Tegra30: Add AVP (arm720t) files

This provides SPL support for T30 boards - AVP early init, plus
CPU (A9) init/jump to main U-Boot.

Some changes were made to Tegra20 cpu.c to move common routines
into tegra-common/cpu.c and reduce code duplication.

Signed-off-by: Tom Warren <twarren@nvidia.com>
Reviewed-by: Stephen Warren <swarren@nvidia.com>
Acked-by: Simon Glass <sjg@chromium.org>
master
Tom Warren 12 years ago committed by Tom Warren
parent dc89ad1438
commit 1b245fee91
  1. 1
      arch/arm/cpu/arm720t/tegra-common/Makefile
  2. 335
      arch/arm/cpu/arm720t/tegra-common/cpu.c
  3. 68
      arch/arm/cpu/arm720t/tegra-common/cpu.h
  4. 3
      arch/arm/cpu/arm720t/tegra-common/spl.c
  5. 216
      arch/arm/cpu/arm720t/tegra20/cpu.c
  6. 41
      arch/arm/cpu/arm720t/tegra30/Makefile
  7. 19
      arch/arm/cpu/arm720t/tegra30/config.mk
  8. 176
      arch/arm/cpu/arm720t/tegra30/cpu.c

@ -28,6 +28,7 @@ include $(TOPDIR)/config.mk
LIB = $(obj)libtegra-common.o
COBJS-$(CONFIG_SPL_BUILD) += spl.o
COBJS-y += cpu.o
SRCS := $(COBJS-y:.o=.c)
OBJS := $(addprefix $(obj),$(COBJS-y))

@ -0,0 +1,335 @@
/*
* Copyright (c) 2010-2012, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/gp_padctrl.h>
#include <asm/arch/pinmux.h>
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra/pmc.h>
#include <asm/arch-tegra/scu.h>
#include "cpu.h"
enum tegra_family_t {
TEGRA_FAMILY_T2x,
TEGRA_FAMILY_T3x,
};
enum tegra_family_t get_family(void)
{
u32 reg, chip_id;
reg = readl(NV_PA_APB_MISC_BASE + GP_HIDREV);
chip_id = reg >> 8;
chip_id &= 0xff;
debug(" tegra_get_family: chip_id = %x\n", chip_id);
if (chip_id == 0x30)
return TEGRA_FAMILY_T3x;
else
return TEGRA_FAMILY_T2x;
}
int get_num_cpus(void)
{
return get_family() == TEGRA_FAMILY_T3x ? 4 : 2;
}
/*
* Timing tables for each SOC for all four oscillator options.
*/
struct clk_pll_table tegra_pll_x_table[TEGRA_SOC_CNT][CLOCK_OSC_FREQ_COUNT] = {
/* T20: 1 GHz */
{{ 1000, 13, 0, 12}, /* OSC 13M */
{ 625, 12, 0, 8}, /* OSC 19.2M */
{ 1000, 12, 0, 12}, /* OSC 12M */
{ 1000, 26, 0, 12}, /* OSC 26M */
},
/* T25: 1.2 GHz */
{{ 923, 10, 0, 12},
{ 750, 12, 0, 8},
{ 600, 6, 0, 12},
{ 600, 13, 0, 12},
},
/* T30: 1.4 GHz */
{{ 862, 8, 0, 8},
{ 583, 8, 0, 4},
{ 700, 6, 0, 8},
{ 700, 13, 0, 8},
},
/* TEGRA_SOC2_SLOW: 312 MHz */
{{ 312, 13, 0, 12}, /* OSC 13M */
{ 260, 16, 0, 8}, /* OSC 19.2M */
{ 312, 12, 0, 12}, /* OSC 12M */
{ 312, 26, 0, 12}, /* OSC 26M */
},
};
void adjust_pllp_out_freqs(void)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
struct clk_pll *pll = &clkrst->crc_pll[CLOCK_ID_PERIPH];
u32 reg;
/* Set T30 PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
reg = readl(&pll->pll_out[0]); /* OUTA, contains OUT2 / OUT1 */
reg |= (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO) | PLLP_OUT2_OVR
| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO) | PLLP_OUT1_OVR;
writel(reg, &pll->pll_out[0]);
reg = readl(&pll->pll_out[1]); /* OUTB, contains OUT4 / OUT3 */
reg |= (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO) | PLLP_OUT4_OVR
| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO) | PLLP_OUT3_OVR;
writel(reg, &pll->pll_out[1]);
}
int pllx_set_rate(struct clk_pll_simple *pll , u32 divn, u32 divm,
u32 divp, u32 cpcon)
{
u32 reg;
/* If PLLX is already enabled, just return */
if (readl(&pll->pll_base) & PLL_ENABLE_MASK) {
debug("pllx_set_rate: PLLX already enabled, returning\n");
return 0;
}
debug(" pllx_set_rate entry\n");
/* Set BYPASS, m, n and p to PLLX_BASE */
reg = PLL_BYPASS_MASK | (divm << PLL_DIVM_SHIFT);
reg |= ((divn << PLL_DIVN_SHIFT) | (divp << PLL_DIVP_SHIFT));
writel(reg, &pll->pll_base);
/* Set cpcon to PLLX_MISC */
reg = (cpcon << PLL_CPCON_SHIFT);
/* Set dccon to PLLX_MISC if freq > 600MHz */
if (divn > 600)
reg |= (1 << PLL_DCCON_SHIFT);
writel(reg, &pll->pll_misc);
/* Enable PLLX */
reg = readl(&pll->pll_base);
reg |= PLL_ENABLE_MASK;
/* Disable BYPASS */
reg &= ~PLL_BYPASS_MASK;
writel(reg, &pll->pll_base);
/* Set lock_enable to PLLX_MISC */
reg = readl(&pll->pll_misc);
reg |= PLL_LOCK_ENABLE_MASK;
writel(reg, &pll->pll_misc);
return 0;
}
void init_pllx(void)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
struct clk_pll_simple *pll = &clkrst->crc_pll_simple[SIMPLE_PLLX];
int chip_type;
enum clock_osc_freq osc;
struct clk_pll_table *sel;
debug("init_pllx entry\n");
/* get chip type */
chip_type = tegra_get_chip_type();
debug(" init_pllx: chip_type = %d\n", chip_type);
/* get osc freq */
osc = clock_get_osc_freq();
debug(" init_pllx: osc = %d\n", osc);
/* set pllx */
sel = &tegra_pll_x_table[chip_type][osc];
pllx_set_rate(pll, sel->n, sel->m, sel->p, sel->cpcon);
/* adjust PLLP_out1-4 on T30 */
if (chip_type == TEGRA_SOC_T30) {
debug(" init_pllx: adjusting PLLP out freqs\n");
adjust_pllp_out_freqs();
}
}
void enable_cpu_clock(int enable)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 clk;
/*
* NOTE:
* Regardless of whether the request is to enable or disable the CPU
* clock, every processor in the CPU complex except the master (CPU 0)
* will have it's clock stopped because the AVP only talks to the
* master.
*/
if (enable) {
/* Initialize PLLX */
init_pllx();
/* Wait until all clocks are stable */
udelay(PLL_STABILIZATION_DELAY);
writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div);
}
/*
* Read the register containing the individual CPU clock enables and
* always stop the clocks to CPUs > 0.
*/
clk = readl(&clkrst->crc_clk_cpu_cmplx);
clk |= 1 << CPU1_CLK_STP_SHIFT;
#if defined(CONFIG_TEGRA30)
clk |= 1 << CPU2_CLK_STP_SHIFT;
clk |= 1 << CPU3_CLK_STP_SHIFT;
#endif
/* Stop/Unstop the CPU clock */
clk &= ~CPU0_CLK_STP_MASK;
clk |= !enable << CPU0_CLK_STP_SHIFT;
writel(clk, &clkrst->crc_clk_cpu_cmplx);
clock_enable(PERIPH_ID_CPU);
}
static int is_cpu_powered(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
return (readl(&pmc->pmc_pwrgate_status) & CPU_PWRED) ? 1 : 0;
}
static void remove_cpu_io_clamps(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
u32 reg;
/* Remove the clamps on the CPU I/O signals */
reg = readl(&pmc->pmc_remove_clamping);
reg |= CPU_CLMP;
writel(reg, &pmc->pmc_remove_clamping);
/* Give I/O signals time to stabilize */
udelay(IO_STABILIZATION_DELAY);
}
void powerup_cpu(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
u32 reg;
int timeout = IO_STABILIZATION_DELAY;
if (!is_cpu_powered()) {
/* Toggle the CPU power state (OFF -> ON) */
reg = readl(&pmc->pmc_pwrgate_toggle);
reg &= PARTID_CP;
reg |= START_CP;
writel(reg, &pmc->pmc_pwrgate_toggle);
/* Wait for the power to come up */
while (!is_cpu_powered()) {
if (timeout-- == 0)
printf("CPU failed to power up!\n");
else
udelay(10);
}
/*
* Remove the I/O clamps from CPU power partition.
* Recommended only on a Warm boot, if the CPU partition gets
* power gated. Shouldn't cause any harm when called after a
* cold boot according to HW, probably just redundant.
*/
remove_cpu_io_clamps();
}
}
void reset_A9_cpu(int reset)
{
/*
* NOTE: Regardless of whether the request is to hold the CPU in reset
* or take it out of reset, every processor in the CPU complex
* except the master (CPU 0) will be held in reset because the
* AVP only talks to the master. The AVP does not know that there
* are multiple processors in the CPU complex.
*/
int mask = crc_rst_cpu | crc_rst_de | crc_rst_debug;
int num_cpus = get_num_cpus();
int cpu;
debug("reset_a9_cpu entry\n");
/* Hold CPUs 1 onwards in reset, and CPU 0 if asked */
for (cpu = 1; cpu < num_cpus; cpu++)
reset_cmplx_set_enable(cpu, mask, 1);
reset_cmplx_set_enable(0, mask, reset);
/* Enable/Disable master CPU reset */
reset_set_enable(PERIPH_ID_CPU, reset);
}
void clock_enable_coresight(int enable)
{
u32 rst, src;
debug("clock_enable_coresight entry\n");
clock_set_enable(PERIPH_ID_CORESIGHT, enable);
reset_set_enable(PERIPH_ID_CORESIGHT, !enable);
if (enable) {
/*
* Put CoreSight on PLLP_OUT0 (216 MHz) and divide it down by
* 1.5, giving an effective frequency of 144MHz.
* Set PLLP_OUT0 [bits31:30 = 00], and use a 7.1 divisor
* (bits 7:0), so 00000001b == 1.5 (n+1 + .5)
*
* Clock divider request for 204MHz would setup CSITE clock as
* 144MHz for PLLP base 216MHz and 204MHz for PLLP base 408MHz
*/
if (tegra_get_chip_type() == TEGRA_SOC_T30)
src = CLK_DIVIDER(NVBL_PLLP_KHZ, 204000);
else
src = CLK_DIVIDER(NVBL_PLLP_KHZ, 144000);
clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src);
/* Unlock the CPU CoreSight interfaces */
rst = CORESIGHT_UNLOCK;
writel(rst, CSITE_CPU_DBG0_LAR);
writel(rst, CSITE_CPU_DBG1_LAR);
#if defined(CONFIG_TEGRA30)
writel(rst, CSITE_CPU_DBG2_LAR);
writel(rst, CSITE_CPU_DBG3_LAR);
#endif
}
}
void halt_avp(void)
{
for (;;) {
writel((HALT_COP_EVENT_JTAG | HALT_COP_EVENT_IRQ_1 \
| HALT_COP_EVENT_FIQ_1 | (FLOW_MODE_STOP<<29)),
FLOW_CTLR_HALT_COP_EVENTS);
}
}

@ -26,7 +26,11 @@
#define PLL_STABILIZATION_DELAY (300)
#define IO_STABILIZATION_DELAY (1000)
#if defined(CONFIG_TEGRA30)
#define NVBL_PLLP_KHZ (408000)
#else /* Tegra20 */
#define NVBL_PLLP_KHZ (216000)
#endif
#define PLLX_ENABLED (1 << 30)
#define CCLK_BURST_POLICY 0x20008888
@ -44,50 +48,11 @@
#define CORESIGHT_UNLOCK 0xC5ACCE55;
/* AP20-Specific Base Addresses */
/* AP20 Base physical address of SDRAM. */
#define AP20_BASE_PA_SDRAM 0x00000000
/* AP20 Base physical address of internal SRAM. */
#define AP20_BASE_PA_SRAM 0x40000000
/* AP20 Size of internal SRAM (256KB). */
#define AP20_BASE_PA_SRAM_SIZE 0x00040000
/* AP20 Base physical address of flash. */
#define AP20_BASE_PA_NOR_FLASH 0xD0000000
/* AP20 Base physical address of boot information table. */
#define AP20_BASE_PA_BOOT_INFO AP20_BASE_PA_SRAM
/*
* Super-temporary stacks for EXTREMELY early startup. The values chosen for
* these addresses must be valid on ALL SOCs because this value is used before
* we are able to differentiate between the SOC types.
*
* NOTE: The since CPU's stack will eventually be moved from IRAM to SDRAM, its
* stack is placed below the AVP stack. Once the CPU stack has been moved,
* the AVP is free to use the IRAM the CPU stack previously occupied if
* it should need to do so.
*
* NOTE: In multi-processor CPU complex configurations, each processor will have
* its own stack of size CPU_EARLY_BOOT_STACK_SIZE. CPU 0 will have a
* limit of CPU_EARLY_BOOT_STACK_LIMIT. Each successive CPU will have a
* stack limit that is CPU_EARLY_BOOT_STACK_SIZE less then the previous
* CPU.
*/
/* Common AVP early boot stack limit */
#define AVP_EARLY_BOOT_STACK_LIMIT \
(AP20_BASE_PA_SRAM + (AP20_BASE_PA_SRAM_SIZE/2))
/* Common AVP early boot stack size */
#define AVP_EARLY_BOOT_STACK_SIZE 0x1000
/* Common CPU early boot stack limit */
#define CPU_EARLY_BOOT_STACK_LIMIT \
(AVP_EARLY_BOOT_STACK_LIMIT - AVP_EARLY_BOOT_STACK_SIZE)
/* Common CPU early boot stack size */
#define CPU_EARLY_BOOT_STACK_SIZE 0x1000
#define EXCEP_VECTOR_CPU_RESET_VECTOR (NV_PA_EVP_BASE + 0x100)
#define CSITE_CPU_DBG0_LAR (NV_PA_CSITE_BASE + 0x10FB0)
#define CSITE_CPU_DBG1_LAR (NV_PA_CSITE_BASE + 0x12FB0)
#define CSITE_CPU_DBG2_LAR (NV_PA_CSITE_BASE + 0x14FB0)
#define CSITE_CPU_DBG3_LAR (NV_PA_CSITE_BASE + 0x16FB0)
#define FLOW_CTLR_HALT_COP_EVENTS (NV_PA_FLOW_BASE + 4)
#define FLOW_MODE_STOP 2
@ -95,6 +60,23 @@
#define HALT_COP_EVENT_IRQ_1 (1 << 11)
#define HALT_COP_EVENT_FIQ_1 (1 << 9)
void start_cpu(u32 reset_vector);
int ap20_cpu_is_cortexa9(void);
#define FLOW_MODE_NONE 0
#define SIMPLE_PLLX (CLOCK_ID_XCPU - CLOCK_ID_FIRST_SIMPLE)
struct clk_pll_table {
u16 n;
u16 m;
u8 p;
u8 cpcon;
};
void clock_enable_coresight(int enable);
void enable_cpu_clock(int enable);
void halt_avp(void) __attribute__ ((noreturn));
void init_pllx(void);
void powerup_cpu(void);
void reset_A9_cpu(int reset);
void start_cpu(u32 reset_vector);
int tegra_get_chip_type(void);
void adjust_pllp_out_freqs(void);

@ -23,7 +23,6 @@
* MA 02111-1307 USA
*/
#include <common.h>
#include "cpu.h"
#include <spl.h>
#include <asm/io.h>
@ -32,7 +31,7 @@
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/board.h>
#include <asm/arch/spl.h>
#include "cpu.h"
void spl_board_init(void)
{

@ -1,160 +1,25 @@
/*
* (C) Copyright 2010-2011
* NVIDIA Corporation <www.nvidia.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
* Copyright (c) 2010-2012, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/pinmux.h>
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra/pmc.h>
#include <asm/arch-tegra/scu.h>
#include "../tegra-common/cpu.h"
/* Returns 1 if the current CPU executing is a Cortex-A9, else 0 */
int ap20_cpu_is_cortexa9(void)
{
u32 id = readb(NV_PA_PG_UP_BASE + PG_UP_TAG_0);
return id == (PG_UP_TAG_0_PID_CPU & 0xff);
}
void init_pllx(void)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
struct clk_pll *pll = &clkrst->crc_pll[CLOCK_ID_XCPU];
u32 reg;
/* If PLLX is already enabled, just return */
if (readl(&pll->pll_base) & PLL_ENABLE_MASK)
return;
/* Set PLLX_MISC */
writel(1 << PLL_CPCON_SHIFT, &pll->pll_misc);
/* Use 12MHz clock here */
reg = PLL_BYPASS_MASK | (12 << PLL_DIVM_SHIFT);
reg |= 1000 << PLL_DIVN_SHIFT;
writel(reg, &pll->pll_base);
reg |= PLL_ENABLE_MASK;
writel(reg, &pll->pll_base);
reg &= ~PLL_BYPASS_MASK;
writel(reg, &pll->pll_base);
}
static void enable_cpu_clock(int enable)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 clk;
/*
* NOTE:
* Regardless of whether the request is to enable or disable the CPU
* clock, every processor in the CPU complex except the master (CPU 0)
* will have it's clock stopped because the AVP only talks to the
* master. The AVP does not know (nor does it need to know) that there
* are multiple processors in the CPU complex.
*/
if (enable) {
/* Initialize PLLX */
init_pllx();
/* Wait until all clocks are stable */
udelay(PLL_STABILIZATION_DELAY);
writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div);
}
/*
* Read the register containing the individual CPU clock enables and
* always stop the clock to CPU 1.
*/
clk = readl(&clkrst->crc_clk_cpu_cmplx);
clk |= 1 << CPU1_CLK_STP_SHIFT;
/* Stop/Unstop the CPU clock */
clk &= ~CPU0_CLK_STP_MASK;
clk |= !enable << CPU0_CLK_STP_SHIFT;
writel(clk, &clkrst->crc_clk_cpu_cmplx);
clock_enable(PERIPH_ID_CPU);
}
static int is_cpu_powered(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
return (readl(&pmc->pmc_pwrgate_status) & CPU_PWRED) ? 1 : 0;
}
static void remove_cpu_io_clamps(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
u32 reg;
/* Remove the clamps on the CPU I/O signals */
reg = readl(&pmc->pmc_remove_clamping);
reg |= CPU_CLMP;
writel(reg, &pmc->pmc_remove_clamping);
/* Give I/O signals time to stabilize */
udelay(IO_STABILIZATION_DELAY);
}
static void powerup_cpu(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
u32 reg;
int timeout = IO_STABILIZATION_DELAY;
if (!is_cpu_powered()) {
/* Toggle the CPU power state (OFF -> ON) */
reg = readl(&pmc->pmc_pwrgate_toggle);
reg &= PARTID_CP;
reg |= START_CP;
writel(reg, &pmc->pmc_pwrgate_toggle);
/* Wait for the power to come up */
while (!is_cpu_powered()) {
if (timeout-- == 0)
printf("CPU failed to power up!\n");
else
udelay(10);
}
/*
* Remove the I/O clamps from CPU power partition.
* Recommended only on a Warm boot, if the CPU partition gets
* power gated. Shouldn't cause any harm when called after a
* cold boot according to HW, probably just redundant.
*/
remove_cpu_io_clamps();
}
}
static void enable_cpu_power_rail(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
@ -173,49 +38,6 @@ static void enable_cpu_power_rail(void)
udelay(3750);
}
static void reset_A9_cpu(int reset)
{
/*
* NOTE: Regardless of whether the request is to hold the CPU in reset
* or take it out of reset, every processor in the CPU complex
* except the master (CPU 0) will be held in reset because the
* AVP only talks to the master. The AVP does not know that there
* are multiple processors in the CPU complex.
*/
/* Hold CPU 1 in reset, and CPU 0 if asked */
reset_cmplx_set_enable(1, crc_rst_cpu | crc_rst_de | crc_rst_debug, 1);
reset_cmplx_set_enable(0, crc_rst_cpu | crc_rst_de | crc_rst_debug,
reset);
/* Enable/Disable master CPU reset */
reset_set_enable(PERIPH_ID_CPU, reset);
}
static void clock_enable_coresight(int enable)
{
u32 rst, src;
clock_set_enable(PERIPH_ID_CORESIGHT, enable);
reset_set_enable(PERIPH_ID_CORESIGHT, !enable);
if (enable) {
/*
* Put CoreSight on PLLP_OUT0 (216 MHz) and divide it down by
* 1.5, giving an effective frequency of 144MHz.
* Set PLLP_OUT0 [bits31:30 = 00], and use a 7.1 divisor
* (bits 7:0), so 00000001b == 1.5 (n+1 + .5)
*/
src = CLK_DIVIDER(NVBL_PLLP_KHZ, 144000);
clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src);
/* Unlock the CPU CoreSight interfaces */
rst = 0xC5ACCE55;
writel(rst, CSITE_CPU_DBG0_LAR);
writel(rst, CSITE_CPU_DBG1_LAR);
}
}
void start_cpu(u32 reset_vector)
{
/* Enable VDD_CPU */
@ -246,13 +68,3 @@ void start_cpu(u32 reset_vector)
/* Take the CPU out of reset */
reset_A9_cpu(0);
}
void halt_avp(void)
{
for (;;) {
writel((HALT_COP_EVENT_JTAG | HALT_COP_EVENT_IRQ_1 \
| HALT_COP_EVENT_FIQ_1 | (FLOW_MODE_STOP<<29)),
FLOW_CTLR_HALT_COP_EVENTS);
}
}

@ -0,0 +1,41 @@
#
# Copyright (c) 2010-2012, NVIDIA CORPORATION. All rights reserved.
#
# (C) Copyright 2000-2008
# Wolfgang Denk, DENX Software Engineering, wd@denx.de.
#
# This program is free software; you can redistribute it and/or modify it
# under the terms and conditions of the GNU General Public License,
# version 2, as published by the Free Software Foundation.
#
# This program is distributed in the hope it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
include $(TOPDIR)/config.mk
LIB = $(obj)lib$(SOC).o
COBJS-y += cpu.o
SRCS := $(COBJS-y:.o=.c)
OBJS := $(addprefix $(obj),$(COBJS-y))
all: $(obj).depend $(LIB)
$(LIB): $(OBJS)
$(call cmd_link_o_target, $(OBJS))
#########################################################################
# defines $(obj).depend target
include $(SRCTREE)/rules.mk
sinclude $(obj).depend
#########################################################################

@ -0,0 +1,19 @@
#
# Copyright (c) 2010-2012, NVIDIA CORPORATION. All rights reserved.
#
# (C) Copyright 2002
# Gary Jennejohn, DENX Software Engineering, <garyj@denx.de>
#
# This program is free software; you can redistribute it and/or modify it
# under the terms and conditions of the GNU General Public License,
# version 2, as published by the Free Software Foundation.
#
# This program is distributed in the hope it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
USE_PRIVATE_LIBGCC = yes

@ -0,0 +1,176 @@
/*
* Copyright (c) 2010-2012, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/flow.h>
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra/pmc.h>
#include <asm/arch-tegra/tegra_i2c.h>
#include "../tegra-common/cpu.h"
/* Tegra30-specific CPU init code */
void tegra_i2c_ll_write_addr(uint addr, uint config)
{
struct i2c_ctlr *reg = (struct i2c_ctlr *)TEGRA_DVC_BASE;
writel(addr, &reg->cmd_addr0);
writel(config, &reg->cnfg);
}
void tegra_i2c_ll_write_data(uint data, uint config)
{
struct i2c_ctlr *reg = (struct i2c_ctlr *)TEGRA_DVC_BASE;
writel(data, &reg->cmd_data1);
writel(config, &reg->cnfg);
}
#define TPS65911_I2C_ADDR 0x5A
#define TPS65911_VDDCTRL_OP_REG 0x28
#define TPS65911_VDDCTRL_SR_REG 0x27
#define TPS65911_VDDCTRL_OP_DATA (0x2300 | TPS65911_VDDCTRL_OP_REG)
#define TPS65911_VDDCTRL_SR_DATA (0x0100 | TPS65911_VDDCTRL_SR_REG)
#define I2C_SEND_2_BYTES 0x0A02
static void enable_cpu_power_rail(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
u32 reg;
debug("enable_cpu_power_rail entry\n");
reg = readl(&pmc->pmc_cntrl);
reg |= CPUPWRREQ_OE;
writel(reg, &pmc->pmc_cntrl);
/*
* Bring up CPU VDD via the TPS65911x PMIC on the DVC I2C bus.
* First set VDD to 1.4V, then enable the VDD regulator.
*/
tegra_i2c_ll_write_addr(TPS65911_I2C_ADDR, 2);
tegra_i2c_ll_write_data(TPS65911_VDDCTRL_OP_DATA, I2C_SEND_2_BYTES);
udelay(1000);
tegra_i2c_ll_write_data(TPS65911_VDDCTRL_SR_DATA, I2C_SEND_2_BYTES);
udelay(10 * 1000);
}
/**
* The T30 requires some special clock initialization, including setting up
* the dvc i2c, turning on mselect and selecting the G CPU cluster
*/
void t30_init_clocks(void)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE;
u32 val;
debug("t30_init_clocks entry\n");
/* Set active CPU cluster to G */
clrbits_le32(flow->cluster_control, 1 << 0);
/*
* Switch system clock to PLLP_OUT4 (108 MHz), AVP will now run
* at 108 MHz. This is glitch free as only the source is changed, no
* special precaution needed.
*/
val = (SCLK_SOURCE_PLLP_OUT4 << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
(SCLK_SOURCE_PLLP_OUT4 << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
(SCLK_SOURCE_PLLP_OUT4 << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
(SCLK_SOURCE_PLLP_OUT4 << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
writel(val, &clkrst->crc_sclk_brst_pol);
writel(SUPER_SCLK_ENB_MASK, &clkrst->crc_super_sclk_div);
val = (0 << CLK_SYS_RATE_HCLK_DISABLE_SHIFT) |
(1 << CLK_SYS_RATE_AHB_RATE_SHIFT) |
(0 << CLK_SYS_RATE_PCLK_DISABLE_SHIFT) |
(0 << CLK_SYS_RATE_APB_RATE_SHIFT);
writel(val, &clkrst->crc_clk_sys_rate);
/* Put i2c, mselect in reset and enable clocks */
reset_set_enable(PERIPH_ID_DVC_I2C, 1);
clock_set_enable(PERIPH_ID_DVC_I2C, 1);
reset_set_enable(PERIPH_ID_MSELECT, 1);
clock_set_enable(PERIPH_ID_MSELECT, 1);
/* Switch MSELECT clock to PLLP (00) */
clock_ll_set_source(PERIPH_ID_MSELECT, 0);
/*
* Our high-level clock routines are not available prior to
* relocation. We use the low-level functions which require a
* hard-coded divisor. Use CLK_M with divide by (n + 1 = 17)
*/
clock_ll_set_source_divisor(PERIPH_ID_DVC_I2C, 3, 16);
/*
* Give clocks time to stabilize, then take i2c and mselect out of
* reset
*/
udelay(1000);
reset_set_enable(PERIPH_ID_DVC_I2C, 0);
reset_set_enable(PERIPH_ID_MSELECT, 0);
}
static void set_cpu_running(int run)
{
struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE;
debug("set_cpu_running entry, run = %d\n", run);
writel(run ? FLOW_MODE_NONE : FLOW_MODE_STOP, &flow->halt_cpu_events);
}
void start_cpu(u32 reset_vector)
{
debug("start_cpu entry, reset_vector = %x\n", reset_vector);
t30_init_clocks();
/* Enable VDD_CPU */
enable_cpu_power_rail();
set_cpu_running(0);
/* Hold the CPUs in reset */
reset_A9_cpu(1);
/* Disable the CPU clock */
enable_cpu_clock(0);
/* Enable CoreSight */
clock_enable_coresight(1);
/*
* Set the entry point for CPU execution from reset,
* if it's a non-zero value.
*/
if (reset_vector)
writel(reset_vector, EXCEP_VECTOR_CPU_RESET_VECTOR);
/* Enable the CPU clock */
enable_cpu_clock(1);
/* If the CPU doesn't already have power, power it up */
powerup_cpu();
/* Take the CPU out of reset */
reset_A9_cpu(0);
set_cpu_running(1);
}
Loading…
Cancel
Save