Merge git://git.denx.de/u-boot-spi

master
Tom Rini 6 years ago
commit 1d12a7c8cd
  1. 75
      arch/arm/dts/keystone-k2g-evm.dts
  2. 5
      arch/arm/dts/keystone-k2g.dtsi
  3. 5
      arch/arm/dts/socfpga.dtsi
  4. 4
      arch/arm/dts/socfpga_arria10.dtsi
  5. 9
      arch/arm/dts/socfpga_arria5_socdk.dts
  6. 9
      arch/arm/dts/socfpga_cyclone5_is1.dts
  7. 9
      arch/arm/dts/socfpga_cyclone5_socdk.dts
  8. 9
      arch/arm/dts/socfpga_cyclone5_sockit.dts
  9. 9
      arch/arm/dts/socfpga_cyclone5_socrates.dts
  10. 9
      arch/arm/dts/socfpga_cyclone5_sr1500.dts
  11. 18
      arch/arm/dts/socfpga_cyclone5_vining_fpga.dts
  12. 12
      arch/arm/dts/stv0991.dts
  13. 6
      arch/arm/include/asm/arch-mvebu/spi.h
  14. 22
      arch/arm/mach-imx/mx6/ddr.c
  15. 4
      arch/arm/mach-socfpga/clock_manager.c
  16. 9
      arch/arm/mach-socfpga/clock_manager_arria10.c
  17. 15
      arch/arm/mach-socfpga/clock_manager_gen5.c
  18. 36
      arch/arm/mach-socfpga/reset_manager_arria10.c
  19. 17
      arch/mips/dts/brcm,bcm3380.dtsi
  20. 38
      arch/mips/dts/brcm,bcm63268.dtsi
  21. 24
      arch/mips/dts/brcm,bcm6328.dtsi
  22. 17
      arch/mips/dts/brcm,bcm6338.dtsi
  23. 17
      arch/mips/dts/brcm,bcm6348.dtsi
  24. 17
      arch/mips/dts/brcm,bcm6358.dtsi
  25. 12
      arch/mips/dts/comtrend,ar-5387un.dts
  26. 12
      arch/mips/dts/netgear,cg3100d.dts
  27. 12
      arch/mips/dts/sagem,f@st1704.dts
  28. 2
      arch/mips/mach-ath79/ar934x/clk.c
  29. 4
      board/samtec/vining_2000/vining_2000.c
  30. 8
      configs/comtrend_ar5387un_ram_defconfig
  31. 8
      configs/netgear_cg3100d_ram_defconfig
  32. 8
      configs/sagem_f@st1704_ram_defconfig
  33. 24
      doc/device-tree-bindings/spi/soft-spi.txt
  34. 13
      doc/device-tree-bindings/spi/spi-cadence.txt
  35. 12
      drivers/clk/clk_pic32.c
  36. 4
      drivers/clk/renesas/clk-rcar-gen3.c
  37. 8
      drivers/ddr/microchip/ddr2.c
  38. 17
      drivers/fpga/socfpga_arria10.c
  39. 8
      drivers/mmc/msm_sdhci.c
  40. 4
      drivers/mtd/pic32_flash.c
  41. 34
      drivers/mtd/spi/sf_probe.c
  42. 5
      drivers/mtd/spi/spi_flash.c
  43. 16
      drivers/net/ag7xxx.c
  44. 17
      drivers/net/dwc_eth_qos.c
  45. 8
      drivers/net/ethoc.c
  46. 12
      drivers/net/pic32_eth.c
  47. 28
      drivers/net/pic32_mdio.c
  48. 4
      drivers/net/ravb.c
  49. 4
      drivers/net/xilinx_axi_emac.c
  50. 12
      drivers/net/zynq_gem.c
  51. 4
      drivers/reset/sti-reset.c
  52. 4
      drivers/serial/serial_pic32.c
  53. 16
      drivers/spi/Kconfig
  54. 2
      drivers/spi/Makefile
  55. 4
      drivers/spi/atmel_spi.c
  56. 414
      drivers/spi/bcm63xx_hsspi.c
  57. 433
      drivers/spi/bcm63xx_spi.c
  58. 20
      drivers/spi/cadence_qspi.c
  59. 6
      drivers/spi/cadence_qspi.h
  60. 82
      drivers/spi/cadence_qspi_apb.c
  61. 45
      drivers/spi/designware_spi.c
  62. 20
      drivers/spi/fsl_qspi.c
  63. 69
      drivers/spi/kirkwood_spi.c
  64. 20
      drivers/spi/mvebu_a3700_spi.c
  65. 21
      drivers/spi/spi-uclass.c
  66. 27
      drivers/spi/spi.c
  67. 24
      drivers/usb/host/dwc2.c
  68. 3
      drivers/usb/host/ehci-msm.c
  69. 5
      drivers/usb/host/ehci-mx6.c
  70. 12
      drivers/usb/host/ohci-lpc32xx.c
  71. 12
      drivers/usb/host/xhci-rcar.c
  72. 64
      drivers/video/atmel_hlcdfb.c
  73. 2
      include/configs/k2g_evm.h
  74. 2
      include/configs/socfpga_common.h
  75. 2
      include/configs/stv0991.h
  76. 32
      include/spi.h
  77. 12
      include/spi_flash.h
  78. 85
      include/wait_bit.h
  79. 2
      scripts/config_whitelist.txt

@ -68,46 +68,45 @@
&qspi {
status = "okay";
flash0: m25p80@0 {
compatible = "s25fl512s","spi-flash";
reg = <0>;
spi-tx-bus-width = <1>;
spi-rx-bus-width = <4>;
spi-max-frequency = <96000000>;
#address-cells = <1>;
#size-cells = <1>;
tshsl-ns = <392>;
tsd2d-ns = <392>;
tchsh-ns = <100>;
tslch-ns = <100>;
flash0: m25p80@0 {
compatible = "s25fl512s","spi-flash";
reg = <0>;
spi-tx-bus-width = <1>;
spi-rx-bus-width = <4>;
spi-max-frequency = <96000000>;
#address-cells = <1>;
#size-cells = <1>;
cdns,tshsl-ns = <392>;
cdns,tsd2d-ns = <392>;
cdns,tchsh-ns = <100>;
cdns,tslch-ns = <100>;
block-size = <18>;
partition@0 {
label = "QSPI.u-boot-spl-os";
reg = <0x00000000 0x00100000>;
};
partition@1 {
label = "QSPI.u-boot-env";
reg = <0x00100000 0x00040000>;
};
partition@2 {
label = "QSPI.skern";
reg = <0x00140000 0x0040000>;
};
partition@3 {
label = "QSPI.pmmc-firmware";
reg = <0x00180000 0x0040000>;
};
partition@4 {
label = "QSPI.kernel";
reg = <0x001C0000 0x0800000>;
};
partition@5 {
label = "QSPI.file-system";
reg = <0x009C0000 0x3640000>;
};
};
partition@0 {
label = "QSPI.u-boot-spl-os";
reg = <0x00000000 0x00100000>;
};
partition@1 {
label = "QSPI.u-boot-env";
reg = <0x00100000 0x00040000>;
};
partition@2 {
label = "QSPI.skern";
reg = <0x00140000 0x0040000>;
};
partition@3 {
label = "QSPI.pmmc-firmware";
reg = <0x00180000 0x0040000>;
};
partition@4 {
label = "QSPI.kernel";
reg = <0x001C0000 0x0800000>;
};
partition@5 {
label = "QSPI.file-system";
reg = <0x009C0000 0x3640000>;
};
};
};
&mmc0 {

@ -92,8 +92,9 @@
<0x24000000 0x4000000>;
interrupts = <GIC_SPI 198 IRQ_TYPE_EDGE_RISING>;
num-cs = <4>;
fifo-depth = <256>;
sram-size = <256>;
cdns,fifo-depth = <256>;
cdns,fifo-width = <4>;
cdns,trigger-address = <0x24000000>;
status = "disabled";
};

@ -644,8 +644,9 @@
clocks = <&qspi_clk>;
ext-decoder = <0>; /* external decoder */
num-cs = <4>;
fifo-depth = <128>;
sram-size = <128>;
cdns,fifo-depth = <128>;
cdns,fifo-width = <4>;
cdns,trigger-address = <0x00000000>;
bus-num = <2>;
status = "disabled";
};

@ -734,8 +734,8 @@
clocks = <&l4_main_clk>;
ext-decoder = <0>; /* external decoder */
num-chipselect = <4>;
fifo-depth = <128>;
sram-size = <512>;
cdns,fifo-depth = <128>;
cdns,fifo-width = <4>;
bus-num = <2>;
status = "disabled";
};

@ -94,10 +94,9 @@
m25p,fast-read;
page-size = <256>;
block-size = <16>; /* 2^16, 64KB */
read-delay = <4>; /* delay value in read data capture register */
tshsl-ns = <50>;
tsd2d-ns = <50>;
tchsh-ns = <4>;
tslch-ns = <4>;
cdns,tshsl-ns = <50>;
cdns,tsd2d-ns = <50>;
cdns,tchsh-ns = <4>;
cdns,tslch-ns = <4>;
};
};

@ -93,11 +93,10 @@
m25p,fast-read;
page-size = <256>;
block-size = <16>; /* 2^16, 64KB */
read-delay = <4>; /* delay value in read data capture register */
tshsl-ns = <50>;
tsd2d-ns = <50>;
tchsh-ns = <4>;
tslch-ns = <4>;
cdns,tshsl-ns = <50>;
cdns,tsd2d-ns = <50>;
cdns,tchsh-ns = <4>;
cdns,tslch-ns = <4>;
};
};

@ -104,11 +104,10 @@
m25p,fast-read;
page-size = <256>;
block-size = <16>; /* 2^16, 64KB */
read-delay = <4>; /* delay value in read data capture register */
tshsl-ns = <50>;
tsd2d-ns = <50>;
tchsh-ns = <4>;
tslch-ns = <4>;
cdns,tshsl-ns = <50>;
cdns,tsd2d-ns = <50>;
cdns,tchsh-ns = <4>;
cdns,tslch-ns = <4>;
};
};

@ -84,11 +84,10 @@
m25p,fast-read;
page-size = <256>;
block-size = <16>; /* 2^16, 64KB */
read-delay = <4>; /* delay value in read data capture register */
tshsl-ns = <50>;
tsd2d-ns = <50>;
tchsh-ns = <4>;
tslch-ns = <4>;
cdns,tshsl-ns = <50>;
cdns,tsd2d-ns = <50>;
cdns,tchsh-ns = <4>;
cdns,tslch-ns = <4>;
};
};

@ -74,11 +74,10 @@
m25p,fast-read;
page-size = <256>;
block-size = <16>; /* 2^16, 64KB */
read-delay = <4>; /* delay value in read data capture register */
tshsl-ns = <50>;
tsd2d-ns = <50>;
tchsh-ns = <4>;
tslch-ns = <4>;
cdns,tshsl-ns = <50>;
cdns,tsd2d-ns = <50>;
cdns,tchsh-ns = <4>;
cdns,tslch-ns = <4>;
};
};

@ -92,10 +92,9 @@
m25p,fast-read;
page-size = <256>;
block-size = <16>; /* 2^16, 64KB */
read-delay = <4>; /* delay value in read data capture register */
tshsl-ns = <50>;
tsd2d-ns = <50>;
tchsh-ns = <4>;
tslch-ns = <4>;
cdns,tshsl-ns = <50>;
cdns,tsd2d-ns = <50>;
cdns,tchsh-ns = <4>;
cdns,tslch-ns = <4>;
};
};

@ -79,11 +79,10 @@
m25p,fast-read;
page-size = <256>;
block-size = <16>; /* 2^16, 64KB */
read-delay = <4>; /* delay value in read data capture register */
tshsl-ns = <50>;
tsd2d-ns = <50>;
tchsh-ns = <4>;
tslch-ns = <4>;
cdns,tshsl-ns = <50>;
cdns,tsd2d-ns = <50>;
cdns,tchsh-ns = <4>;
cdns,tslch-ns = <4>;
};
flash1: n25q00@1 {
@ -96,11 +95,10 @@
m25p,fast-read;
page-size = <256>;
block-size = <16>; /* 2^16, 64KB */
read-delay = <4>; /* delay value in read data capture register */
tshsl-ns = <50>;
tsd2d-ns = <50>;
tchsh-ns = <4>;
tslch-ns = <4>;
cdns,tshsl-ns = <50>;
cdns,tsd2d-ns = <50>;
cdns,tchsh-ns = <4>;
cdns,tslch-ns = <4>;
};
};

@ -32,7 +32,9 @@
reg = <0x80203000 0x100>,
<0x40000000 0x1000000>;
clocks = <3750000>;
sram-size = <256>;
cdns,fifo-depth = <256>;
cdns,fifo-width = <4>;
cdns,trigger-address = <0x40000000>;
status = "okay";
flash0: n25q32@0 {
@ -44,10 +46,10 @@
m25p,fast-read;
page-size = <256>;
block-size = <16>; /* 2^16, 64KB */
tshsl-ns = <50>;
tsd2d-ns = <50>;
tchsh-ns = <4>;
tslch-ns = <4>;
cdns,tshsl-ns = <50>;
cdns,tsd2d-ns = <50>;
cdns,tchsh-ns = <4>;
cdns,tslch-ns = <4>;
};
};
};

@ -57,6 +57,12 @@ struct kwspi_registers {
#define KWSPI_TXLSBF (1 << 13)
#define KWSPI_RXLSBF (1 << 14)
/* Timing Parameters 1 Register */
#define KW_SPI_TMISO_SAMPLE_OFFSET 6
#define KW_SPI_TMISO_SAMPLE_MASK (0x3 << KW_SPI_TMISO_SAMPLE_OFFSET)
#define KW_SPI_TMISO_SAMPLE_1 (1 << KW_SPI_TMISO_SAMPLE_OFFSET)
#define KW_SPI_TMISO_SAMPLE_2 (2 << KW_SPI_TMISO_SAMPLE_OFFSET)
#define KWSPI_IRQUNMASK 1 /* unmask SPI interrupt */
#define KWSPI_IRQMASK 0 /* mask SPI interrupt */
#define KWSPI_SMEMRDIRQ 1 /* SerMem data xfer ready irq */

@ -21,10 +21,10 @@ static void reset_read_data_fifos(void)
/* Reset data FIFOs twice. */
setbits_le32(&mmdc0->mpdgctrl0, 1 << 31);
wait_for_bit("MMDC", &mmdc0->mpdgctrl0, 1 << 31, 0, 100, 0);
wait_for_bit_le32(&mmdc0->mpdgctrl0, 1 << 31, 0, 100, 0);
setbits_le32(&mmdc0->mpdgctrl0, 1 << 31);
wait_for_bit("MMDC", &mmdc0->mpdgctrl0, 1 << 31, 0, 100, 0);
wait_for_bit_le32(&mmdc0->mpdgctrl0, 1 << 31, 0, 100, 0);
}
static void precharge_all(const bool cs0_enable, const bool cs1_enable)
@ -39,12 +39,12 @@ static void precharge_all(const bool cs0_enable, const bool cs1_enable)
*/
if (cs0_enable) { /* CS0 */
writel(0x04008050, &mmdc0->mdscr);
wait_for_bit("MMDC", &mmdc0->mdscr, 1 << 14, 1, 100, 0);
wait_for_bit_le32(&mmdc0->mdscr, 1 << 14, 1, 100, 0);
}
if (cs1_enable) { /* CS1 */
writel(0x04008058, &mmdc0->mdscr);
wait_for_bit("MMDC", &mmdc0->mdscr, 1 << 14, 1, 100, 0);
wait_for_bit_le32(&mmdc0->mdscr, 1 << 14, 1, 100, 0);
}
}
@ -146,7 +146,7 @@ int mmdc_do_write_level_calibration(struct mx6_ddr_sysinfo const *sysinfo)
* 7. Upon completion of this process the MMDC de-asserts
* the MPWLGCR[HW_WL_EN]
*/
wait_for_bit("MMDC", &mmdc0->mpwlgcr, 1 << 0, 0, 100, 0);
wait_for_bit_le32(&mmdc0->mpwlgcr, 1 << 0, 0, 100, 0);
/*
* 8. check for any errors: check both PHYs for x64 configuration,
@ -278,7 +278,7 @@ int mmdc_do_dqs_calibration(struct mx6_ddr_sysinfo const *sysinfo)
writel(0x00008028, &mmdc0->mdscr);
/* poll to make sure the con_ack bit was asserted */
wait_for_bit("MMDC", &mmdc0->mdscr, 1 << 14, 1, 100, 0);
wait_for_bit_le32(&mmdc0->mdscr, 1 << 14, 1, 100, 0);
/*
* Check MDMISC register CALIB_PER_CS to see which CS calibration
@ -312,7 +312,7 @@ int mmdc_do_dqs_calibration(struct mx6_ddr_sysinfo const *sysinfo)
* this bit until it clears to indicate completion of the write access.
*/
setbits_le32(&mmdc0->mpswdar0, 1);
wait_for_bit("MMDC", &mmdc0->mpswdar0, 1 << 0, 0, 100, 0);
wait_for_bit_le32(&mmdc0->mpswdar0, 1 << 0, 0, 100, 0);
/* Set the RD_DL_ABS# bits to their default values
* (will be calibrated later in the read delay-line calibration).
@ -359,7 +359,7 @@ int mmdc_do_dqs_calibration(struct mx6_ddr_sysinfo const *sysinfo)
setbits_le32(&mmdc0->mpdgctrl0, 5 << 28);
/* Poll for completion. MPDGCTRL0[HW_DG_EN] should be 0 */
wait_for_bit("MMDC", &mmdc0->mpdgctrl0, 1 << 28, 0, 100, 0);
wait_for_bit_le32(&mmdc0->mpdgctrl0, 1 << 28, 0, 100, 0);
/*
* Check to see if any errors were encountered during calibration
@ -423,7 +423,7 @@ int mmdc_do_dqs_calibration(struct mx6_ddr_sysinfo const *sysinfo)
* setting MPRDDLHWCTL[HW_RD_DL_EN] = 0. Also, ensure that
* no error bits were set.
*/
wait_for_bit("MMDC", &mmdc0->mprddlhwctl, 1 << 4, 0, 100, 0);
wait_for_bit_le32(&mmdc0->mprddlhwctl, 1 << 4, 0, 100, 0);
/* check both PHYs for x64 configuration, if x32, check only PHY0 */
if (readl(&mmdc0->mprddlhwctl) & 0x0000000f)
@ -477,7 +477,7 @@ int mmdc_do_dqs_calibration(struct mx6_ddr_sysinfo const *sysinfo)
* by setting MPWRDLHWCTL[HW_WR_DL_EN] = 0.
* Also, ensure that no error bits were set.
*/
wait_for_bit("MMDC", &mmdc0->mpwrdlhwctl, 1 << 4, 0, 100, 0);
wait_for_bit_le32(&mmdc0->mpwrdlhwctl, 1 << 4, 0, 100, 0);
/* Check both PHYs for x64 configuration, if x32, check only PHY0 */
if (readl(&mmdc0->mpwrdlhwctl) & 0x0000000f)
@ -526,7 +526,7 @@ int mmdc_do_dqs_calibration(struct mx6_ddr_sysinfo const *sysinfo)
writel(0x0, &mmdc0->mdscr); /* CS0 */
/* Poll to make sure the con_ack bit is clear */
wait_for_bit("MMDC", &mmdc0->mdscr, 1 << 14, 0, 100, 0);
wait_for_bit_le32(&mmdc0->mdscr, 1 << 14, 0, 100, 0);
/*
* Print out the registers that were updated as a result

@ -37,8 +37,8 @@ void cm_wait_for_lock(u32 mask)
/* function to poll in the fsm busy bit */
int cm_wait_for_fsm(void)
{
return wait_for_bit(__func__, (const u32 *)&clock_manager_base->stat,
CLKMGR_STAT_BUSY, false, 20000, false);
return wait_for_bit_le32(&clock_manager_base->stat,
CLKMGR_STAT_BUSY, false, 20000, false);
}
int set_cpu_clk_info(void)

@ -7,6 +7,7 @@
#include <common.h>
#include <fdtdec.h>
#include <asm/io.h>
#include <dm.h>
#include <asm/arch/clock_manager.h>
DECLARE_GLOBAL_DATA_PTR;
@ -1076,6 +1077,14 @@ unsigned int cm_get_qspi_controller_clk_hz(void)
return cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MAINCLK_LSB);
}
/* Override weak dw_spi_get_clk implementation in designware_spi.c driver */
int dw_spi_get_clk(struct udevice *bus, ulong *rate)
{
*rate = cm_get_spi_controller_clk_hz();
return 0;
}
void cm_print_clock_quick_summary(void)
{
printf("MPU %10ld kHz\n", cm_get_mpu_clk_hz() / 1000);

@ -6,6 +6,7 @@
#include <common.h>
#include <asm/io.h>
#include <dm.h>
#include <asm/arch/clock_manager.h>
#include <wait_bit.h>
@ -37,15 +38,13 @@ static int cm_write_with_phase(u32 value, u32 reg_address, u32 mask)
int ret;
/* poll until phase is zero */
ret = wait_for_bit(__func__, (const u32 *)reg_address, mask,
false, 20000, false);
ret = wait_for_bit_le32(reg_address, mask, false, 20000, false);
if (ret)
return ret;
writel(value, reg_address);
return wait_for_bit(__func__, (const u32 *)reg_address, mask,
false, 20000, false);
return wait_for_bit_le32(reg_address, mask, false, 20000, false);
}
/*
@ -509,6 +508,14 @@ unsigned int cm_get_spi_controller_clk_hz(void)
return clock;
}
/* Override weak dw_spi_get_clk implementation in designware_spi.c driver */
int dw_spi_get_clk(struct udevice *bus, ulong *rate)
{
*rate = cm_get_spi_controller_clk_hz();
return 0;
}
void cm_print_clock_quick_summary(void)
{
printf("MPU %10ld kHz\n", cm_get_mpu_clk_hz() / 1000);

@ -222,8 +222,8 @@ int socfpga_reset_deassert_bridges_handoff(void)
clrbits_le32(&reset_manager_base->brgmodrst, mask_rstmgr);
/* Poll until all idleack to 0, timeout at 1000ms */
return wait_for_bit(__func__, &sysmgr_regs->noc_idleack, mask_noc,
false, 1000, false);
return wait_for_bit_le32(&sysmgr_regs->noc_idleack, mask_noc,
false, 1000, false);
}
void socfpga_reset_assert_fpga_connected_peripherals(void)
@ -343,26 +343,26 @@ int socfpga_bridges_reset(void)
writel(ALT_SYSMGR_NOC_TMO_EN_SET_MSK, &sysmgr_regs->noc_timeout);
/* Poll until all idleack to 1 */
ret = wait_for_bit(__func__, &sysmgr_regs->noc_idleack,
ALT_SYSMGR_NOC_H2F_SET_MSK |
ALT_SYSMGR_NOC_LWH2F_SET_MSK |
ALT_SYSMGR_NOC_F2H_SET_MSK |
ALT_SYSMGR_NOC_F2SDR0_SET_MSK |
ALT_SYSMGR_NOC_F2SDR1_SET_MSK |
ALT_SYSMGR_NOC_F2SDR2_SET_MSK,
true, 10000, false);
ret = wait_for_bit_le32(&sysmgr_regs->noc_idleack,
ALT_SYSMGR_NOC_H2F_SET_MSK |
ALT_SYSMGR_NOC_LWH2F_SET_MSK |
ALT_SYSMGR_NOC_F2H_SET_MSK |
ALT_SYSMGR_NOC_F2SDR0_SET_MSK |
ALT_SYSMGR_NOC_F2SDR1_SET_MSK |
ALT_SYSMGR_NOC_F2SDR2_SET_MSK,
true, 10000, false);
if (ret)
return ret;
/* Poll until all idlestatus to 1 */
ret = wait_for_bit(__func__, &sysmgr_regs->noc_idlestatus,
ALT_SYSMGR_NOC_H2F_SET_MSK |
ALT_SYSMGR_NOC_LWH2F_SET_MSK |
ALT_SYSMGR_NOC_F2H_SET_MSK |
ALT_SYSMGR_NOC_F2SDR0_SET_MSK |
ALT_SYSMGR_NOC_F2SDR1_SET_MSK |
ALT_SYSMGR_NOC_F2SDR2_SET_MSK,
true, 10000, false);
ret = wait_for_bit_le32(&sysmgr_regs->noc_idlestatus,
ALT_SYSMGR_NOC_H2F_SET_MSK |
ALT_SYSMGR_NOC_LWH2F_SET_MSK |
ALT_SYSMGR_NOC_F2H_SET_MSK |
ALT_SYSMGR_NOC_F2SDR0_SET_MSK |
ALT_SYSMGR_NOC_F2SDR1_SET_MSK |
ALT_SYSMGR_NOC_F2SDR2_SET_MSK,
true, 10000, false);
if (ret)
return ret;

@ -12,6 +12,10 @@
/ {
compatible = "brcm,bcm3380";
aliases {
spi0 = &spi;
};
cpus {
reg = <0x14e00000 0x4>;
#address-cells = <1>;
@ -142,6 +146,19 @@
status = "disabled";
};
spi: spi@14e02000 {
compatible = "brcm,bcm6358-spi";
reg = <0x14e02000 0x70c>;
#address-cells = <1>;
#size-cells = <0>;
clocks = <&periph_clk0 BCM3380_CLK0_SPI>;
resets = <&periph_rst0 BCM3380_RST0_SPI>;
spi-max-frequency = <25000000>;
num-cs = <6>;
status = "disabled";
};
leds: led-controller@14e00f00 {
compatible = "brcm,bcm6328-leds";
reg = <0x14e00f00 0x1c>;

@ -13,6 +13,11 @@
/ {
compatible = "brcm,bcm63268";
aliases {
spi0 = &lsspi;
spi1 = &hsspi;
};
cpus {
reg = <0x10000000 0x4>;
#address-cells = <1>;
@ -40,6 +45,12 @@
#size-cells = <1>;
u-boot,dm-pre-reloc;
hsspi_pll: hsspi-pll {
compatible = "fixed-clock";
#clock-cells = <0>;
clock-frequency = <400000000>;
};
periph_osc: periph-osc {
compatible = "fixed-clock";
#clock-cells = <0>;
@ -136,6 +147,33 @@
#power-domain-cells = <1>;
};
lsspi: spi@10000800 {
compatible = "brcm,bcm6358-spi";
reg = <0x10000800 0x70c>;
#address-cells = <1>;
#size-cells = <0>;
clocks = <&periph_clk BCM63268_CLK_SPI>;
resets = <&periph_rst BCM63268_RST_SPI>;
spi-max-frequency = <20000000>;
num-cs = <8>;
status = "disabled";
};
hsspi: spi@10001000 {
compatible = "brcm,bcm6328-hsspi";
#address-cells = <1>;
#size-cells = <0>;
reg = <0x10001000 0x600>;
clocks = <&periph_clk BCM63268_CLK_HSSPI>, <&hsspi_pll>;
clock-names = "hsspi", "pll";
resets = <&periph_rst BCM63268_RST_SPI>;
spi-max-frequency = <50000000>;
num-cs = <8>;
status = "disabled";
};
leds: led-controller@10001900 {
compatible = "brcm,bcm6328-leds";
reg = <0x10001900 0x24>;

@ -13,6 +13,10 @@
/ {
compatible = "brcm,bcm6328";
aliases {
spi0 = &spi;
};
cpus {
reg = <0x10000000 0x4>;
#address-cells = <1>;
@ -40,6 +44,12 @@
#size-cells = <1>;
u-boot,dm-pre-reloc;
hsspi_pll: hsspi-pll {
compatible = "fixed-clock";
#clock-cells = <0>;
clock-frequency = <133333333>;
};
periph_osc: periph-osc {
compatible = "fixed-clock";
#clock-cells = <0>;
@ -123,6 +133,20 @@
status = "disabled";
};
spi: spi@10001000 {
compatible = "brcm,bcm6328-hsspi";
#address-cells = <1>;
#size-cells = <0>;
reg = <0x10001000 0x600>;
clocks = <&periph_clk BCM6328_CLK_HSSPI>, <&hsspi_pll>;
clock-names = "hsspi", "pll";
resets = <&periph_rst BCM6328_RST_SPI>;
spi-max-frequency = <33333334>;
num-cs = <3>;
status = "disabled";
};
periph_pwr: power-controller@10001848 {
compatible = "brcm,bcm6328-power-domain";
reg = <0x10001848 0x4>;

@ -12,6 +12,10 @@
/ {
compatible = "brcm,bcm6338";
aliases {
spi0 = &spi;
};
cpus {
reg = <0xfffe0000 0x4>;
#address-cells = <1>;
@ -109,6 +113,19 @@
status = "disabled";
};
spi: spi@fffe0c00 {
compatible = "brcm,bcm6348-spi";
reg = <0xfffe0c00 0xc0>;
#address-cells = <1>;
#size-cells = <0>;
clocks = <&periph_clk BCM6338_CLK_SPI>;
resets = <&periph_rst BCM6338_RST_SPI>;
spi-max-frequency = <20000000>;
num-cs = <4>;
status = "disabled";
};
memory-controller@fffe3100 {
compatible = "brcm,bcm6338-mc";
reg = <0xfffe3100 0x38>;

@ -12,6 +12,10 @@
/ {
compatible = "brcm,bcm6348";
aliases {
spi0 = &spi;
};
cpus {
reg = <0xfffe0000 0x4>;
#address-cells = <1>;
@ -118,6 +122,19 @@
status = "disabled";
};
spi: spi@fffe0c00 {
compatible = "brcm,bcm6348-spi";
reg = <0xfffe0c00 0xc0>;
#address-cells = <1>;
#size-cells = <0>;
clocks = <&periph_clk BCM6348_CLK_SPI>;
resets = <&periph_rst BCM6348_RST_SPI>;
spi-max-frequency = <20000000>;
num-cs = <4>;
status = "disabled";
};
memory-controller@fffe2300 {
compatible = "brcm,bcm6338-mc";
reg = <0xfffe2300 0x38>;

@ -12,6 +12,10 @@
/ {
compatible = "brcm,bcm6358";
aliases {
spi0 = &spi;
};
cpus {
reg = <0xfffe0000 0x4>;
#address-cells = <1>;
@ -142,6 +146,19 @@
status = "disabled";
};
spi: spi@fffe0800 {
compatible = "brcm,bcm6358-spi";
reg = <0xfffe0800 0x70c>;
#address-cells = <1>;
#size-cells = <0>;
clocks = <&periph_clk BCM6358_CLK_SPI>;
resets = <&periph_rst BCM6358_RST_SPI>;
spi-max-frequency = <20000000>;
num-cs = <4>;
status = "disabled";
};
memory-controller@fffe1200 {
compatible = "brcm,bcm6358-mc";
reg = <0xfffe1200 0x4c>;

@ -51,6 +51,18 @@
};
};
&spi {
status = "okay";
spi-flash@0 {
compatible = "spi-flash";
reg = <0>;
#address-cells = <1>;
#size-cells = <1>;
spi-max-frequency = <33333334>;
};
};
&uart0 {
u-boot,dm-pre-reloc;
status = "okay";

@ -90,6 +90,18 @@
status = "okay";
};
&spi {
status = "okay";
spi-flash@0 {
compatible = "spi-flash";
reg = <0>;
#address-cells = <1>;
#size-cells = <1>;
spi-max-frequency = <25000000>;
};
};
&uart0 {
u-boot,dm-pre-reloc;
status = "okay";

@ -44,6 +44,18 @@
status = "okay";
};
&spi {
status = "okay";
spi-flash@0 {
compatible = "spi-flash";
reg = <0>;
#address-cells = <1>;
#size-cells = <1>;
spi-max-frequency = <20000000>;
};
};
&uart0 {
u-boot,dm-pre-reloc;
status = "okay";

@ -90,7 +90,7 @@ static void ar934x_srif_pll_cfg(void __iomem *pll_reg_base, const u32 srif_val)
setbits_be32(pll_reg_base + 0x8, BIT(30));
udelay(5);
wait_for_bit("clk", pll_reg_base + 0xc, BIT(3), 1, 10, 0);
wait_for_bit_le32(pll_reg_base + 0xc, BIT(3), 1, 10, 0);
clrbits_be32(pll_reg_base + 0x8, BIT(30));
udelay(5);

@ -378,7 +378,7 @@ static int read_adc(u32 *val)
/* start auto calibration */
setbits_le32(b + ADCx_GC, ADCx_GC_CAL);
ret = wait_for_bit("ADC", b + ADCx_GC, ADCx_GC_CAL, ADCx_GC_CAL, 10, 0);
ret = wait_for_bit_le32(b + ADCx_GC, ADCx_GC_CAL, ADCx_GC_CAL, 10, 0);
if (ret)
goto adc_exit;
@ -386,7 +386,7 @@ static int read_adc(u32 *val)
writel(0, b + ADCx_HC0);
/* wait for conversion */
ret = wait_for_bit("ADC", b + ADCx_HS, ADCx_HS_C0, ADCx_HS_C0, 10, 0);
ret = wait_for_bit_le32(b + ADCx_HS, ADCx_HS_C0, ADCx_HS_C0, 10, 0);
if (ret)
goto adc_exit;

@ -26,6 +26,8 @@ CONFIG_CMD_MEMINFO=y
# CONFIG_CMD_FLASH is not set
# CONFIG_CMD_FPGA is not set
# CONFIG_CMD_LOADS is not set
CONFIG_CMD_SF=y
CONFIG_CMD_SPI=y
# CONFIG_CMD_NET is not set
# CONFIG_CMD_NFS is not set
# CONFIG_CMD_MISC is not set
@ -34,6 +36,10 @@ CONFIG_DM_GPIO=y
CONFIG_LED=y
CONFIG_LED_BCM6328=y
CONFIG_LED_BLINK=y
CONFIG_DM_SPI_FLASH=y
CONFIG_SPI_FLASH=y
CONFIG_SPI_FLASH_MACRONIX=y
CONFIG_SPI_FLASH_MTD=y
CONFIG_POWER_DOMAIN=y
CONFIG_BCM6328_POWER_DOMAIN=y
CONFIG_DM_RESET=y
@ -41,3 +47,5 @@ CONFIG_RESET_BCM6345=y
# CONFIG_SPL_SERIAL_PRESENT is not set
CONFIG_DM_SERIAL=y
CONFIG_BCM6345_SERIAL=y
CONFIG_DM_SPI=y
CONFIG_BCM63XX_HSSPI=y

@ -25,6 +25,8 @@ CONFIG_CMD_MEMINFO=y
# CONFIG_CMD_FLASH is not set
# CONFIG_CMD_FPGA is not set
# CONFIG_CMD_LOADS is not set
CONFIG_CMD_SF=y
CONFIG_CMD_SPI=y
# CONFIG_CMD_NET is not set
# CONFIG_CMD_NFS is not set
# CONFIG_CMD_MISC is not set
@ -35,9 +37,15 @@ CONFIG_LED=y
CONFIG_LED_BCM6328=y
CONFIG_LED_BLINK=y
CONFIG_LED_GPIO=y
CONFIG_DM_SPI_FLASH=y
CONFIG_SPI_FLASH=y
CONFIG_SPI_FLASH_SPANSION=y
CONFIG_SPI_FLASH_MTD=y
CONFIG_DM_RESET=y
CONFIG_RESET_BCM6345=y
# CONFIG_SPL_SERIAL_PRESENT is not set
CONFIG_DM_SERIAL=y
CONFIG_BCM6345_SERIAL=y
CONFIG_DM_SPI=y
CONFIG_BCM63XX_SPI=y
CONFIG_WDT_BCM6345=y

@ -26,6 +26,8 @@ CONFIG_CMD_MEMINFO=y
# CONFIG_CMD_FLASH is not set
# CONFIG_CMD_FPGA is not set
# CONFIG_CMD_LOADS is not set
CONFIG_CMD_SF=y
CONFIG_CMD_SPI=y
# CONFIG_CMD_NET is not set
# CONFIG_CMD_NFS is not set
# CONFIG_CMD_MISC is not set
@ -34,8 +36,14 @@ CONFIG_DM_GPIO=y
CONFIG_BCM6345_GPIO=y
CONFIG_LED=y
CONFIG_LED_GPIO=y
CONFIG_DM_SPI_FLASH=y
CONFIG_SPI_FLASH=y
CONFIG_SPI_FLASH_WINBOND=y
CONFIG_SPI_FLASH_MTD=y
CONFIG_DM_RESET=y
CONFIG_RESET_BCM6345=y
# CONFIG_SPL_SERIAL_PRESENT is not set
CONFIG_DM_SERIAL=y
CONFIG_BCM6345_SERIAL=y
CONFIG_DM_SPI=y
CONFIG_BCM63XX_SPI=y

@ -6,11 +6,15 @@ performance will typically be much lower than a real SPI bus.
The soft SPI node requires the following properties:
compatible: "u-boot,soft-spi"
soft_spi_cs: GPIO number to use for SPI chip select (output)
soft_spi_sclk: GPIO number to use for SPI clock (output)
soft_spi_mosi: GPIO number to use for SPI MOSI line (output)
soft_spi_miso GPIO number to use for SPI MISO line (input)
Mandatory properties:
compatible: "spi-gpio"
cs-gpios: GPIOs to use for SPI chip select (output)
gpio-sck: GPIO to use for SPI clock (output)
And at least one of:
gpio-mosi: GPIO to use for SPI MOSI line (output)
gpio-miso: GPIO to use for SPI MISO line (input)
Optional propertie:
spi-delay-us: Number of microseconds of delay between each CS transition
The GPIOs should be specified as required by the GPIO controller referenced.
@ -21,11 +25,11 @@ typically holds the GPIO number.
Example:
soft-spi {
compatible = "u-boot,soft-spi";
cs-gpio = <&gpio 235 0>; /* Y43 */
sclk-gpio = <&gpio 225 0>; /* Y31 */
mosi-gpio = <&gpio 227 0>; /* Y33 */
miso-gpio = <&gpio 224 0>; /* Y30 */
compatible = "spi-gpio";
cs-gpios = <&gpio 235 0>; /* Y43 */
gpio-sck = <&gpio 225 0>; /* Y31 */
gpio-mosi = <&gpio 227 0>; /* Y33 */
gpio-miso = <&gpio 224 0>; /* Y30 */
spi-delay-us = <1>;
#address-cells = <1>;
#size-cells = <0>;

@ -6,7 +6,10 @@ Required properties:
- reg : 1.Physical base address and size of SPI registers map.
2. Physical base address & size of NOR Flash.
- clocks : Clock phandles (see clock bindings for details).
- sram-size : spi controller sram size.
- cdns,fifo-depth : Size of the data FIFO in words.
- cdns,fifo-width : Bus width of the data FIFO in bytes.
- cdns,trigger-address : 32-bit indirect AHB trigger address.
- cdns,is-decoded-cs : Flag to indicate whether decoder is used or not.
- status : enable in requried dts.
connected flash properties
@ -15,14 +18,14 @@ connected flash properties
- spi-max-frequency : Max supported spi frequency.
- page-size : Flash page size.
- block-size : Flash memory block size.
- tshsl-ns : Added delay in master reference clocks (ref_clk) for
- cdns,tshsl-ns : Added delay in master reference clocks (ref_clk) for
the length that the master mode chip select outputs
are de-asserted between transactions.
- tsd2d-ns : Delay in master reference clocks (ref_clk) between one
- cdns,tsd2d-ns : Delay in master reference clocks (ref_clk) between one
chip select being de-activated and the activation of
another.
- tchsh-ns : Delay in master reference clocks between last bit of
- cdns,tchsh-ns : Delay in master reference clocks between last bit of
current transaction and de-asserting the device chip
select (n_ss_out).
- tslch-ns : Delay in master reference clocks between setting
- cdns,tslch-ns : Delay in master reference clocks between setting
n_ss_out low and first bit transfer

@ -197,8 +197,8 @@ static ulong pic32_set_refclk(struct pic32_clk_priv *priv, int periph,
writel(REFO_ON | REFO_OE, reg + _CLR_OFFSET);
/* wait till previous src change is active */
wait_for_bit(__func__, reg, REFO_DIVSW_EN | REFO_ACTIVE,
false, CONFIG_SYS_HZ, false);
wait_for_bit_le32(reg, REFO_DIVSW_EN | REFO_ACTIVE,
false, CONFIG_SYS_HZ, false);
/* parent_id */
v = readl(reg);
@ -223,8 +223,8 @@ static ulong pic32_set_refclk(struct pic32_clk_priv *priv, int periph,
writel(REFO_DIVSW_EN, reg + _SET_OFFSET);
/* wait for divider switching to complete */
return wait_for_bit(__func__, reg, REFO_DIVSW_EN, false,
CONFIG_SYS_HZ, false);
return wait_for_bit_le32(reg, REFO_DIVSW_EN, false,
CONFIG_SYS_HZ, false);
}
static ulong pic32_get_refclk(struct pic32_clk_priv *priv, int periph)
@ -311,8 +311,8 @@ static int pic32_mpll_init(struct pic32_clk_priv *priv)
/* Wait for ready */
mask = MPLL_RDY | MPLL_VREG_RDY;
return wait_for_bit(__func__, priv->syscfg_base + CFGMPLL, mask,
true, get_tbclk(), false);
return wait_for_bit_le32(priv->syscfg_base + CFGMPLL, mask,
true, get_tbclk(), false);
}
static void pic32_clk_init(struct udevice *dev)

@ -1046,8 +1046,8 @@ static int gen3_clk_endisable(struct clk *clk, bool enable)
if (ret)
return ret;
clrbits_le32(priv->base + SMSTPCR(reg), bitmask);
return wait_for_bit("MSTP", priv->base + MSTPSR(reg),
bitmask, 0, 100, 0);
return wait_for_bit_le32(priv->base + MSTPSR(reg),
bitmask, 0, 100, 0);
} else {
setbits_le32(priv->base + SMSTPCR(reg), bitmask);
return 0;

@ -57,8 +57,8 @@ static int ddr2_phy_calib_start(void)
writel(SCL_START | SCL_EN, &ddr2_phy->scl_start);
/* Wait for SCL for data byte to pass */
return wait_for_bit(__func__, &ddr2_phy->scl_start, SCL_LUBPASS,
true, CONFIG_SYS_HZ, false);
return wait_for_bit_le32(&ddr2_phy->scl_start, SCL_LUBPASS,
true, CONFIG_SYS_HZ, false);
}
/* DDR2 Controller initialization */
@ -256,8 +256,8 @@ void ddr2_ctrl_init(void)
writel(INIT_START, &ctrl->memcon);
/* wait for all host cmds to be transmitted */
wait_for_bit(__func__, &ctrl->cmdissue, CMD_VALID, false,
CONFIG_SYS_HZ, false);
wait_for_bit_le32(&ctrl->cmdissue, CMD_VALID, false,
CONFIG_SYS_HZ, false);
/* inform all cmds issued, ready for normal operation */
writel(INIT_START | INIT_DONE, &ctrl->memcon);

@ -62,8 +62,7 @@ int is_fpgamgr_user_mode(void)
static int wait_for_user_mode(void)
{
return wait_for_bit(__func__,
&fpga_manager_base->imgcfg_stat,
return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat,
ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK,
1, FPGA_TIMEOUT_MSEC, false);
}
@ -115,19 +114,17 @@ static int wait_for_nconfig_pin_and_nstatus_pin(void)
/* Poll until f2s_nconfig_pin and f2s_nstatus_pin; loop until de-asserted,
* timeout at 1000ms
*/
return wait_for_bit(__func__,
&fpga_manager_base->imgcfg_stat,
mask,
false, FPGA_TIMEOUT_MSEC, false);
return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat,
mask,
false, FPGA_TIMEOUT_MSEC, false);
}
static int wait_for_f2s_nstatus_pin(unsigned long value)
{
/* Poll until f2s to specific value, timeout at 1000ms */
return wait_for_bit(__func__,
&fpga_manager_base->imgcfg_stat,
ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK,
value, FPGA_TIMEOUT_MSEC, false);
return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat,
ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK,
value, FPGA_TIMEOUT_MSEC, false);
}
/* set CD ratio */

@ -109,15 +109,15 @@ static int msm_sdc_probe(struct udevice *dev)
/* Wait for reset to be written to register */
if (wait_for_bit(__func__, prv->base + SDCC_MCI_STATUS2,
SDCC_MCI_STATUS2_MCI_ACT, false, 10, false)) {
if (wait_for_bit_le32(prv->base + SDCC_MCI_STATUS2,
SDCC_MCI_STATUS2_MCI_ACT, false, 10, false)) {
printf("msm_sdhci: reset request failed\n");
return -EIO;
}
/* SW reset can take upto 10HCLK + 15MCLK cycles. (min 40us) */
if (wait_for_bit(__func__, prv->base + SDCC_MCI_POWER,
SDCC_MCI_POWER_SW_RST, false, 2, false)) {
if (wait_for_bit_le32(prv->base + SDCC_MCI_POWER,
SDCC_MCI_POWER_SW_RST, false, 2, false)) {
printf("msm_sdhci: stuck in reset\n");
return -ETIMEDOUT;
}

@ -66,8 +66,8 @@ static inline void flash_initiate_operation(u32 nvmop)
static int flash_wait_till_busy(const char *func, ulong timeout)
{
int ret = wait_for_bit(__func__, &nvm_regs_p->ctrl.raw,
NVM_WR, false, timeout, false);
int ret = wait_for_bit_le32(&nvm_regs_p->ctrl.raw,
NVM_WR, false, timeout, false);
return ret ? ERR_TIMOUT : ERR_OK;
}

@ -55,10 +55,16 @@ err_read_id:
}
#ifndef CONFIG_DM_SPI_FLASH
static struct spi_flash *spi_flash_probe_tail(struct spi_slave *bus)
struct spi_flash *spi_flash_probe(unsigned int busnum, unsigned int cs,
unsigned int max_hz, unsigned int spi_mode)
{
struct spi_slave *bus;
struct spi_flash *flash;
bus = spi_setup_slave(busnum, cs, max_hz, spi_mode);
if (!bus)
return NULL;
/* Allocate space if needed (not used by sf-uclass */
flash = calloc(1, sizeof(*flash));
if (!flash) {
@ -76,30 +82,6 @@ static struct spi_flash *spi_flash_probe_tail(struct spi_slave *bus)
return flash;
}
struct spi_flash *spi_flash_probe(unsigned int busnum, unsigned int cs,
unsigned int max_hz, unsigned int spi_mode)
{
struct spi_slave *bus;
bus = spi_setup_slave(busnum, cs, max_hz, spi_mode);
if (!bus)
return NULL;
return spi_flash_probe_tail(bus);
}
#ifdef CONFIG_OF_SPI_FLASH
struct spi_flash *spi_flash_probe_fdt(const void *blob, int slave_node,
int spi_node)
{
struct spi_slave *bus;
bus = spi_setup_slave_fdt(blob, slave_node, spi_node);
if (!bus)
return NULL;
return spi_flash_probe_tail(bus);
}
#endif
void spi_flash_free(struct spi_flash *flash)
{
#ifdef CONFIG_SPI_FLASH_MTD
@ -120,7 +102,7 @@ static int spi_flash_std_read(struct udevice *dev, u32 offset, size_t len,
}
static int spi_flash_std_write(struct udevice *dev, u32 offset, size_t len,
const void *buf)
const void *buf)
{
struct spi_flash *flash = dev_get_uclass_priv(dev);

@ -405,7 +405,7 @@ int spi_flash_cmd_write_ops(struct spi_flash *flash, u32 offset,
if (spi->max_write_size)
chunk_len = min(chunk_len,
(size_t)spi->max_write_size);
spi->max_write_size - sizeof(cmd));
spi_flash_addr(write_addr, cmd);
@ -516,6 +516,9 @@ int spi_flash_cmd_read_ops(struct spi_flash *flash, u32 offset,
else
read_len = remain_len;
if (spi->max_read_size)
read_len = min(read_len, spi->max_read_size);
spi_flash_addr(read_addr, cmd);
ret = spi_flash_read_common(flash, cmd, cmdsz, data, read_len);

@ -164,8 +164,8 @@ static int ag7xxx_switch_read(struct mii_dev *bus, int addr, int reg, u16 *val)
writel(AG7XXX_ETH_MII_MGMT_CMD_READ,
regs + AG7XXX_ETH_MII_MGMT_CMD);
ret = wait_for_bit("ag7xxx", regs + AG7XXX_ETH_MII_MGMT_IND,
AG7XXX_ETH_MII_MGMT_IND_BUSY, 0, 1000, 0);
ret = wait_for_bit_le32(regs + AG7XXX_ETH_MII_MGMT_IND,
AG7XXX_ETH_MII_MGMT_IND_BUSY, 0, 1000, 0);
if (ret)
return ret;
@ -185,8 +185,8 @@ static int ag7xxx_switch_write(struct mii_dev *bus, int addr, int reg, u16 val)
regs + AG7XXX_ETH_MII_MGMT_ADDRESS);
writel(val, regs + AG7XXX_ETH_MII_MGMT_CTRL);
ret = wait_for_bit("ag7xxx", regs + AG7XXX_ETH_MII_MGMT_IND,
AG7XXX_ETH_MII_MGMT_IND_BUSY, 0, 1000, 0);
ret = wait_for_bit_le32(regs + AG7XXX_ETH_MII_MGMT_IND,
AG7XXX_ETH_MII_MGMT_IND_BUSY, 0, 1000, 0);
return ret;
}
@ -510,13 +510,13 @@ static void ag7xxx_eth_stop(struct udevice *dev)
/* Stop the TX DMA. */
writel(0, priv->regs + AG7XXX_ETH_DMA_TX_CTRL);
wait_for_bit("ag7xxx", priv->regs + AG7XXX_ETH_DMA_TX_CTRL, ~0, 0,
1000, 0);
wait_for_bit_le32(priv->regs + AG7XXX_ETH_DMA_TX_CTRL, ~0, 0,
1000, 0);
/* Stop the RX DMA. */
writel(0, priv->regs + AG7XXX_ETH_DMA_RX_CTRL);
wait_for_bit("ag7xxx", priv->regs + AG7XXX_ETH_DMA_RX_CTRL, ~0, 0,
1000, 0);
wait_for_bit_le32(priv->regs + AG7XXX_ETH_DMA_RX_CTRL, ~0, 0,
1000, 0);
}
/*

@ -361,8 +361,9 @@ static void eqos_flush_buffer(void *buf, size_t size)
static int eqos_mdio_wait_idle(struct eqos_priv *eqos)
{
return wait_for_bit(__func__, &eqos->mac_regs->mdio_address,
EQOS_MAC_MDIO_ADDRESS_GB, false, 1000000, true);
return wait_for_bit_le32(&eqos->mac_regs->mdio_address,
EQOS_MAC_MDIO_ADDRESS_GB, false,
1000000, true);
}
static int eqos_mdio_read(struct mii_dev *bus, int mdio_addr, int mdio_devad,
@ -588,15 +589,15 @@ static int eqos_calibrate_pads_tegra186(struct udevice *dev)
setbits_le32(&eqos->tegra186_regs->auto_cal_config,
EQOS_AUTO_CAL_CONFIG_START | EQOS_AUTO_CAL_CONFIG_ENABLE);
ret = wait_for_bit(__func__, &eqos->tegra186_regs->auto_cal_status,
EQOS_AUTO_CAL_STATUS_ACTIVE, true, 10, false);
ret = wait_for_bit_le32(&eqos->tegra186_regs->auto_cal_status,
EQOS_AUTO_CAL_STATUS_ACTIVE, true, 10, false);
if (ret) {
pr_err("calibrate didn't start");
goto failed;
}
ret = wait_for_bit(__func__, &eqos->tegra186_regs->auto_cal_status,
EQOS_AUTO_CAL_STATUS_ACTIVE, false, 10, false);
ret = wait_for_bit_le32(&eqos->tegra186_regs->auto_cal_status,
EQOS_AUTO_CAL_STATUS_ACTIVE, false, 10, false);
if (ret) {
pr_err("calibrate didn't finish");
goto failed;
@ -862,8 +863,8 @@ static int eqos_start(struct udevice *dev)
eqos->reg_access_ok = true;
ret = wait_for_bit(__func__, &eqos->dma_regs->mode,
EQOS_DMA_MODE_SWR, false, 10, false);
ret = wait_for_bit_le32(&eqos->dma_regs->mode,
EQOS_DMA_MODE_SWR, false, 10, false);
if (ret) {
pr_err("EQOS_DMA_MODE_SWR stuck");
goto err_stop_resets;

@ -548,8 +548,8 @@ static int ethoc_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(addr, reg));
ethoc_write(priv, MIICOMMAND, MIICOMMAND_READ);
rc = wait_for_bit(__func__, ethoc_reg(priv, MIISTATUS),
MIISTATUS_BUSY, false, CONFIG_SYS_HZ, false);
rc = wait_for_bit_le32(ethoc_reg(priv, MIISTATUS),
MIISTATUS_BUSY, false, CONFIG_SYS_HZ, false);
if (rc == 0) {
u32 data = ethoc_read(priv, MIIRX_DATA);
@ -571,8 +571,8 @@ static int ethoc_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
ethoc_write(priv, MIITX_DATA, val);
ethoc_write(priv, MIICOMMAND, MIICOMMAND_WRITE);
rc = wait_for_bit(__func__, ethoc_reg(priv, MIISTATUS),
MIISTATUS_BUSY, false, CONFIG_SYS_HZ, false);
rc = wait_for_bit_le32(ethoc_reg(priv, MIISTATUS),
MIISTATUS_BUSY, false, CONFIG_SYS_HZ, false);
if (rc == 0) {
/* reset MII command register */

@ -64,8 +64,8 @@ static int pic32_mii_init(struct pic32eth_dev *priv)
writel(ETHCON_ON | ETHCON_TXRTS | ETHCON_RXEN, &ectl_p->con1.clr);
/* wait till busy */
wait_for_bit(__func__, &ectl_p->stat.raw, ETHSTAT_BUSY, false,
CONFIG_SYS_HZ, false);
wait_for_bit_le32(&ectl_p->stat.raw, ETHSTAT_BUSY, false,
CONFIG_SYS_HZ, false);
/* turn controller ON to access PHY over MII */
writel(ETHCON_ON, &ectl_p->con1.set);
@ -239,8 +239,8 @@ static void pic32_ctrl_reset(struct pic32eth_dev *priv)
writel(ETHCON_ON | ETHCON_TXRTS | ETHCON_RXEN, &ectl_p->con1.clr);
/* wait till busy */
wait_for_bit(__func__, &ectl_p->stat.raw, ETHSTAT_BUSY, false,
CONFIG_SYS_HZ, false);
wait_for_bit_le32(&ectl_p->stat.raw, ETHSTAT_BUSY, false,
CONFIG_SYS_HZ, false);
/* decrement received buffcnt to zero. */
while (readl(&ectl_p->stat.raw) & ETHSTAT_BUFCNT)
writel(ETHCON_BUFCDEC, &ectl_p->con1.set);
@ -375,8 +375,8 @@ static void pic32_eth_stop(struct udevice *dev)
mdelay(10);
/* wait until everything is down */
wait_for_bit(__func__, &ectl_p->stat.raw, ETHSTAT_BUSY, false,
2 * CONFIG_SYS_HZ, false);
wait_for_bit_le32(&ectl_p->stat.raw, ETHSTAT_BUSY, false,
2 * CONFIG_SYS_HZ, false);
/* clear any existing interrupt event */
writel(0xffffffff, &ectl_p->irq.clr);

@ -22,8 +22,8 @@ static int pic32_mdio_write(struct mii_dev *bus,
struct pic32_mii_regs *mii_regs = bus->priv;
/* Wait for the previous operation to finish */
wait_for_bit(__func__, &mii_regs->mind.raw, MIIMIND_BUSY,
false, CONFIG_SYS_HZ, true);
wait_for_bit_le32(&mii_regs->mind.raw, MIIMIND_BUSY,
false, CONFIG_SYS_HZ, true);
/* Put phyaddr and regaddr into MIIMADD */
v = (addr << MIIMADD_PHYADDR_SHIFT) | (reg & MIIMADD_REGADDR);
@ -36,8 +36,8 @@ static int pic32_mdio_write(struct mii_dev *bus,
udelay(12);
/* Wait for write to complete */
wait_for_bit(__func__, &mii_regs->mind.raw, MIIMIND_BUSY,
false, CONFIG_SYS_HZ, true);
wait_for_bit_le32(&mii_regs->mind.raw, MIIMIND_BUSY,
false, CONFIG_SYS_HZ, true);
return 0;
}
@ -48,8 +48,8 @@ static int pic32_mdio_read(struct mii_dev *bus, int addr, int devaddr, int reg)
struct pic32_mii_regs *mii_regs = bus->priv;
/* Wait for the previous operation to finish */
wait_for_bit(__func__, &mii_regs->mind.raw, MIIMIND_BUSY,
false, CONFIG_SYS_HZ, true);
wait_for_bit_le32(&mii_regs->mind.raw, MIIMIND_BUSY,
false, CONFIG_SYS_HZ, true);
/* Put phyaddr and regaddr into MIIMADD */
v = (addr << MIIMADD_PHYADDR_SHIFT) | (reg & MIIMADD_REGADDR);
@ -62,9 +62,9 @@ static int pic32_mdio_read(struct mii_dev *bus, int addr, int devaddr, int reg)
udelay(12);
/* Wait for read to complete */
wait_for_bit(__func__, &mii_regs->mind.raw,
MIIMIND_NOTVALID | MIIMIND_BUSY,
false, CONFIG_SYS_HZ, false);
wait_for_bit_le32(&mii_regs->mind.raw,
MIIMIND_NOTVALID | MIIMIND_BUSY,
false, CONFIG_SYS_HZ, false);
/* Clear the command register */
writel(0, &mii_regs->mcmd.raw);
@ -82,22 +82,22 @@ static int pic32_mdio_reset(struct mii_dev *bus)
writel(MIIMCFG_RSTMGMT, &mii_regs->mcfg.raw);
/* Wait for the operation to finish */
wait_for_bit(__func__, &mii_regs->mind.raw, MIIMIND_BUSY,
wait_for_bit_le32(&mii_regs->mind.raw, MIIMIND_BUSY,
false, CONFIG_SYS_HZ, true);
/* Clear reset bit */
writel(0, &mii_regs->mcfg);
/* Wait for the operation to finish */
wait_for_bit(__func__, &mii_regs->mind.raw, MIIMIND_BUSY,
false, CONFIG_SYS_HZ, true);
wait_for_bit_le32(&mii_regs->mind.raw, MIIMIND_BUSY,
false, CONFIG_SYS_HZ, true);
/* Set the MII Management Clock (MDC) - no faster than 2.5 MHz */
writel(MIIMCFG_CLKSEL_DIV40, &mii_regs->mcfg.raw);
/* Wait for the operation to finish */
wait_for_bit(__func__, &mii_regs->mind.raw, MIIMIND_BUSY,
false, CONFIG_SYS_HZ, true);
wait_for_bit_le32(&mii_regs->mind.raw, MIIMIND_BUSY,
false, CONFIG_SYS_HZ, true);
return 0;
}

@ -222,8 +222,8 @@ static int ravb_reset(struct udevice *dev)
writel(CCC_OPC_CONFIG, eth->iobase + RAVB_REG_CCC);
/* Check the operating mode is changed to the config mode. */
return wait_for_bit(dev->name, (void *)eth->iobase + RAVB_REG_CSR,
CSR_OPS_CONFIG, true, 100, true);
return wait_for_bit_le32(eth->iobase + RAVB_REG_CSR,
CSR_OPS_CONFIG, true, 100, true);
}
static void ravb_base_desc_init(struct ravb_priv *eth)

@ -366,8 +366,8 @@ static int axi_ethernet_init(struct axidma_priv *priv)
* processor mode and hence bypass in this mode
*/
if (!priv->eth_hasnobuf) {
err = wait_for_bit(__func__, (const u32 *)&regs->is,
XAE_INT_MGTRDY_MASK, true, 200, false);
err = wait_for_bit_le32(&regs->is, XAE_INT_MGTRDY_MASK,
true, 200, false);
if (err) {
printf("%s: Timeout\n", __func__);
return 1;

@ -192,8 +192,8 @@ static u32 phy_setup_op(struct zynq_gem_priv *priv, u32 phy_addr, u32 regnum,
struct zynq_gem_regs *regs = priv->iobase;
int err;
err = wait_for_bit(__func__, &regs->nwsr, ZYNQ_GEM_NWSR_MDIOIDLE_MASK,
true, 20000, false);
err = wait_for_bit_le32(&regs->nwsr, ZYNQ_GEM_NWSR_MDIOIDLE_MASK,
true, 20000, false);
if (err)
return err;
@ -205,8 +205,8 @@ static u32 phy_setup_op(struct zynq_gem_priv *priv, u32 phy_addr, u32 regnum,
/* Write mgtcr and wait for completion */
writel(mgtcr, &regs->phymntnc);
err = wait_for_bit(__func__, &regs->nwsr, ZYNQ_GEM_NWSR_MDIOIDLE_MASK,
true, 20000, false);
err = wait_for_bit_le32(&regs->nwsr, ZYNQ_GEM_NWSR_MDIOIDLE_MASK,
true, 20000, false);
if (err)
return err;
@ -514,8 +514,8 @@ static int zynq_gem_send(struct udevice *dev, void *ptr, int len)
if (priv->tx_bd->status & ZYNQ_GEM_TXBUF_EXHAUSTED)
printf("TX buffers exhausted in mid frame\n");
return wait_for_bit(__func__, &regs->txsr, ZYNQ_GEM_TSR_DONE,
true, 20000, true);
return wait_for_bit_le32(&regs->txsr, ZYNQ_GEM_TSR_DONE,
true, 20000, true);
}
/* Do not check frame_recd flag in rx_status register 0x20 - just poll BD */

@ -266,8 +266,8 @@ static int sti_reset_program_hw(struct reset_ctl *reset_ctl, int assert)
return 0;
reg = (void __iomem *)base + ch->ack_offset;
if (wait_for_bit(__func__, reg, BIT(ch->ack_bit), ctrl_val,
1000, false)) {
if (wait_for_bit_le32(reg, BIT(ch->ack_bit), ctrl_val,
1000, false)) {
pr_err("Stuck on waiting ack reset_ctl=%p dev=%p id=%lu\n",
reset_ctl, reset_ctl->dev, reset_ctl->id);

@ -51,8 +51,8 @@ static int pic32_serial_init(void __iomem *base, ulong clk, u32 baudrate)
u32 div = DIV_ROUND_CLOSEST(clk, baudrate * 16);
/* wait for TX FIFO to empty */
wait_for_bit(__func__, base + U_STA, UART_TX_EMPTY,
true, CONFIG_SYS_HZ, false);
wait_for_bit_le32(base + U_STA, UART_TX_EMPTY,
true, CONFIG_SYS_HZ, false);
/* send break */
writel(UART_TX_BRK, base + U_STASET);

@ -40,6 +40,22 @@ config ATMEL_SPI
many AT91 (ARM) chips. This driver can be used to access
the SPI Flash, such as AT25DF321.
config BCM63XX_HSSPI
bool "BCM63XX HSSPI driver"
depends on ARCH_BMIPS
help
Enable the BCM6328 HSSPI driver. This driver can be used to
access the SPI NOR flash on platforms embedding this Broadcom
SPI core.
config BCM63XX_SPI
bool "BCM6348 SPI driver"
depends on ARCH_BMIPS
help
Enable the BCM6348/BCM6358 SPI driver. This driver can be used to
access the SPI NOR flash on platforms embedding these Broadcom
SPI cores.
config CADENCE_QSPI
bool "Cadence QSPI driver"
help

@ -18,6 +18,8 @@ endif
obj-$(CONFIG_ALTERA_SPI) += altera_spi.o
obj-$(CONFIG_ATH79_SPI) += ath79_spi.o
obj-$(CONFIG_ATMEL_SPI) += atmel_spi.o
obj-$(CONFIG_BCM63XX_HSSPI) += bcm63xx_hsspi.o
obj-$(CONFIG_BCM63XX_SPI) += bcm63xx_spi.o
obj-$(CONFIG_CADENCE_QSPI) += cadence_qspi.o cadence_qspi_apb.o
obj-$(CONFIG_CF_SPI) += cf_spi.o
obj-$(CONFIG_DAVINCI_SPI) += davinci_spi.o

@ -394,8 +394,8 @@ out:
* Wait until the transfer is completely done before
* we deactivate CS.
*/
wait_for_bit(__func__, &reg_base->sr,
ATMEL_SPI_SR_TXEMPTY, true, 1000, false);
wait_for_bit_le32(&reg_base->sr,
ATMEL_SPI_SR_TXEMPTY, true, 1000, false);
atmel_spi_cs_deactivate(dev);
}

@ -0,0 +1,414 @@
/*
* Copyright (C) 2017 Álvaro Fernández Rojas <noltari@gmail.com>
*
* Derived from linux/drivers/spi/spi-bcm63xx-hsspi.c:
* Copyright (C) 2000-2010 Broadcom Corporation
* Copyright (C) 2012-2013 Jonas Gorski <jogo@openwrt.org>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <spi.h>
#include <reset.h>
#include <wait_bit.h>
#include <asm/io.h>
DECLARE_GLOBAL_DATA_PTR;
#define HSSPI_PP 0
#define SPI_MAX_SYNC_CLOCK 30000000
/* SPI Control register */
#define SPI_CTL_REG 0x000
#define SPI_CTL_CS_POL_SHIFT 0
#define SPI_CTL_CS_POL_MASK (0xff << SPI_CTL_CS_POL_SHIFT)
#define SPI_CTL_CLK_GATE_SHIFT 16
#define SPI_CTL_CLK_GATE_MASK (1 << SPI_CTL_CLK_GATE_SHIFT)
#define SPI_CTL_CLK_POL_SHIFT 17
#define SPI_CTL_CLK_POL_MASK (1 << SPI_CTL_CLK_POL_SHIFT)
/* SPI Interrupts registers */
#define SPI_IR_STAT_REG 0x008
#define SPI_IR_ST_MASK_REG 0x00c
#define SPI_IR_MASK_REG 0x010
#define SPI_IR_CLEAR_ALL 0xff001f1f
/* SPI Ping-Pong Command registers */
#define SPI_CMD_REG (0x080 + (0x40 * (HSSPI_PP)) + 0x00)
#define SPI_CMD_OP_SHIFT 0
#define SPI_CMD_OP_START (0x1 << SPI_CMD_OP_SHIFT)
#define SPI_CMD_PFL_SHIFT 8
#define SPI_CMD_PFL_MASK (0x7 << SPI_CMD_PFL_SHIFT)
#define SPI_CMD_SLAVE_SHIFT 12
#define SPI_CMD_SLAVE_MASK (0x7 << SPI_CMD_SLAVE_SHIFT)
/* SPI Ping-Pong Status registers */
#define SPI_STAT_REG (0x080 + (0x40 * (HSSPI_PP)) + 0x04)
#define SPI_STAT_SRCBUSY_SHIFT 1
#define SPI_STAT_SRCBUSY_MASK (1 << SPI_STAT_SRCBUSY_SHIFT)
/* SPI Profile Clock registers */
#define SPI_PFL_CLK_REG(x) (0x100 + (0x20 * (x)) + 0x00)
#define SPI_PFL_CLK_FREQ_SHIFT 0
#define SPI_PFL_CLK_FREQ_MASK (0x3fff << SPI_PFL_CLK_FREQ_SHIFT)
#define SPI_PFL_CLK_RSTLOOP_SHIFT 15
#define SPI_PFL_CLK_RSTLOOP_MASK (1 << SPI_PFL_CLK_RSTLOOP_SHIFT)
/* SPI Profile Signal registers */
#define SPI_PFL_SIG_REG(x) (0x100 + (0x20 * (x)) + 0x04)
#define SPI_PFL_SIG_LATCHRIS_SHIFT 12
#define SPI_PFL_SIG_LATCHRIS_MASK (1 << SPI_PFL_SIG_LATCHRIS_SHIFT)
#define SPI_PFL_SIG_LAUNCHRIS_SHIFT 13
#define SPI_PFL_SIG_LAUNCHRIS_MASK (1 << SPI_PFL_SIG_LAUNCHRIS_SHIFT)
#define SPI_PFL_SIG_ASYNCIN_SHIFT 16
#define SPI_PFL_SIG_ASYNCIN_MASK (1 << SPI_PFL_SIG_ASYNCIN_SHIFT)
/* SPI Profile Mode registers */
#define SPI_PFL_MODE_REG(x) (0x100 + (0x20 * (x)) + 0x08)
#define SPI_PFL_MODE_FILL_SHIFT 0
#define SPI_PFL_MODE_FILL_MASK (0xff << SPI_PFL_MODE_FILL_SHIFT)
#define SPI_PFL_MODE_MDRDSZ_SHIFT 16
#define SPI_PFL_MODE_MDRDSZ_MASK (1 << SPI_PFL_MODE_MDRDSZ_SHIFT)
#define SPI_PFL_MODE_MDWRSZ_SHIFT 18
#define SPI_PFL_MODE_MDWRSZ_MASK (1 << SPI_PFL_MODE_MDWRSZ_SHIFT)
#define SPI_PFL_MODE_3WIRE_SHIFT 20
#define SPI_PFL_MODE_3WIRE_MASK (1 << SPI_PFL_MODE_3WIRE_SHIFT)
/* SPI Ping-Pong FIFO registers */
#define HSSPI_FIFO_SIZE 0x200
#define HSSPI_FIFO_BASE (0x200 + \
(HSSPI_FIFO_SIZE * HSSPI_PP))
/* SPI Ping-Pong FIFO OP register */
#define HSSPI_FIFO_OP_SIZE 0x2
#define HSSPI_FIFO_OP_REG (HSSPI_FIFO_BASE + 0x00)
#define HSSPI_FIFO_OP_BYTES_SHIFT 0
#define HSSPI_FIFO_OP_BYTES_MASK (0x3ff << HSSPI_FIFO_OP_BYTES_SHIFT)
#define HSSPI_FIFO_OP_MBIT_SHIFT 11
#define HSSPI_FIFO_OP_MBIT_MASK (1 << HSSPI_FIFO_OP_MBIT_SHIFT)
#define HSSPI_FIFO_OP_CODE_SHIFT 13
#define HSSPI_FIFO_OP_READ_WRITE (1 << HSSPI_FIFO_OP_CODE_SHIFT)
#define HSSPI_FIFO_OP_CODE_W (2 << HSSPI_FIFO_OP_CODE_SHIFT)
#define HSSPI_FIFO_OP_CODE_R (3 << HSSPI_FIFO_OP_CODE_SHIFT)
struct bcm63xx_hsspi_priv {
void __iomem *regs;
ulong clk_rate;
uint8_t num_cs;
uint8_t cs_pols;
uint speed;
};
static int bcm63xx_hsspi_cs_info(struct udevice *bus, uint cs,
struct spi_cs_info *info)
{
struct bcm63xx_hsspi_priv *priv = dev_get_priv(bus);
if (cs >= priv->num_cs) {
printf("no cs %u\n", cs);
return -ENODEV;
}
return 0;
}
static int bcm63xx_hsspi_set_mode(struct udevice *bus, uint mode)
{
struct bcm63xx_hsspi_priv *priv = dev_get_priv(bus);
/* clock polarity */
if (mode & SPI_CPOL)
setbits_be32(priv->regs + SPI_CTL_REG, SPI_CTL_CLK_POL_MASK);
else
clrbits_be32(priv->regs + SPI_CTL_REG, SPI_CTL_CLK_POL_MASK);
return 0;
}
static int bcm63xx_hsspi_set_speed(struct udevice *bus, uint speed)
{
struct bcm63xx_hsspi_priv *priv = dev_get_priv(bus);
priv->speed = speed;
return 0;
}
static void bcm63xx_hsspi_activate_cs(struct bcm63xx_hsspi_priv *priv,
struct dm_spi_slave_platdata *plat)
{
uint32_t clr, set;
/* profile clock */
set = DIV_ROUND_UP(priv->clk_rate, priv->speed);
set = DIV_ROUND_UP(2048, set);
set &= SPI_PFL_CLK_FREQ_MASK;
set |= SPI_PFL_CLK_RSTLOOP_MASK;
writel_be(set, priv->regs + SPI_PFL_CLK_REG(plat->cs));
/* profile signal */
set = 0;
clr = SPI_PFL_SIG_LAUNCHRIS_MASK |
SPI_PFL_SIG_LATCHRIS_MASK |
SPI_PFL_SIG_ASYNCIN_MASK;
/* latch/launch config */
if (plat->mode & SPI_CPHA)
set |= SPI_PFL_SIG_LAUNCHRIS_MASK;
else
set |= SPI_PFL_SIG_LATCHRIS_MASK;
/* async clk */
if (priv->speed > SPI_MAX_SYNC_CLOCK)
set |= SPI_PFL_SIG_ASYNCIN_MASK;
clrsetbits_be32(priv->regs + SPI_PFL_SIG_REG(plat->cs), clr, set);
/* global control */
set = 0;
clr = 0;
/* invert cs polarity */
if (priv->cs_pols & BIT(plat->cs))
clr |= BIT(plat->cs);
else
set |= BIT(plat->cs);
/* invert dummy cs polarity */
if (priv->cs_pols & BIT(!plat->cs))
clr |= BIT(!plat->cs);
else
set |= BIT(!plat->cs);
clrsetbits_be32(priv->regs + SPI_CTL_REG, clr, set);
}
static void bcm63xx_hsspi_deactivate_cs(struct bcm63xx_hsspi_priv *priv)
{
/* restore cs polarities */
clrsetbits_be32(priv->regs + SPI_CTL_REG, SPI_CTL_CS_POL_MASK,
priv->cs_pols);
}
/*
* BCM63xx HSSPI driver doesn't allow keeping CS active between transfers
* because they are controlled by HW.
* However, it provides a mechanism to prepend write transfers prior to read
* transfers (with a maximum prepend of 15 bytes), which is usually enough for
* SPI-connected flashes since reading requires prepending a write transfer of
* 5 bytes. On the other hand it also provides a way to invert each CS
* polarity, not only between transfers like the older BCM63xx SPI driver, but
* also the rest of the time.
*
* Instead of using the prepend mechanism, this implementation inverts the
* polarity of both the desired CS and another dummy CS when the bus is
* claimed. This way, the dummy CS is restored to its inactive value when
* transfers are issued and the desired CS is preserved in its active value
* all the time. This hack is also used in the upstream linux driver and
* allows keeping CS active between trasnfers even if the HW doesn't give
* this possibility.
*/
static int bcm63xx_hsspi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct bcm63xx_hsspi_priv *priv = dev_get_priv(dev->parent);
struct dm_spi_slave_platdata *plat = dev_get_parent_platdata(dev);
size_t data_bytes = bitlen / 8;
size_t step_size = HSSPI_FIFO_SIZE;
uint16_t opcode = 0;
uint32_t val;
const uint8_t *tx = dout;
uint8_t *rx = din;
if (flags & SPI_XFER_BEGIN)
bcm63xx_hsspi_activate_cs(priv, plat);
/* fifo operation */
if (tx && rx)
opcode = HSSPI_FIFO_OP_READ_WRITE;
else if (rx)
opcode = HSSPI_FIFO_OP_CODE_R;
else if (tx)
opcode = HSSPI_FIFO_OP_CODE_W;
if (opcode != HSSPI_FIFO_OP_CODE_R)
step_size -= HSSPI_FIFO_OP_SIZE;
/* dual mode */
if ((opcode == HSSPI_FIFO_OP_CODE_R && plat->mode == SPI_RX_DUAL) ||
(opcode == HSSPI_FIFO_OP_CODE_W && plat->mode == SPI_TX_DUAL))
opcode |= HSSPI_FIFO_OP_MBIT_MASK;
/* profile mode */
val = SPI_PFL_MODE_FILL_MASK |
SPI_PFL_MODE_MDRDSZ_MASK |
SPI_PFL_MODE_MDWRSZ_MASK;
if (plat->mode & SPI_3WIRE)
val |= SPI_PFL_MODE_3WIRE_MASK;
writel_be(val, priv->regs + SPI_PFL_MODE_REG(plat->cs));
/* transfer loop */
while (data_bytes > 0) {
size_t curr_step = min(step_size, data_bytes);
int ret;
/* copy tx data */
if (tx) {
memcpy_toio(priv->regs + HSSPI_FIFO_BASE +
HSSPI_FIFO_OP_SIZE, tx, curr_step);
tx += curr_step;
}
/* set fifo operation */
writew_be(opcode | (curr_step & HSSPI_FIFO_OP_BYTES_MASK),
priv->regs + HSSPI_FIFO_OP_REG);
/* issue the transfer */
val = SPI_CMD_OP_START;
val |= (plat->cs << SPI_CMD_PFL_SHIFT) &
SPI_CMD_PFL_MASK;
val |= (!plat->cs << SPI_CMD_SLAVE_SHIFT) &
SPI_CMD_SLAVE_MASK;
writel_be(val, priv->regs + SPI_CMD_REG);
/* wait for completion */
ret = wait_for_bit_be32(priv->regs + SPI_STAT_REG,
SPI_STAT_SRCBUSY_MASK, false,
1000, false);
if (ret) {
printf("interrupt timeout\n");
return ret;
}
/* copy rx data */
if (rx) {
memcpy_fromio(rx, priv->regs + HSSPI_FIFO_BASE,
curr_step);
rx += curr_step;
}
data_bytes -= curr_step;
}
if (flags & SPI_XFER_END)
bcm63xx_hsspi_deactivate_cs(priv);
return 0;
}
static const struct dm_spi_ops bcm63xx_hsspi_ops = {
.cs_info = bcm63xx_hsspi_cs_info,
.set_mode = bcm63xx_hsspi_set_mode,
.set_speed = bcm63xx_hsspi_set_speed,
.xfer = bcm63xx_hsspi_xfer,
};
static const struct udevice_id bcm63xx_hsspi_ids[] = {
{ .compatible = "brcm,bcm6328-hsspi", },
{ /* sentinel */ }
};
static int bcm63xx_hsspi_child_pre_probe(struct udevice *dev)
{
struct bcm63xx_hsspi_priv *priv = dev_get_priv(dev->parent);
struct dm_spi_slave_platdata *plat = dev_get_parent_platdata(dev);
/* check cs */
if (plat->cs >= priv->num_cs) {
printf("no cs %u\n", plat->cs);
return -ENODEV;
}
/* cs polarity */
if (plat->mode & SPI_CS_HIGH)
priv->cs_pols |= BIT(plat->cs);
else
priv->cs_pols &= ~BIT(plat->cs);
return 0;
}
static int bcm63xx_hsspi_probe(struct udevice *dev)
{
struct bcm63xx_hsspi_priv *priv = dev_get_priv(dev);
struct reset_ctl rst_ctl;
struct clk clk;
fdt_addr_t addr;
fdt_size_t size;
int ret;
addr = devfdt_get_addr_size_index(dev, 0, &size);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
priv->regs = ioremap(addr, size);
priv->num_cs = fdtdec_get_uint(gd->fdt_blob, dev_of_offset(dev),
"num-cs", 8);
/* enable clock */
ret = clk_get_by_name(dev, "hsspi", &clk);
if (ret < 0)
return ret;
ret = clk_enable(&clk);
if (ret < 0)
return ret;
ret = clk_free(&clk);
if (ret < 0)
return ret;
/* get clock rate */
ret = clk_get_by_name(dev, "pll", &clk);
if (ret < 0)
return ret;
priv->clk_rate = clk_get_rate(&clk);
ret = clk_free(&clk);
if (ret < 0)
return ret;
/* perform reset */
ret = reset_get_by_index(dev, 0, &rst_ctl);
if (ret < 0)
return ret;
ret = reset_deassert(&rst_ctl);
if (ret < 0)
return ret;
ret = reset_free(&rst_ctl);
if (ret < 0)
return ret;
/* initialize hardware */
writel_be(0, priv->regs + SPI_IR_MASK_REG);
/* clear pending interrupts */
writel_be(SPI_IR_CLEAR_ALL, priv->regs + SPI_IR_STAT_REG);
/* enable clk gate */
setbits_be32(priv->regs + SPI_CTL_REG, SPI_CTL_CLK_GATE_MASK);
/* read default cs polarities */
priv->cs_pols = readl_be(priv->regs + SPI_CTL_REG) &
SPI_CTL_CS_POL_MASK;
return 0;
}
U_BOOT_DRIVER(bcm63xx_hsspi) = {
.name = "bcm63xx_hsspi",
.id = UCLASS_SPI,
.of_match = bcm63xx_hsspi_ids,
.ops = &bcm63xx_hsspi_ops,
.priv_auto_alloc_size = sizeof(struct bcm63xx_hsspi_priv),
.child_pre_probe = bcm63xx_hsspi_child_pre_probe,
.probe = bcm63xx_hsspi_probe,
};

@ -0,0 +1,433 @@
/*
* Copyright (C) 2017 Álvaro Fernández Rojas <noltari@gmail.com>
*
* Derived from linux/drivers/spi/spi-bcm63xx.c:
* Copyright (C) 2009-2012 Florian Fainelli <florian@openwrt.org>
* Copyright (C) 2010 Tanguy Bouzeloc <tanguy.bouzeloc@efixo.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <spi.h>
#include <reset.h>
#include <wait_bit.h>
#include <asm/io.h>
DECLARE_GLOBAL_DATA_PTR;
/* BCM6348 SPI core */
#define SPI_6348_CLK 0x06
#define SPI_6348_CMD 0x00
#define SPI_6348_CTL 0x40
#define SPI_6348_CTL_SHIFT 6
#define SPI_6348_FILL 0x07
#define SPI_6348_IR_MASK 0x04
#define SPI_6348_IR_STAT 0x02
#define SPI_6348_RX 0x80
#define SPI_6348_RX_SIZE 0x3f
#define SPI_6348_TX 0x41
#define SPI_6348_TX_SIZE 0x3f
/* BCM6358 SPI core */
#define SPI_6358_CLK 0x706
#define SPI_6358_CMD 0x700
#define SPI_6358_CTL 0x000
#define SPI_6358_CTL_SHIFT 14
#define SPI_6358_FILL 0x707
#define SPI_6358_IR_MASK 0x702
#define SPI_6358_IR_STAT 0x704
#define SPI_6358_RX 0x400
#define SPI_6358_RX_SIZE 0x220
#define SPI_6358_TX 0x002
#define SPI_6358_TX_SIZE 0x21e
/* SPI Clock register */
#define SPI_CLK_SHIFT 0
#define SPI_CLK_20MHZ (0 << SPI_CLK_SHIFT)
#define SPI_CLK_0_391MHZ (1 << SPI_CLK_SHIFT)
#define SPI_CLK_0_781MHZ (2 << SPI_CLK_SHIFT)
#define SPI_CLK_1_563MHZ (3 << SPI_CLK_SHIFT)
#define SPI_CLK_3_125MHZ (4 << SPI_CLK_SHIFT)
#define SPI_CLK_6_250MHZ (5 << SPI_CLK_SHIFT)
#define SPI_CLK_12_50MHZ (6 << SPI_CLK_SHIFT)
#define SPI_CLK_25MHZ (7 << SPI_CLK_SHIFT)
#define SPI_CLK_MASK (7 << SPI_CLK_SHIFT)
#define SPI_CLK_SSOFF_SHIFT 3
#define SPI_CLK_SSOFF_2 (2 << SPI_CLK_SSOFF_SHIFT)
#define SPI_CLK_SSOFF_MASK (7 << SPI_CLK_SSOFF_SHIFT)
#define SPI_CLK_BSWAP_SHIFT 7
#define SPI_CLK_BSWAP_MASK (1 << SPI_CLK_BSWAP_SHIFT)
/* SPI Command register */
#define SPI_CMD_OP_SHIFT 0
#define SPI_CMD_OP_START (0x3 << SPI_CMD_OP_SHIFT)
#define SPI_CMD_SLAVE_SHIFT 4
#define SPI_CMD_SLAVE_MASK (0xf << SPI_CMD_SLAVE_SHIFT)
#define SPI_CMD_PREPEND_SHIFT 8
#define SPI_CMD_PREPEND_BYTES 0xf
#define SPI_CMD_3WIRE_SHIFT 12
#define SPI_CMD_3WIRE_MASK (1 << SPI_CMD_3WIRE_SHIFT)
/* SPI Control register */
#define SPI_CTL_TYPE_FD_RW 0
#define SPI_CTL_TYPE_HD_W 1
#define SPI_CTL_TYPE_HD_R 2
/* SPI Interrupt registers */
#define SPI_IR_DONE_SHIFT 0
#define SPI_IR_DONE_MASK (1 << SPI_IR_DONE_SHIFT)
#define SPI_IR_RXOVER_SHIFT 1
#define SPI_IR_RXOVER_MASK (1 << SPI_IR_RXOVER_SHIFT)
#define SPI_IR_TXUNDER_SHIFT 2
#define SPI_IR_TXUNDER_MASK (1 << SPI_IR_TXUNDER_SHIFT)
#define SPI_IR_TXOVER_SHIFT 3
#define SPI_IR_TXOVER_MASK (1 << SPI_IR_TXOVER_SHIFT)
#define SPI_IR_RXUNDER_SHIFT 4
#define SPI_IR_RXUNDER_MASK (1 << SPI_IR_RXUNDER_SHIFT)
#define SPI_IR_CLEAR_MASK (SPI_IR_DONE_MASK |\
SPI_IR_RXOVER_MASK |\
SPI_IR_TXUNDER_MASK |\
SPI_IR_TXOVER_MASK |\
SPI_IR_RXUNDER_MASK)
enum bcm63xx_regs_spi {
SPI_CLK,
SPI_CMD,
SPI_CTL,
SPI_CTL_SHIFT,
SPI_FILL,
SPI_IR_MASK,
SPI_IR_STAT,
SPI_RX,
SPI_RX_SIZE,
SPI_TX,
SPI_TX_SIZE,
};
struct bcm63xx_spi_priv {
const unsigned long *regs;
void __iomem *base;
size_t tx_bytes;
uint8_t num_cs;
};
#define SPI_CLK_CNT 8
static const unsigned bcm63xx_spi_freq_table[SPI_CLK_CNT][2] = {
{ 25000000, SPI_CLK_25MHZ },
{ 20000000, SPI_CLK_20MHZ },
{ 12500000, SPI_CLK_12_50MHZ },
{ 6250000, SPI_CLK_6_250MHZ },
{ 3125000, SPI_CLK_3_125MHZ },
{ 1563000, SPI_CLK_1_563MHZ },
{ 781000, SPI_CLK_0_781MHZ },
{ 391000, SPI_CLK_0_391MHZ }
};
static int bcm63xx_spi_cs_info(struct udevice *bus, uint cs,
struct spi_cs_info *info)
{
struct bcm63xx_spi_priv *priv = dev_get_priv(bus);
if (cs >= priv->num_cs) {
printf("no cs %u\n", cs);
return -ENODEV;
}
return 0;
}
static int bcm63xx_spi_set_mode(struct udevice *bus, uint mode)
{
struct bcm63xx_spi_priv *priv = dev_get_priv(bus);
const unsigned long *regs = priv->regs;
if (mode & SPI_LSB_FIRST)
setbits_8(priv->base + regs[SPI_CLK], SPI_CLK_BSWAP_MASK);
else
clrbits_8(priv->base + regs[SPI_CLK], SPI_CLK_BSWAP_MASK);
return 0;
}
static int bcm63xx_spi_set_speed(struct udevice *bus, uint speed)
{
struct bcm63xx_spi_priv *priv = dev_get_priv(bus);
const unsigned long *regs = priv->regs;
uint8_t clk_cfg;
int i;
/* default to lowest clock configuration */
clk_cfg = SPI_CLK_0_391MHZ;
/* find the closest clock configuration */
for (i = 0; i < SPI_CLK_CNT; i++) {
if (speed >= bcm63xx_spi_freq_table[i][0]) {
clk_cfg = bcm63xx_spi_freq_table[i][1];
break;
}
}
/* write clock configuration */
clrsetbits_8(priv->base + regs[SPI_CLK],
SPI_CLK_SSOFF_MASK | SPI_CLK_MASK,
clk_cfg | SPI_CLK_SSOFF_2);
return 0;
}
/*
* BCM63xx SPI driver doesn't allow keeping CS active between transfers since
* they are HW controlled.
* However, it provides a mechanism to prepend write transfers prior to read
* transfers (with a maximum prepend of 15 bytes), which is usually enough for
* SPI-connected flashes since reading requires prepending a write transfer of
* 5 bytes.
*
* This implementation takes advantage of the prepend mechanism and combines
* multiple transfers into a single one where possible (single/multiple write
* transfer(s) followed by a final read/write transfer).
* However, it's not possible to buffer reads, which means that read transfers
* should always be done as the final ones.
* On the other hand, take into account that combining write transfers into
* a single one is just buffering and doesn't require prepend mechanism.
*/
static int bcm63xx_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct bcm63xx_spi_priv *priv = dev_get_priv(dev->parent);
const unsigned long *regs = priv->regs;
size_t data_bytes = bitlen / 8;
if (flags & SPI_XFER_BEGIN) {
/* clear prepends */
priv->tx_bytes = 0;
/* initialize hardware */
writeb_be(0, priv->base + regs[SPI_IR_MASK]);
}
if (din) {
/* buffering reads not possible since cs is hw controlled */
if (!(flags & SPI_XFER_END)) {
printf("unable to buffer reads\n");
return -EINVAL;
}
/* check rx size */
if (data_bytes > regs[SPI_RX_SIZE]) {
printf("max rx bytes exceeded\n");
return -EMSGSIZE;
}
}
if (dout) {
/* check tx size */
if (priv->tx_bytes + data_bytes > regs[SPI_TX_SIZE]) {
printf("max tx bytes exceeded\n");
return -EMSGSIZE;
}
/* copy tx data */
memcpy_toio(priv->base + regs[SPI_TX] + priv->tx_bytes,
dout, data_bytes);
priv->tx_bytes += data_bytes;
}
if (flags & SPI_XFER_END) {
struct dm_spi_slave_platdata *plat =
dev_get_parent_platdata(dev);
uint16_t val, cmd;
int ret;
/* determine control config */
if (dout && !din) {
/* buffered write transfers */
val = priv->tx_bytes;
val |= (SPI_CTL_TYPE_HD_W << regs[SPI_CTL_SHIFT]);
priv->tx_bytes = 0;
} else {
if (dout && din && (flags & SPI_XFER_ONCE)) {
/* full duplex read/write */
val = data_bytes;
val |= (SPI_CTL_TYPE_FD_RW <<
regs[SPI_CTL_SHIFT]);
priv->tx_bytes = 0;
} else {
/* prepended write transfer */
val = data_bytes;
val |= (SPI_CTL_TYPE_HD_R <<
regs[SPI_CTL_SHIFT]);
if (priv->tx_bytes > SPI_CMD_PREPEND_BYTES) {
printf("max prepend bytes exceeded\n");
return -EMSGSIZE;
}
}
}
if (regs[SPI_CTL_SHIFT] >= 8)
writew_be(val, priv->base + regs[SPI_CTL]);
else
writeb_be(val, priv->base + regs[SPI_CTL]);
/* clear interrupts */
writeb_be(SPI_IR_CLEAR_MASK, priv->base + regs[SPI_IR_STAT]);
/* issue the transfer */
cmd = SPI_CMD_OP_START;
cmd |= (plat->cs << SPI_CMD_SLAVE_SHIFT) & SPI_CMD_SLAVE_MASK;
cmd |= (priv->tx_bytes << SPI_CMD_PREPEND_SHIFT);
if (plat->mode & SPI_3WIRE)
cmd |= SPI_CMD_3WIRE_MASK;
writew_be(cmd, priv->base + regs[SPI_CMD]);
/* enable interrupts */
writeb_be(SPI_IR_DONE_MASK, priv->base + regs[SPI_IR_MASK]);
ret = wait_for_bit_8(priv->base + regs[SPI_IR_STAT],
SPI_IR_DONE_MASK, true, 1000, false);
if (ret) {
printf("interrupt timeout\n");
return ret;
}
/* copy rx data */
if (din)
memcpy_fromio(din, priv->base + regs[SPI_RX],
data_bytes);
}
return 0;
}
static const struct dm_spi_ops bcm63xx_spi_ops = {
.cs_info = bcm63xx_spi_cs_info,
.set_mode = bcm63xx_spi_set_mode,
.set_speed = bcm63xx_spi_set_speed,
.xfer = bcm63xx_spi_xfer,
};
static const unsigned long bcm6348_spi_regs[] = {
[SPI_CLK] = SPI_6348_CLK,
[SPI_CMD] = SPI_6348_CMD,
[SPI_CTL] = SPI_6348_CTL,
[SPI_CTL_SHIFT] = SPI_6348_CTL_SHIFT,
[SPI_FILL] = SPI_6348_FILL,
[SPI_IR_MASK] = SPI_6348_IR_MASK,
[SPI_IR_STAT] = SPI_6348_IR_STAT,
[SPI_RX] = SPI_6348_RX,
[SPI_RX_SIZE] = SPI_6348_RX_SIZE,
[SPI_TX] = SPI_6348_TX,
[SPI_TX_SIZE] = SPI_6348_TX_SIZE,
};
static const unsigned long bcm6358_spi_regs[] = {
[SPI_CLK] = SPI_6358_CLK,
[SPI_CMD] = SPI_6358_CMD,
[SPI_CTL] = SPI_6358_CTL,
[SPI_CTL_SHIFT] = SPI_6358_CTL_SHIFT,
[SPI_FILL] = SPI_6358_FILL,
[SPI_IR_MASK] = SPI_6358_IR_MASK,
[SPI_IR_STAT] = SPI_6358_IR_STAT,
[SPI_RX] = SPI_6358_RX,
[SPI_RX_SIZE] = SPI_6358_RX_SIZE,
[SPI_TX] = SPI_6358_TX,
[SPI_TX_SIZE] = SPI_6358_TX_SIZE,
};
static const struct udevice_id bcm63xx_spi_ids[] = {
{
.compatible = "brcm,bcm6348-spi",
.data = (ulong)&bcm6348_spi_regs,
}, {
.compatible = "brcm,bcm6358-spi",
.data = (ulong)&bcm6358_spi_regs,
}, { /* sentinel */ }
};
static int bcm63xx_spi_child_pre_probe(struct udevice *dev)
{
struct bcm63xx_spi_priv *priv = dev_get_priv(dev->parent);
const unsigned long *regs = priv->regs;
struct spi_slave *slave = dev_get_parent_priv(dev);
struct dm_spi_slave_platdata *plat = dev_get_parent_platdata(dev);
/* check cs */
if (plat->cs >= priv->num_cs) {
printf("no cs %u\n", plat->cs);
return -ENODEV;
}
/* max read/write sizes */
slave->max_read_size = regs[SPI_RX_SIZE];
slave->max_write_size = regs[SPI_TX_SIZE];
return 0;
}
static int bcm63xx_spi_probe(struct udevice *dev)
{
struct bcm63xx_spi_priv *priv = dev_get_priv(dev);
const unsigned long *regs =
(const unsigned long *)dev_get_driver_data(dev);
struct reset_ctl rst_ctl;
struct clk clk;
fdt_addr_t addr;
fdt_size_t size;
int ret;
addr = devfdt_get_addr_size_index(dev, 0, &size);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
priv->regs = regs;
priv->base = ioremap(addr, size);
priv->num_cs = fdtdec_get_uint(gd->fdt_blob, dev_of_offset(dev),
"num-cs", 8);
/* enable clock */
ret = clk_get_by_index(dev, 0, &clk);
if (ret < 0)
return ret;
ret = clk_enable(&clk);
if (ret < 0)
return ret;
ret = clk_free(&clk);
if (ret < 0)
return ret;
/* perform reset */
ret = reset_get_by_index(dev, 0, &rst_ctl);
if (ret < 0)
return ret;
ret = reset_deassert(&rst_ctl);
if (ret < 0)
return ret;
ret = reset_free(&rst_ctl);
if (ret < 0)
return ret;
/* initialize hardware */
writeb_be(0, priv->base + regs[SPI_IR_MASK]);
/* set fill register */
writeb_be(0xff, priv->base + regs[SPI_FILL]);
return 0;
}
U_BOOT_DRIVER(bcm63xx_spi) = {
.name = "bcm63xx_spi",
.id = UCLASS_SPI,
.of_match = bcm63xx_spi_ids,
.ops = &bcm63xx_spi_ops,
.priv_auto_alloc_size = sizeof(struct bcm63xx_spi_priv),
.child_pre_probe = bcm63xx_spi_child_pre_probe,
.probe = bcm63xx_spi_probe,
};

@ -212,7 +212,7 @@ static int cadence_spi_xfer(struct udevice *dev, unsigned int bitlen,
/* Set Chip select */
cadence_qspi_apb_chipselect(base, spi_chip_select(dev),
CONFIG_CQSPI_DECODER);
plat->is_decoded_cs);
if ((flags & SPI_XFER_END) || (flags == 0)) {
if (priv->cmd_len == 0) {
@ -296,7 +296,11 @@ static int cadence_spi_ofdata_to_platdata(struct udevice *bus)
plat->regbase = (void *)data[0];
plat->ahbbase = (void *)data[2];
plat->sram_size = fdtdec_get_int(blob, node, "sram-size", 128);
plat->is_decoded_cs = fdtdec_get_bool(blob, node, "cdns,is-decoded-cs");
plat->fifo_depth = fdtdec_get_uint(blob, node, "cdns,fifo-depth", 128);
plat->fifo_width = fdtdec_get_uint(blob, node, "cdns,fifo-width", 4);
plat->trigger_address = fdtdec_get_uint(blob, node,
"cdns,trigger-address", 0);
/* All other paramters are embedded in the child node */
subnode = fdt_first_subnode(blob, node);
@ -310,12 +314,12 @@ static int cadence_spi_ofdata_to_platdata(struct udevice *bus)
500000);
/* Read other parameters from DT */
plat->page_size = fdtdec_get_int(blob, subnode, "page-size", 256);
plat->block_size = fdtdec_get_int(blob, subnode, "block-size", 16);
plat->tshsl_ns = fdtdec_get_int(blob, subnode, "tshsl-ns", 200);
plat->tsd2d_ns = fdtdec_get_int(blob, subnode, "tsd2d-ns", 255);
plat->tchsh_ns = fdtdec_get_int(blob, subnode, "tchsh-ns", 20);
plat->tslch_ns = fdtdec_get_int(blob, subnode, "tslch-ns", 20);
plat->page_size = fdtdec_get_uint(blob, subnode, "page-size", 256);
plat->block_size = fdtdec_get_uint(blob, subnode, "block-size", 16);
plat->tshsl_ns = fdtdec_get_uint(blob, subnode, "cdns,tshsl-ns", 200);
plat->tsd2d_ns = fdtdec_get_uint(blob, subnode, "cdns,tsd2d-ns", 255);
plat->tchsh_ns = fdtdec_get_uint(blob, subnode, "cdns,tchsh-ns", 20);
plat->tslch_ns = fdtdec_get_uint(blob, subnode, "cdns,tslch-ns", 20);
debug("%s: regbase=%p ahbbase=%p max-frequency=%d page-size=%d\n",
__func__, plat->regbase, plat->ahbbase, plat->max_hz,

@ -18,14 +18,18 @@ struct cadence_spi_platdata {
unsigned int max_hz;
void *regbase;
void *ahbbase;
bool is_decoded_cs;
u32 fifo_depth;
u32 fifo_width;
u32 trigger_address;
/* Flash parameters */
u32 page_size;
u32 block_size;
u32 tshsl_ns;
u32 tsd2d_ns;
u32 tchsh_ns;
u32 tslch_ns;
u32 sram_size;
};
struct cadence_spi_priv {

@ -30,17 +30,13 @@
#include <linux/errno.h>
#include <wait_bit.h>
#include <spi.h>
#include <bouncebuf.h>
#include <malloc.h>
#include "cadence_qspi.h"
#define CQSPI_REG_POLL_US 1 /* 1us */
#define CQSPI_REG_RETRY 10000
#define CQSPI_POLL_IDLE_RETRY 3
#define CQSPI_FIFO_WIDTH 4
#define CQSPI_REG_SRAM_THRESHOLD_WORDS 50
/* Transfer mode */
#define CQSPI_INST_TYPE_SINGLE 0
#define CQSPI_INST_TYPE_DUAL 1
@ -51,9 +47,6 @@
#define CQSPI_DUMMY_CLKS_PER_BYTE 8
#define CQSPI_DUMMY_BYTES_MAX 4
#define CQSPI_REG_SRAM_FILL_THRESHOLD \
((CQSPI_REG_SRAM_SIZE_WORD / 2) * CQSPI_FIFO_WIDTH)
/****************************************************************************
* Controller's configuration and status register (offset from QSPI_BASE)
****************************************************************************/
@ -400,7 +393,7 @@ void cadence_qspi_apb_controller_init(struct cadence_spi_platdata *plat)
writel(0, plat->regbase + CQSPI_REG_REMAP);
/* Indirect mode configurations */
writel((plat->sram_size/2), plat->regbase + CQSPI_REG_SRAMPARTITION);
writel(plat->fifo_depth / 2, plat->regbase + CQSPI_REG_SRAMPARTITION);
/* Disable all interrupts */
writel(0, plat->regbase + CQSPI_REG_IRQMASK);
@ -560,7 +553,7 @@ int cadence_qspi_apb_indirect_read_setup(struct cadence_spi_platdata *plat,
addr_bytes = cmdlen - 1;
/* Setup the indirect trigger address */
writel((u32)plat->ahbbase,
writel(plat->trigger_address,
plat->regbase + CQSPI_REG_INDIRECTTRIGGER);
/* Configure the opcode */
@ -634,8 +627,6 @@ int cadence_qspi_apb_indirect_read_execute(struct cadence_spi_platdata *plat,
{
unsigned int remaining = n_rx;
unsigned int bytes_to_read = 0;
struct bounce_buffer bb;
u8 *bb_rxbuf;
int ret;
writel(n_rx, plat->regbase + CQSPI_REG_INDIRECTRDBYTES);
@ -644,11 +635,6 @@ int cadence_qspi_apb_indirect_read_execute(struct cadence_spi_platdata *plat,
writel(CQSPI_REG_INDIRECTRD_START,
plat->regbase + CQSPI_REG_INDIRECTRD);
ret = bounce_buffer_start(&bb, (void *)rxbuf, n_rx, GEN_BB_WRITE);
if (ret)
return ret;
bb_rxbuf = bb.bounce_buffer;
while (remaining > 0) {
ret = cadence_qspi_wait_for_data(plat);
if (ret < 0) {
@ -659,24 +645,27 @@ int cadence_qspi_apb_indirect_read_execute(struct cadence_spi_platdata *plat,
bytes_to_read = ret;
while (bytes_to_read != 0) {
bytes_to_read *= CQSPI_FIFO_WIDTH;
bytes_to_read *= plat->fifo_width;
bytes_to_read = bytes_to_read > remaining ?
remaining : bytes_to_read;
readsl(plat->ahbbase, bb_rxbuf, bytes_to_read >> 2);
if (bytes_to_read % 4)
readsb(plat->ahbbase,
bb_rxbuf + rounddown(bytes_to_read, 4),
bytes_to_read % 4);
bb_rxbuf += bytes_to_read;
/*
* Handle non-4-byte aligned access to avoid
* data abort.
*/
if (((uintptr_t)rxbuf % 4) || (bytes_to_read % 4))
readsb(plat->ahbbase, rxbuf, bytes_to_read);
else
readsl(plat->ahbbase, rxbuf,
bytes_to_read >> 2);
rxbuf += bytes_to_read;
remaining -= bytes_to_read;
bytes_to_read = cadence_qspi_get_rd_sram_level(plat);
}
}
/* Check indirect done status */
ret = wait_for_bit("QSPI", plat->regbase + CQSPI_REG_INDIRECTRD,
CQSPI_REG_INDIRECTRD_DONE, 1, 10, 0);
ret = wait_for_bit_le32(plat->regbase + CQSPI_REG_INDIRECTRD,
CQSPI_REG_INDIRECTRD_DONE, 1, 10, 0);
if (ret) {
printf("Indirect read completion error (%i)\n", ret);
goto failrd;
@ -685,7 +674,6 @@ int cadence_qspi_apb_indirect_read_execute(struct cadence_spi_platdata *plat,
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTRD_DONE,
plat->regbase + CQSPI_REG_INDIRECTRD);
bounce_buffer_stop(&bb);
return 0;
@ -693,7 +681,6 @@ failrd:
/* Cancel the indirect read */
writel(CQSPI_REG_INDIRECTRD_CANCEL,
plat->regbase + CQSPI_REG_INDIRECTRD);
bounce_buffer_stop(&bb);
return ret;
}
@ -710,7 +697,7 @@ int cadence_qspi_apb_indirect_write_setup(struct cadence_spi_platdata *plat,
return -EINVAL;
}
/* Setup the indirect trigger address */
writel((u32)plat->ahbbase,
writel(plat->trigger_address,
plat->regbase + CQSPI_REG_INDIRECTTRIGGER);
/* Configure the opcode */
@ -733,19 +720,22 @@ int cadence_qspi_apb_indirect_write_execute(struct cadence_spi_platdata *plat,
{
unsigned int page_size = plat->page_size;
unsigned int remaining = n_tx;
const u8 *bb_txbuf = txbuf;
void *bounce_buf = NULL;
unsigned int write_bytes;
int ret;
struct bounce_buffer bb;
u8 *bb_txbuf;
/*
* Handle non-4-byte aligned accesses via bounce buffer to
* avoid data abort.
* Use bounce buffer for non 32 bit aligned txbuf to avoid data
* aborts
*/
ret = bounce_buffer_start(&bb, (void *)txbuf, n_tx, GEN_BB_READ);
if (ret)
return ret;
bb_txbuf = bb.bounce_buffer;
if ((uintptr_t)txbuf % 4) {
bounce_buf = malloc(n_tx);
if (!bounce_buf)
return -ENOMEM;
memcpy(bounce_buf, txbuf, n_tx);
bb_txbuf = bounce_buf;
}
/* Configure the indirect read transfer bytes */
writel(n_tx, plat->regbase + CQSPI_REG_INDIRECTWRBYTES);
@ -762,9 +752,9 @@ int cadence_qspi_apb_indirect_write_execute(struct cadence_spi_platdata *plat,
bb_txbuf + rounddown(write_bytes, 4),
write_bytes % 4);
ret = wait_for_bit("QSPI", plat->regbase + CQSPI_REG_SDRAMLEVEL,
CQSPI_REG_SDRAMLEVEL_WR_MASK <<
CQSPI_REG_SDRAMLEVEL_WR_LSB, 0, 10, 0);
ret = wait_for_bit_le32(plat->regbase + CQSPI_REG_SDRAMLEVEL,
CQSPI_REG_SDRAMLEVEL_WR_MASK <<
CQSPI_REG_SDRAMLEVEL_WR_LSB, 0, 10, 0);
if (ret) {
printf("Indirect write timed out (%i)\n", ret);
goto failwr;
@ -775,24 +765,26 @@ int cadence_qspi_apb_indirect_write_execute(struct cadence_spi_platdata *plat,
}
/* Check indirect done status */
ret = wait_for_bit("QSPI", plat->regbase + CQSPI_REG_INDIRECTWR,
CQSPI_REG_INDIRECTWR_DONE, 1, 10, 0);
ret = wait_for_bit_le32(plat->regbase + CQSPI_REG_INDIRECTWR,
CQSPI_REG_INDIRECTWR_DONE, 1, 10, 0);
if (ret) {
printf("Indirect write completion error (%i)\n", ret);
goto failwr;
}
bounce_buffer_stop(&bb);
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTWR_DONE,
plat->regbase + CQSPI_REG_INDIRECTWR);
if (bounce_buf)
free(bounce_buf);
return 0;
failwr:
/* Cancel the indirect write */
writel(CQSPI_REG_INDIRECTWR_CANCEL,
plat->regbase + CQSPI_REG_INDIRECTWR);
bounce_buffer_stop(&bb);
if (bounce_buf)
free(bounce_buf);
return ret;
}

@ -11,6 +11,7 @@
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <errno.h>
#include <malloc.h>
@ -18,7 +19,6 @@
#include <fdtdec.h>
#include <linux/compat.h>
#include <asm/io.h>
#include <asm/arch/clock_manager.h>
DECLARE_GLOBAL_DATA_PTR;
@ -94,6 +94,8 @@ struct dw_spi_priv {
void __iomem *regs;
unsigned int freq; /* Default frequency */
unsigned int mode;
struct clk clk;
unsigned long bus_clk_rate;
int bits_per_word;
u8 cs; /* chip select pin */
@ -176,14 +178,53 @@ static void spi_hw_init(struct dw_spi_priv *priv)
debug("%s: fifo_len=%d\n", __func__, priv->fifo_len);
}
/*
* We define dw_spi_get_clk function as 'weak' as some targets
* (like SOCFPGA_GEN5 and SOCFPGA_ARRIA10) don't use standard clock API
* and implement dw_spi_get_clk their own way in their clock manager.
*/
__weak int dw_spi_get_clk(struct udevice *bus, ulong *rate)
{
struct dw_spi_priv *priv = dev_get_priv(bus);
int ret;
ret = clk_get_by_index(bus, 0, &priv->clk);
if (ret)
return ret;
ret = clk_enable(&priv->clk);
if (ret && ret != -ENOSYS && ret != -ENOTSUPP)
return ret;
*rate = clk_get_rate(&priv->clk);
if (!*rate)
goto err_rate;
debug("%s: get spi controller clk via device tree: %lu Hz\n",
__func__, *rate);
return 0;
err_rate:
clk_disable(&priv->clk);
clk_free(&priv->clk);
return -EINVAL;
}
static int dw_spi_probe(struct udevice *bus)
{
struct dw_spi_platdata *plat = dev_get_platdata(bus);
struct dw_spi_priv *priv = dev_get_priv(bus);
int ret;
priv->regs = plat->regs;
priv->freq = plat->frequency;
ret = dw_spi_get_clk(bus, &priv->bus_clk_rate);
if (ret)
return ret;
/* Currently only bits_per_word == 8 supported */
priv->bits_per_word = 8;
@ -369,7 +410,7 @@ static int dw_spi_set_speed(struct udevice *bus, uint speed)
spi_enable_chip(priv, 0);
/* clk_div doesn't support odd number */
clk_div = cm_get_spi_controller_clk_hz() / speed;
clk_div = priv->bus_clk_rate / speed;
clk_div = (clk_div + 1) & 0xfffe;
dw_writel(priv, DW_SPI_BAUDR, clk_div);

@ -1018,11 +1018,11 @@ static int fsl_qspi_probe(struct udevice *bus)
priv->num_chipselect = plat->num_chipselect;
/* make sure controller is not busy anywhere */
ret = wait_for_bit(__func__, &priv->regs->sr,
QSPI_SR_BUSY_MASK |
QSPI_SR_AHB_ACC_MASK |
QSPI_SR_IP_ACC_MASK,
false, 100, false);
ret = wait_for_bit_le32(&priv->regs->sr,
QSPI_SR_BUSY_MASK |
QSPI_SR_AHB_ACC_MASK |
QSPI_SR_IP_ACC_MASK,
false, 100, false);
if (ret) {
debug("ERROR : The controller is busy\n");
@ -1185,11 +1185,11 @@ static int fsl_qspi_claim_bus(struct udevice *dev)
priv = dev_get_priv(bus);
/* make sure controller is not busy anywhere */
ret = wait_for_bit(__func__, &priv->regs->sr,
QSPI_SR_BUSY_MASK |
QSPI_SR_AHB_ACC_MASK |
QSPI_SR_IP_ACC_MASK,
false, 100, false);
ret = wait_for_bit_le32(&priv->regs->sr,
QSPI_SR_BUSY_MASK |
QSPI_SR_AHB_ACC_MASK |
QSPI_SR_IP_ACC_MASK,
false, 100, false);
if (ret) {
debug("ERROR : The controller is busy\n");

@ -243,6 +243,10 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
/* Here now the DM part */
struct mvebu_spi_dev {
bool is_errata_50mhz_ac;
};
struct mvebu_spi_platdata {
struct kwspi_registers *spireg;
};
@ -269,10 +273,44 @@ static int mvebu_spi_set_speed(struct udevice *bus, uint hz)
return 0;
}
static void mvebu_spi_50mhz_ac_timing_erratum(struct udevice *bus, uint mode)
{
struct mvebu_spi_platdata *plat = dev_get_platdata(bus);
struct kwspi_registers *reg = plat->spireg;
u32 data;
/*
* Erratum description: (Erratum NO. FE-9144572) The device
* SPI interface supports frequencies of up to 50 MHz.
* However, due to this erratum, when the device core clock is
* 250 MHz and the SPI interfaces is configured for 50MHz SPI
* clock and CPOL=CPHA=1 there might occur data corruption on
* reads from the SPI device.
* Erratum Workaround:
* Work in one of the following configurations:
* 1. Set CPOL=CPHA=0 in "SPI Interface Configuration
* Register".
* 2. Set TMISO_SAMPLE value to 0x2 in "SPI Timing Parameters 1
* Register" before setting the interface.
*/
data = readl(&reg->timing1);
data &= ~KW_SPI_TMISO_SAMPLE_MASK;
if (CONFIG_SYS_TCLK == 250000000 &&
mode & SPI_CPOL &&
mode & SPI_CPHA)
data |= KW_SPI_TMISO_SAMPLE_2;
else
data |= KW_SPI_TMISO_SAMPLE_1;
writel(data, &reg->timing1);
}
static int mvebu_spi_set_mode(struct udevice *bus, uint mode)
{
struct mvebu_spi_platdata *plat = dev_get_platdata(bus);
struct kwspi_registers *reg = plat->spireg;
const struct mvebu_spi_dev *drvdata;
u32 data = readl(&reg->cfg);
data &= ~(KWSPI_CPHA | KWSPI_CPOL | KWSPI_RXLSBF | KWSPI_TXLSBF);
@ -286,6 +324,10 @@ static int mvebu_spi_set_mode(struct udevice *bus, uint mode)
writel(data, &reg->cfg);
drvdata = (struct mvebu_spi_dev *)dev_get_driver_data(bus);
if (drvdata->is_errata_50mhz_ac)
mvebu_spi_50mhz_ac_timing_erratum(bus, mode);
return 0;
}
@ -343,10 +385,31 @@ static const struct dm_spi_ops mvebu_spi_ops = {
*/
};
static const struct mvebu_spi_dev armada_xp_spi_dev_data = {
.is_errata_50mhz_ac = false,
};
static const struct mvebu_spi_dev armada_375_spi_dev_data = {
.is_errata_50mhz_ac = false,
};
static const struct mvebu_spi_dev armada_380_spi_dev_data = {
.is_errata_50mhz_ac = true,
};
static const struct udevice_id mvebu_spi_ids[] = {
{ .compatible = "marvell,armada-375-spi" },
{ .compatible = "marvell,armada-380-spi" },
{ .compatible = "marvell,armada-xp-spi" },
{
.compatible = "marvell,armada-375-spi",
.data = (ulong)&armada_375_spi_dev_data
},
{
.compatible = "marvell,armada-380-spi",
.data = (ulong)&armada_380_spi_dev_data
},
{
.compatible = "marvell,armada-xp-spi",
.data = (ulong)&armada_xp_spi_dev_data
},
{ }
};

@ -95,8 +95,9 @@ static int spi_legacy_shift_byte(struct spi_reg *reg, unsigned int bytelen,
din_8 = din;
while (bytelen) {
ret = wait_for_bit(__func__, &reg->ctrl,
MVEBU_SPI_A3700_XFER_RDY, true, 100, false);
ret = wait_for_bit_le32(&reg->ctrl,
MVEBU_SPI_A3700_XFER_RDY,
true,100, false);
if (ret)
return ret;
@ -109,9 +110,9 @@ static int spi_legacy_shift_byte(struct spi_reg *reg, unsigned int bytelen,
writel(pending_dout, &reg->dout);
if (din) {
ret = wait_for_bit(__func__, &reg->ctrl,
MVEBU_SPI_A3700_XFER_RDY,
true, 100, false);
ret = wait_for_bit_le32(&reg->ctrl,
MVEBU_SPI_A3700_XFER_RDY,
true, 100, false);
if (ret)
return ret;
@ -160,8 +161,9 @@ static int mvebu_spi_xfer(struct udevice *dev, unsigned int bitlen,
/* Deactivate CS */
if (flags & SPI_XFER_END) {
ret = wait_for_bit(__func__, &reg->ctrl,
MVEBU_SPI_A3700_XFER_RDY, true, 100, false);
ret = wait_for_bit_le32(&reg->ctrl,
MVEBU_SPI_A3700_XFER_RDY,
true, 100, false);
if (ret)
return ret;
@ -231,8 +233,8 @@ static int mvebu_spi_probe(struct udevice *bus)
/* Flush read/write FIFO */
data = readl(&reg->cfg);
writel(data | MVEBU_SPI_A3700_FIFO_FLUSH, &reg->cfg);
ret = wait_for_bit(__func__, &reg->cfg, MVEBU_SPI_A3700_FIFO_FLUSH,
false, 1000, false);
ret = wait_for_bit_le32(&reg->cfg, MVEBU_SPI_A3700_FIFO_FLUSH,
false, 1000, false);
if (ret)
return ret;

@ -50,7 +50,6 @@ int dm_spi_claim_bus(struct udevice *dev)
struct dm_spi_bus *spi = dev_get_uclass_priv(bus);
struct spi_slave *slave = dev_get_parent_priv(dev);
int speed;
int ret;
speed = slave->max_hz;
if (spi->max_hz) {
@ -62,7 +61,8 @@ int dm_spi_claim_bus(struct udevice *dev)
if (!speed)
speed = 100000;
if (speed != slave->speed) {
ret = spi_set_speed_mode(bus, speed, slave->mode);
int ret = spi_set_speed_mode(bus, speed, slave->mode);
if (ret)
return ret;
slave->speed = speed;
@ -129,7 +129,6 @@ static int spi_post_probe(struct udevice *bus)
#if defined(CONFIG_NEEDS_MANUAL_RELOC)
struct dm_spi_ops *ops = spi_get_ops(bus);
if (ops->claim_bus)
ops->claim_bus += gd->reloc_off;
if (ops->release_bus)
@ -348,22 +347,6 @@ err:
}
/* Compatibility function - to be removed */
struct spi_slave *spi_setup_slave_fdt(const void *blob, int node,
int bus_node)
{
struct udevice *bus, *dev;
int ret;
ret = uclass_get_device_by_of_offset(UCLASS_SPI, bus_node, &bus);
if (ret)
return NULL;
ret = device_get_child_by_of_offset(bus, node, &dev);
if (ret)
return NULL;
return dev_get_parent_priv(dev);
}
/* Compatibility function - to be removed */
struct spi_slave *spi_setup_slave(unsigned int busnum, unsigned int cs,
unsigned int speed, unsigned int mode)
{

@ -12,7 +12,7 @@
int spi_set_wordlen(struct spi_slave *slave, unsigned int wordlen)
{
if (wordlen == 0 || wordlen > 32) {
printf("spi: invalid wordlen %d\n", wordlen);
printf("spi: invalid wordlen %u\n", wordlen);
return -1;
}
@ -24,11 +24,12 @@ int spi_set_wordlen(struct spi_slave *slave, unsigned int wordlen)
void *spi_do_alloc_slave(int offset, int size, unsigned int bus,
unsigned int cs)
{
struct spi_slave *slave;
void *ptr;
u8 *ptr;
ptr = malloc(size);
if (ptr) {
struct spi_slave *slave;
memset(ptr, '\0', size);
slave = (struct spi_slave *)(ptr + offset);
slave->bus = bus;
@ -38,23 +39,3 @@ void *spi_do_alloc_slave(int offset, int size, unsigned int bus,
return ptr;
}
#ifdef CONFIG_OF_SPI
struct spi_slave *spi_base_setup_slave_fdt(const void *blob, int busnum,
int node)
{
int cs, max_hz, mode = 0;
cs = fdtdec_get_int(blob, node, "reg", -1);
max_hz = fdtdec_get_int(blob, node, "spi-max-frequency", 100000);
if (fdtdec_get_bool(blob, node, "spi-cpol"))
mode |= SPI_CPOL;
if (fdtdec_get_bool(blob, node, "spi-cpha"))
mode |= SPI_CPHA;
if (fdtdec_get_bool(blob, node, "spi-cs-high"))
mode |= SPI_CS_HIGH;
if (fdtdec_get_bool(blob, node, "spi-half-duplex"))
mode |= SPI_PREAMBLE;
return spi_setup_slave(busnum, cs, max_hz, mode);
}
#endif

@ -108,8 +108,8 @@ static void dwc_otg_flush_tx_fifo(struct dwc2_core_regs *regs, const int num)
writel(DWC2_GRSTCTL_TXFFLSH | (num << DWC2_GRSTCTL_TXFNUM_OFFSET),
&regs->grstctl);
ret = wait_for_bit(__func__, &regs->grstctl, DWC2_GRSTCTL_TXFFLSH,
false, 1000, false);
ret = wait_for_bit_le32(&regs->grstctl, DWC2_GRSTCTL_TXFFLSH,
false, 1000, false);
if (ret)
printf("%s: Timeout!\n", __func__);
@ -127,8 +127,8 @@ static void dwc_otg_flush_rx_fifo(struct dwc2_core_regs *regs)
int ret;
writel(DWC2_GRSTCTL_RXFFLSH, &regs->grstctl);
ret = wait_for_bit(__func__, &regs->grstctl, DWC2_GRSTCTL_RXFFLSH,
false, 1000, false);
ret = wait_for_bit_le32(&regs->grstctl, DWC2_GRSTCTL_RXFFLSH,
false, 1000, false);
if (ret)
printf("%s: Timeout!\n", __func__);
@ -145,15 +145,15 @@ static void dwc_otg_core_reset(struct dwc2_core_regs *regs)
int ret;
/* Wait for AHB master IDLE state. */
ret = wait_for_bit(__func__, &regs->grstctl, DWC2_GRSTCTL_AHBIDLE,
true, 1000, false);
ret = wait_for_bit_le32(&regs->grstctl, DWC2_GRSTCTL_AHBIDLE,
true, 1000, false);
if (ret)
printf("%s: Timeout!\n", __func__);
/* Core Soft Reset */
writel(DWC2_GRSTCTL_CSFTRST, &regs->grstctl);
ret = wait_for_bit(__func__, &regs->grstctl, DWC2_GRSTCTL_CSFTRST,
false, 1000, false);
ret = wait_for_bit_le32(&regs->grstctl, DWC2_GRSTCTL_CSFTRST,
false, 1000, false);
if (ret)
printf("%s: Timeout!\n", __func__);
@ -267,8 +267,8 @@ static void dwc_otg_core_host_init(struct udevice *dev,
clrsetbits_le32(&regs->hc_regs[i].hcchar,
DWC2_HCCHAR_EPDIR,
DWC2_HCCHAR_CHEN | DWC2_HCCHAR_CHDIS);
ret = wait_for_bit(__func__, &regs->hc_regs[i].hcchar,
DWC2_HCCHAR_CHEN, false, 1000, false);
ret = wait_for_bit_le32(&regs->hc_regs[i].hcchar,
DWC2_HCCHAR_CHEN, false, 1000, false);
if (ret)
printf("%s: Timeout!\n", __func__);
}
@ -783,8 +783,8 @@ int wait_for_chhltd(struct dwc2_hc_regs *hc_regs, uint32_t *sub, u8 *toggle)
int ret;
uint32_t hcint, hctsiz;
ret = wait_for_bit(__func__, &hc_regs->hcint, DWC2_HCINT_CHHLTD, true,
1000, false);
ret = wait_for_bit_le32(&hc_regs->hcint, DWC2_HCINT_CHHLTD, true,
1000, false);
if (ret)
return ret;

@ -133,8 +133,7 @@ static int ehci_usb_remove(struct udevice *dev)
setbits_le32(&ehci->usbcmd, CMD_RESET);
/* Wait for reset */
if (wait_for_bit(__func__, &ehci->usbcmd, CMD_RESET, false, 30,
false)) {
if (wait_for_bit_le32(&ehci->usbcmd, CMD_RESET, false, 30, false)) {
printf("Stuck on USB reset.\n");
return -ETIMEDOUT;
}

@ -142,13 +142,12 @@ static int usb_phy_enable(int index, struct usb_ehci *ehci)
/* Stop then Reset */
clrbits_le32(usb_cmd, UCMD_RUN_STOP);
ret = wait_for_bit(__func__, usb_cmd, UCMD_RUN_STOP, false, 10000,
false);
ret = wait_for_bit_le32(usb_cmd, UCMD_RUN_STOP, false, 10000, false);
if (ret)
return ret;
setbits_le32(usb_cmd, UCMD_RESET);
ret = wait_for_bit(__func__, usb_cmd, UCMD_RESET, false, 10000, false);
ret = wait_for_bit_le32(usb_cmd, UCMD_RESET, false, 10000, false);
if (ret)
return ret;

@ -143,8 +143,8 @@ static int usbpll_setup(void)
setbits_le32(&clk_pwr->usb_ctrl, CLK_USBCTRL_POSTDIV_2POW(0x01));
setbits_le32(&clk_pwr->usb_ctrl, CLK_USBCTRL_PLL_PWRUP);
ret = wait_for_bit(__func__, &clk_pwr->usb_ctrl, CLK_USBCTRL_PLL_STS,
true, CONFIG_SYS_HZ, false);
ret = wait_for_bit_le32(&clk_pwr->usb_ctrl, CLK_USBCTRL_PLL_STS,
true, CONFIG_SYS_HZ, false);
if (ret)
return ret;
@ -178,8 +178,8 @@ int usb_cpu_init(void)
/* enable I2C clock */
writel(OTG_CLK_I2C_EN, &otg->otg_clk_ctrl);
ret = wait_for_bit(__func__, &otg->otg_clk_sts, OTG_CLK_I2C_EN, true,
CONFIG_SYS_HZ, false);
ret = wait_for_bit_le32(&otg->otg_clk_sts, OTG_CLK_I2C_EN, true,
CONFIG_SYS_HZ, false);
if (ret)
return ret;
@ -199,8 +199,8 @@ int usb_cpu_init(void)
OTG_CLK_I2C_EN | OTG_CLK_HOST_EN;
writel(mask, &otg->otg_clk_ctrl);
ret = wait_for_bit(__func__, &otg->otg_clk_sts, mask, true,
CONFIG_SYS_HZ, false);
ret = wait_for_bit_le32(&otg->otg_clk_sts, mask, true,
CONFIG_SYS_HZ, false);
if (ret)
return ret;

@ -55,18 +55,18 @@ static int xhci_rcar_download_fw(struct rcar_xhci *ctx, const u32 *fw_data,
setbits_le32(regs + RCAR_USB3_DL_CTRL,
RCAR_USB3_DL_CTRL_FW_SET_DATA0);
ret = wait_for_bit("xhci-rcar", regs + RCAR_USB3_DL_CTRL,
RCAR_USB3_DL_CTRL_FW_SET_DATA0, false,
10, false);
ret = wait_for_bit_le32(regs + RCAR_USB3_DL_CTRL,
RCAR_USB3_DL_CTRL_FW_SET_DATA0, false,
10, false);
if (ret)
break;
}
clrbits_le32(regs + RCAR_USB3_DL_CTRL, RCAR_USB3_DL_CTRL_ENABLE);
ret = wait_for_bit("xhci-rcar", regs + RCAR_USB3_DL_CTRL,
RCAR_USB3_DL_CTRL_FW_SUCCESS, true,
10, false);
ret = wait_for_bit_le32(regs + RCAR_USB3_DL_CTRL,
RCAR_USB3_DL_CTRL_FW_SUCCESS, true,
10, false);
return ret;
}

@ -70,26 +70,26 @@ void lcd_ctrl_init(void *lcdbase)
/* Disable DISP signal */
writel(LCDC_LCDDIS_DISPDIS, &regs->lcdc_lcddis);
ret = wait_for_bit(__func__, &regs->lcdc_lcdsr, LCDC_LCDSR_DISPSTS,
false, 1000, false);
ret = wait_for_bit_le32(&regs->lcdc_lcdsr, LCDC_LCDSR_DISPSTS,
false, 1000, false);
if (ret)
printf("%s: %d: Timeout!\n", __func__, __LINE__);
/* Disable synchronization */
writel(LCDC_LCDDIS_SYNCDIS, &regs->lcdc_lcddis);
ret = wait_for_bit(__func__, &regs->lcdc_lcdsr, LCDC_LCDSR_LCDSTS,
false, 1000, false);
ret = wait_for_bit_le32(&regs->lcdc_lcdsr, LCDC_LCDSR_LCDSTS,
false, 1000, false);
if (ret)
printf("%s: %d: Timeout!\n", __func__, __LINE__);
/* Disable pixel clock */
writel(LCDC_LCDDIS_CLKDIS, &regs->lcdc_lcddis);
ret = wait_for_bit(__func__, &regs->lcdc_lcdsr, LCDC_LCDSR_CLKSTS,
false, 1000, false);
ret = wait_for_bit_le32(&regs->lcdc_lcdsr, LCDC_LCDSR_CLKSTS,
false, 1000, false);
if (ret)
printf("%s: %d: Timeout!\n", __func__, __LINE__);
/* Disable PWM */
writel(LCDC_LCDDIS_PWMDIS, &regs->lcdc_lcddis);
ret = wait_for_bit(__func__, &regs->lcdc_lcdsr, LCDC_LCDSR_PWMSTS,
false, 1000, false);
ret = wait_for_bit_le32(&regs->lcdc_lcdsr, LCDC_LCDSR_PWMSTS,
false, 1000, false);
if (ret)
printf("%s: %d: Timeout!\n", __func__, __LINE__);
@ -215,26 +215,26 @@ void lcd_ctrl_init(void *lcdbase)
/* Enable LCD */
value = readl(&regs->lcdc_lcden);
writel(value | LCDC_LCDEN_CLKEN, &regs->lcdc_lcden);
ret = wait_for_bit(__func__, &regs->lcdc_lcdsr, LCDC_LCDSR_CLKSTS,
true, 1000, false);
ret = wait_for_bit_le32(&regs->lcdc_lcdsr, LCDC_LCDSR_CLKSTS,
true, 1000, false);
if (ret)
printf("%s: %d: Timeout!\n", __func__, __LINE__);
value = readl(&regs->lcdc_lcden);
writel(value | LCDC_LCDEN_SYNCEN, &regs->lcdc_lcden);
ret = wait_for_bit(__func__, &regs->lcdc_lcdsr, LCDC_LCDSR_LCDSTS,
true, 1000, false);
ret = wait_for_bit_le32(&regs->lcdc_lcdsr, LCDC_LCDSR_LCDSTS,
true, 1000, false);
if (ret)
printf("%s: %d: Timeout!\n", __func__, __LINE__);
value = readl(&regs->lcdc_lcden);
writel(value | LCDC_LCDEN_DISPEN, &regs->lcdc_lcden);
ret = wait_for_bit(__func__, &regs->lcdc_lcdsr, LCDC_LCDSR_DISPSTS,
true, 1000, false);
ret = wait_for_bit_le32(&regs->lcdc_lcdsr, LCDC_LCDSR_DISPSTS,
true, 1000, false);
if (ret)
printf("%s: %d: Timeout!\n", __func__, __LINE__);
value = readl(&regs->lcdc_lcden);
writel(value | LCDC_LCDEN_PWMEN, &regs->lcdc_lcden);
ret = wait_for_bit(__func__, &regs->lcdc_lcdsr, LCDC_LCDSR_PWMSTS,
true, 1000, false);
ret = wait_for_bit_le32(&regs->lcdc_lcdsr, LCDC_LCDSR_PWMSTS,
true, 1000, false);
if (ret)
printf("%s: %d: Timeout!\n", __func__, __LINE__);
@ -299,26 +299,26 @@ static void atmel_hlcdc_init(struct udevice *dev)
/* Disable DISP signal */
writel(LCDC_LCDDIS_DISPDIS, &regs->lcdc_lcddis);
ret = wait_for_bit(__func__, &regs->lcdc_lcdsr, LCDC_LCDSR_DISPSTS,
false, 1000, false);
ret = wait_for_bit_le32(&regs->lcdc_lcdsr, LCDC_LCDSR_DISPSTS,
false, 1000, false);
if (ret)
printf("%s: %d: Timeout!\n", __func__, __LINE__);
/* Disable synchronization */
writel(LCDC_LCDDIS_SYNCDIS, &regs->lcdc_lcddis);
ret = wait_for_bit(__func__, &regs->lcdc_lcdsr, LCDC_LCDSR_LCDSTS,
false, 1000, false);
ret = wait_for_bit_le32(&regs->lcdc_lcdsr, LCDC_LCDSR_LCDSTS,
false, 1000, false);
if (ret)
printf("%s: %d: Timeout!\n", __func__, __LINE__);
/* Disable pixel clock */
writel(LCDC_LCDDIS_CLKDIS, &regs->lcdc_lcddis);
ret = wait_for_bit(__func__, &regs->lcdc_lcdsr, LCDC_LCDSR_CLKSTS,
false, 1000, false);
ret = wait_for_bit_le32(&regs->lcdc_lcdsr, LCDC_LCDSR_CLKSTS,
false, 1000, false);
if (ret)
printf("%s: %d: Timeout!\n", __func__, __LINE__);
/* Disable PWM */
writel(LCDC_LCDDIS_PWMDIS, &regs->lcdc_lcddis);
ret = wait_for_bit(__func__, &regs->lcdc_lcdsr, LCDC_LCDSR_PWMSTS,
false, 1000, false);
ret = wait_for_bit_le32(&regs->lcdc_lcdsr, LCDC_LCDSR_PWMSTS,
false, 1000, false);
if (ret)
printf("%s: %d: Timeout!\n", __func__, __LINE__);
@ -451,26 +451,26 @@ static void atmel_hlcdc_init(struct udevice *dev)
/* Enable LCD */
value = readl(&regs->lcdc_lcden);
writel(value | LCDC_LCDEN_CLKEN, &regs->lcdc_lcden);
ret = wait_for_bit(__func__, &regs->lcdc_lcdsr, LCDC_LCDSR_CLKSTS,
true, 1000, false);
ret = wait_for_bit_le32(&regs->lcdc_lcdsr, LCDC_LCDSR_CLKSTS,
true, 1000, false);
if (ret)
printf("%s: %d: Timeout!\n", __func__, __LINE__);
value = readl(&regs->lcdc_lcden);
writel(value | LCDC_LCDEN_SYNCEN, &regs->lcdc_lcden);
ret = wait_for_bit(__func__, &regs->lcdc_lcdsr, LCDC_LCDSR_LCDSTS,
true, 1000, false);
ret = wait_for_bit_le32(&regs->lcdc_lcdsr, LCDC_LCDSR_LCDSTS,
true, 1000, false);
if (ret)
printf("%s: %d: Timeout!\n", __func__, __LINE__);
value = readl(&regs->lcdc_lcden);
writel(value | LCDC_LCDEN_DISPEN, &regs->lcdc_lcden);
ret = wait_for_bit(__func__, &regs->lcdc_lcdsr, LCDC_LCDSR_DISPSTS,
true, 1000, false);
ret = wait_for_bit_le32(&regs->lcdc_lcdsr, LCDC_LCDSR_DISPSTS,
true, 1000, false);
if (ret)
printf("%s: %d: Timeout!\n", __func__, __LINE__);
value = readl(&regs->lcdc_lcden);
writel(value | LCDC_LCDEN_PWMEN, &regs->lcdc_lcden);
ret = wait_for_bit(__func__, &regs->lcdc_lcdsr, LCDC_LCDSR_PWMSTS,
true, 1000, false);
ret = wait_for_bit_le32(&regs->lcdc_lcdsr, LCDC_LCDSR_PWMSTS,
true, 1000, false);
if (ret)
printf("%s: %d: Timeout!\n", __func__, __LINE__);
}

@ -95,8 +95,6 @@
#ifndef CONFIG_SPL_BUILD
#define CONFIG_CADENCE_QSPI
#define CONFIG_CQSPI_REF_CLK 384000000
#define CONFIG_CQSPI_DECODER 0x0
#define CONFIG_BOUNCE_BUFFER
#endif
#define SPI_MTD_PARTS KEYSTONE_SPI1_MTD_PARTS

@ -184,8 +184,6 @@ unsigned int cm_get_l4_sp_clk_hz(void);
unsigned int cm_get_qspi_controller_clk_hz(void);
#define CONFIG_CQSPI_REF_CLK cm_get_qspi_controller_clk_hz()
#endif
#define CONFIG_CQSPI_DECODER 0
#define CONFIG_BOUNCE_BUFFER
/*
* Designware SPI support

@ -63,9 +63,7 @@
+ * QSPI support
+ */
#ifdef CONFIG_OF_CONTROL /* QSPI is controlled via DT */
#define CONFIG_CQSPI_DECODER 0
#define CONFIG_CQSPI_REF_CLK ((30/4)/2)*1000*1000
#define CONFIG_BOUNCE_BUFFER
#endif

@ -86,8 +86,10 @@ struct dm_spi_slave_platdata {
* @cs: ID of the chip select connected to the slave.
* @mode: SPI mode to use for this slave (see SPI mode flags)
* @wordlen: Size of SPI word in number of bits
* @max_read_size: If non-zero, the maximum number of bytes which can
* be read at once.
* @max_write_size: If non-zero, the maximum number of bytes which can
* be written at once, excluding command bytes.
* be written at once.
* @memory_map: Address of read-only SPI flash access.
* @flags: Indication of SPI flags.
*/
@ -102,6 +104,7 @@ struct spi_slave {
#endif
uint mode;
unsigned int wordlen;
unsigned int max_read_size;
unsigned int max_write_size;
void *memory_map;
@ -314,33 +317,6 @@ static inline int spi_w8r8(struct spi_slave *slave, unsigned char byte)
return ret < 0 ? ret : din[1];
}
/**
* Set up a SPI slave for a particular device tree node
*
* This calls spi_setup_slave() with the correct bus number. Call
* spi_free_slave() to free it later.
*
* @param blob: Device tree blob
* @param slave_node: Slave node to use
* @param spi_node: SPI peripheral node to use
* @return pointer to new spi_slave structure
*/
struct spi_slave *spi_setup_slave_fdt(const void *blob, int slave_node,
int spi_node);
/**
* spi_base_setup_slave_fdt() - helper function to set up a SPI slace
*
* This decodes SPI properties from the slave node to determine the
* chip select and SPI parameters.
*
* @blob: Device tree blob
* @busnum: Bus number to use
* @node: Device tree node for the SPI bus
*/
struct spi_slave *spi_base_setup_slave_fdt(const void *blob, int busnum,
int node);
#ifdef CONFIG_DM_SPI
/**

@ -194,18 +194,6 @@ void sandbox_sf_unbind_emul(struct sandbox_state *state, int busnum, int cs);
struct spi_flash *spi_flash_probe(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int spi_mode);
/**
* Set up a new SPI flash from an fdt node
*
* @param blob Device tree blob
* @param slave_node Pointer to this SPI slave node in the device tree
* @param spi_node Cached pointer to the SPI interface this node belongs
* to
* @return 0 if ok, -1 on error
*/
struct spi_flash *spi_flash_probe_fdt(const void *blob, int slave_node,
int spi_node);
void spi_flash_free(struct spi_flash *flash);
static inline int spi_flash_read(struct spi_flash *flash, u32 offset,

@ -16,7 +16,7 @@
#include <asm/io.h>
/**
* wait_for_bit() waits for bit set/cleared in register
* wait_for_bit_x() waits for bit set/cleared in register
*
* Function polls register waiting for specific bit(s) change
* (either 0->1 or 1->0). It can fail under two conditions:
@ -25,49 +25,60 @@
* Function succeeds only if all bits of masked register are set/cleared
* (depending on set option).
*
* @param prefix Prefix added to timeout messagge (message visible only
* with debug enabled)
* @param reg Register that will be read (using readl())
* @param reg Register that will be read (using read_x())
* @param mask Bit(s) of register that must be active
* @param set Selects wait condition (bit set or clear)
* @param timeout_ms Timeout (in miliseconds)
* @param timeout_ms Timeout (in milliseconds)
* @param breakable Enables CTRL-C interruption
* @return 0 on success, -ETIMEDOUT or -EINTR on failure
*/
static inline int wait_for_bit(const char *prefix, const u32 *reg,
const u32 mask, const bool set,
const unsigned int timeout_ms,
const bool breakable)
{
u32 val;
unsigned long start = get_timer(0);
while (1) {
val = readl(reg);
if (!set)
val = ~val;
if ((val & mask) == mask)
return 0;
if (get_timer(start) > timeout_ms)
break;
if (breakable && ctrlc()) {
puts("Abort\n");
return -EINTR;
}
udelay(1);
WATCHDOG_RESET();
}
debug("%s: Timeout (reg=%p mask=%08x wait_set=%i)\n", prefix, reg, mask,
set);
return -ETIMEDOUT;
#define BUILD_WAIT_FOR_BIT(sfx, type, read) \
\
static inline int wait_for_bit_##sfx(const void *reg, \
const type mask, \
const bool set, \
const unsigned int timeout_ms, \
const bool breakable) \
{ \
type val; \
unsigned long start = get_timer(0); \
\
while (1) { \
val = read(reg); \
\
if (!set) \
val = ~val; \
\
if ((val & mask) == mask) \
return 0; \
\
if (get_timer(start) > timeout_ms) \
break; \
\
if (breakable && ctrlc()) { \
puts("Abort\n"); \
return -EINTR; \
} \
\
udelay(1); \
WATCHDOG_RESET(); \
} \
\
debug("%s: Timeout (reg=%p mask=%x wait_set=%i)\n", __func__, \
reg, mask, set); \
\
return -ETIMEDOUT; \
}
BUILD_WAIT_FOR_BIT(8, u8, readb)
BUILD_WAIT_FOR_BIT(le16, u16, readw)
#ifdef readw_be
BUILD_WAIT_FOR_BIT(be16, u16, readw_be)
#endif
BUILD_WAIT_FOR_BIT(le32, u32, readl)
#ifdef readl_be
BUILD_WAIT_FOR_BIT(be32, u32, readl_be)
#endif
#endif

@ -1515,8 +1515,6 @@ CONFIG_NUM_PAMU
CONFIG_ODROID_REV_AIN
CONFIG_OFF_PADCONF
CONFIG_OF_
CONFIG_OF_SPI
CONFIG_OF_SPI_FLASH
CONFIG_OF_STDOUT_PATH
CONFIG_OMAP_EHCI_PHY1_RESET_GPIO
CONFIG_OMAP_EHCI_PHY2_RESET_GPIO

Loading…
Cancel
Save