFFERS; |
||||
} |
||||
|
||||
/*
|
||||
* Board-specific NAND initialization. The following members of the |
||||
* argument are board-specific: |
||||
* - IO_ADDR_R: address to read the 8 I/O lines of the flash device |
||||
* - IO_ADDR_W: address to write the 8 I/O lines of the flash device |
||||
* - cmd_ctrl: hardwarespecific function for accesing control-lines |
||||
* - waitfunc: hardwarespecific function for accesing device ready/busy line |
||||
* - ecc.hwctl: function to enable (reset) hardware ecc generator |
||||
* - ecc.mode: mode of ecc, see defines |
||||
* - chip_delay: chip dependent delay for transfering data from array to |
||||
* read regs (tR) |
||||
* - options: various chip options. They can partly be set to inform |
||||
* nand_scan about special functionality. See the defines for further |
||||
* explanation |
||||
*/ |
||||
int board_nand_init(struct nand_chip *nand) |
||||
{ |
||||
int32_t gpmc_config = 0; |
||||
cs = 0; |
||||
|
||||
/*
|
||||
* xloader/Uboot's gpmc configuration would have configured GPMC for |
||||
* nand type of memory. The following logic scans and latches on to the |
||||
* first CS with NAND type memory. |
||||
* TBD: need to make this logic generic to handle multiple CS NAND |
||||
* devices. |
||||
*/ |
||||
while (cs < GPMC_MAX_CS) { |
||||
/*
|
||||
* Each GPMC set for a single CS is at offset 0x30 |
||||
* - already remapped for us |
||||
*/ |
||||
gpmc_cs_base = (gpmc_csx_t *)(GPMC_CONFIG_CS0_BASE + |
||||
(cs * GPMC_CONFIG_WIDTH)); |
||||
/* Check if NAND type is set */ |
||||
if ((readl(&gpmc_cs_base->config1) & 0xC00) == |
||||
0x800) { |
||||
/* Found it!! */ |
||||
break; |
||||
} |
||||
cs++; |
||||
} |
||||
if (cs >= GPMC_MAX_CS) { |
||||
printf("NAND: Unable to find NAND settings in " |
||||
"GPMC Configuration - quitting\n"); |
||||
return -ENODEV; |
||||
} |
||||
|
||||
gpmc_config = readl(&gpmc_base->config); |
||||
/* Disable Write protect */ |
||||
gpmc_config |= 0x10; |
||||
writel(gpmc_config, &gpmc_base->config); |
||||
|
||||
nand->IO_ADDR_R = (void __iomem *)&gpmc_cs_base->nand_dat; |
||||
nand->IO_ADDR_W = (void __iomem *)&gpmc_cs_base->nand_cmd; |
||||
|
||||
nand->cmd_ctrl = omap_nand_hwcontrol; |
||||
nand->options = NAND_NO_PADDING | NAND_CACHEPRG | NAND_NO_AUTOINCR; |
||||
/* If we are 16 bit dev, our gpmc config tells us that */ |
||||
if ((readl(gpmc_cs_base) & 0x3000) == 0x1000) |
||||
nand->options |= NAND_BUSWIDTH_16; |
||||
|
||||
nand->chip_delay = 100; |
||||
/* Default ECC mode */ |
||||
nand->ecc.mode = NAND_ECC_SOFT; |
||||
|
||||
return 0; |
||||
} |
Loading…
Reference in new issue